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Graphs in machine learning

Many machine learning algorithms build on graphs:

• Clustering algorithms, e.g. spectral clustering

• Dimensionality reduction algorithms based on manifolds (LLE,
Isomap)

• Semi-supervised learning algorithms, e.g. label propagation

• Ranking algorithms

What is so nice about graphs?
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Graphs in machine learning (2)
Many data sets have a natural graph structure:

• Web pages and the hyperlink structure

• Protein-interaction networks

• Social networks

• Citation graphs

• ...

Many of those graphs have very particular properties (for example,
they are “scale free”).
In this tutorial we don’t talk about those “natural graphs”.
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Graphs in machine learning (3)
Many data sets can be transformed to a graph representation by
simple means: ; similarity graphs.

Given:

• data “points” X1, ..., Xn

• similarity values s(Xi , Xj) or distance values d(Xi , Xj)

Construct graph:

• Data points are vertices of the graph

• Connect points which are “close”

• Intuition: Graph captures local neighborhoods

Why could this be useful?
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Graphs in machine learning (4)
Look at similarity values:
• Usually, the similarity values are very reliable in encoding “local

structure”

• Can reliably indicate which points are “close” or “similar”

• The global structure induced by a similarity or distance function
often does not capture the true global structure of the data
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Graphs in machine learning (5)
Another example for misleading global distances:
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Graphs in machine learning (6)
Now idea:
• Only rely on local information provided by similarity

• Construct graph based on this local information

• Machine learning algorithm should discover global structure by
itself
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Graphs in machine learning (7)
Further advantages of graph-based data representations:

• They are ideally suited to represent data based on pairwise
information of objects (such as similarities, distances, relations)

• They are an efficient way of encoding data (sparse)

• Graphs are omnipresent in computer science, have been studied
a lot, and for many tasks efficient algorithms are known
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Recap: distances and similarities

A similarity score between two objects is “high” if the objects are
“very similar”.
Most prominent example in Rd : Gaussian kernel:
s(xi , xj) = exp(−‖xi − xj‖2/2σ2)

A distance score between two objects is “small” if the objects are
“close” to each other.
Most prominent example in Rd : Eulidean distance:
d(xi , xj) = ‖xi − xj‖

• Distances and similarities are “inverse” to each other:
similarity high ⇐⇒ distance low

• In the following, only talk about similarities, everything also
works with distances!
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Recap: basic graph notation

• A graph consists of vertices and edges.

• Edges can be directed or undirected, and weighted or
unweighted.

• The adjacency matrix (weight matrix) W describes the graph:
wij = 0 if vertices i and j are not connected
wij = weight of the edge, if they are connected

• The degree of a vertex is the sum of all adjacent edge weights:
di =

∑
j wij

• All vertices which can reached from each other by a path form a
connected component
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Directed k-nearest neighbor graph

• Given data objects and their pairwise similarities sij

• Connect each point to its k nearest neighbors

• Weight the edges by the similarity score

Note:
• Resulting graph is directed

• Graph is not symmetric (as neighborhood relationship is not
symmetric)!!!

Two nearest neigbors: 
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Undirected k-nearest neighbor graphs

Make directed graph undirected: either using “or” or “and”
operation on directed edges

“The” kNN graph (other names: symmetric kNN graph):
connects A with B if A← B or A→ B

The mutual kNN graph:
connects A with B if A← B and A→ B

The mutual kNN graph

Directed nearest neigbors: 

The (symmetric) kNN graph
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Undirected k-nearest neighbor graphs (2)

Note: by construction, the mutual kNN-graph is a subset of the
symmetric kNN graph.
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ε-neighborhood graph

• Given data objects and their pairwise distances dij

• Connect each point to all other points which have distance dij

smaller than a threshold ε

• Either use unweighted graph

• or additionally transform distances to similarities and use
similarities as weights
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DemoSimilarityGraphs

Now want to explore graph properties in a demo:

• Go to http://agbs.kyb.tuebingen.mpg.de/wikis/mlss07

• Download file DemoSimilarityGraphs.zip

• Unzip it in some convenient folder

• Start matlab, go to the folder DemoSimilarityGraphs

• Start the demo by typing DemoSimilarityGraphs in matlab

http://agbs.kyb.tuebingen.mpg.de/wikis/mlss07
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DemoSimilarityGraphs (2)
Tuning the similarity function:

As similarity function, demo uses the Gaussian kernel:
s(x , y) = exp(−‖x − y‖2/(2σ2))
Want to select a good parameter σ.

• Data set: two moons

• Noise dimensions: 0
• Choose different values for the kernel parameter σ and press

“Update Data Plots”

• Look at top panel only

• How do you know whether a certain σ is useful?
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DemoSimilarityGraphs (3)
Effect of noise on the similarity function:

• Same data set as before
• Now increase the number of noise dimensions.

• Try to re-adjust sigma.

• What can you observe?

• Do you have an explanation?
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DemoSimilarityGraphs (4)
What happens is: distances in high-dimensional spaces become less
meaningful, they mainly model noise:

Let X and Y be points drawn from two d -dim Gaussians:
X ∼ N(µ1, σ

2
1I )

Y ∼ N(µ2, σ
2
2I )

Then their expected distance satisfies

E‖X − Y ‖2= E
∑d

i=1 |Xi − Yi |2

=
∑d

i=1[ Var(Xi − Yi) + (E (Xi − Yi))
2 ]

= d(σ2
1 + σ2

2) + ‖µ1 − µ2‖2

If d is large, the noise term d(σ2
1 + σ2

2) will always dominate the
“informative term” ‖µ1 − µ2‖2!!!
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DemoSimilarityGraphs (5)
Comparing symmetric and mutual kNN graph:

• Choose data set Gaussians unbalanced

• 500 data points

• Noise dimensions: 0

• First adjust a reasonable σ

• In the two graph panels, choose symmetric kNN and mutual kNN

• Now try to find the smallest parameter k for which both graphs
are connected (have one connected component).

• What can you observe?

• How do both graphs look like for a k which is just a bit smaller?

• And if k is much higher?
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DemoSimilarityGraphs (6)
Symmetric and mutal kNN graph for high noise:

• Data set Gaussians different variance

• 150 data points

• Slowly increase the number of noise dimensions.

• What happens for 200 noise dimensions?

Any explanation?
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DemoSimilarityGraphs (7)
Have already seen:
X ∼ N(µ1, σ

2
1I ), Y ∼ N(µ2, σ

2
2I )

=⇒
E‖X − Y ‖2 = ‖µ1 − µ2‖2 + dσ2

1 + dσ2
2

Assume d is large and σ1 < σ2. Then:

E‖X − X ′‖2 = 2dσ2
1

≤E‖X − Y ‖2 = ‖µ1 − µ2‖2 + dσ2
1 + dσ2

2

≤E‖Y − Y ′‖2 = 2dσ2
2

• Points Y in the low-density cluster are closer to points X in the
high-density cluster than to points Y ′ in their own cluster!
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DemoSimilarityGraphs (8)
Symmetric kNN graph vs. ε-neighborhood graph:

• Data set Gaussians different variance

• 100 data points

• 0 noise dimensions

• Try to adjust ε for the ε-graph such that the graph is connected.

• What can you observe?

• What happens if ε is smaller than this?

• How does the symmetric kNN graph behave compared to this?
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DemoSimilarityGraphs (9)
The degrees of the graph vertices

• Any data set

• 0 noise dimensions

• All three graphs

• Look at the plot of the degrees of the graph. How are the graph
degrees related to the data set?


