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Graphs in machine learning

Many machine learning algorithms build on graphs:
e Clustering algorithms, e.g. spectral clustering

e Dimensionality reduction algorithms based on manifolds (LLE,
Isomap)

e Semi-supervised learning algorithms, e.g. label propagation
e Ranking algorithms

What is so nice about graphs?
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Graphs in machine learning (2)
Many data sets have a natural graph structure:
e Web pages and the hyperlink structure
e Protein-interaction networks
e Social networks
e Citation graphs

Many of those graphs have very particular properties (for example,
they are “scale free").
In this tutorial we don’t talk about those “natural graphs”.
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Graphs in machine learning (3)

Many data sets can be transformed to a graph representation by
simple means: ~ similarity graphs.
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Given:

e data “points” Xi,..., X,
e similarity values s(Xj, X;) or distance values d(X;, X;)

Construct graph:
e Data points are vertices of the graph
e Connect points which are “close”

e Intuition: Graph captures local neighborhoods

Why could this be useful?
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Graphs in machine learning (4)

Look at similarity values:

e Usually, the similarity values are very reliable in encoding “local
structure”

e Can reliably indicate which points are “close” or “similar”

e The global structure induced by a similarity or distance function
often does not capture the true global structure of the data
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Graphs in machine learning (5)

Another example for misleading global distances:
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Graphs in machine learning (6)

Now idea:
e Only rely on local information provided by similarity

e Construct graph based on this local information

e Machine learning algorithm should discover global structure by
itself
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Graphs in machine learning (7)
Further advantages of graph-based data representations:

e They are ideally suited to represent data based on pairwise
information of objects (such as similarities, distances, relations)

e They are an efficient way of encoding data (sparse)

e Graphs are omnipresent in computer science, have been studied
a lot, and for many tasks efficient algorithms are known
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Recap: distances and similarities

A similarity score between two objects is “high” if the objects are
“very similar”.

Most prominent example in RY: Gaussian kernel:

s(xi, %) = exp(—|lxi — x;[|?/20?)

A distance score between two objects is “small” if the objects are
“close” to each other.

Most prominent example in RY: Eulidean distance:

d(xi, x;) = |Ixi — x|

e Distances and similarities are “inverse” to each other:
similarity high <= distance low

e In the following, only talk about similarities, everything also
works with distances!
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Recap: basic graph notation

b

e A graph consists of vertices and edges.

e Edges can be directed or undirected, and weighted or
unweighted.

e The adjacency matrix (weight matrix) W describes the graph:
w;j = 0 if vertices / and j are not connected
w;; = weight of the edge, if they are connected

e The degree of a vertex is the sum of all adjacent edge weights:
d,' = Zj W,'J'

e All vertices which can reached from each other by a path form a
connected component
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Directed k-nearest neighbor graph

e Given data objects and their pairwise similarities s;;
e Connect each point to its k nearest neighbors

e Weight the edges by the similarity score

Note:
e Resulting graph is directed

e Graph is not symmetric (as neighborhood relationship is not
symmetric)!!!
Two nearest neigbors:
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Undirected k-nearest neighbor graphs

Make directed graph undirected: either using “or” or “and”
operation on directed edges

“The" kNN graph (other names: symmetric kNN graph):
connects Awith Bif A«~~ BorA— B

The mutual kNN graph:
connects A with Bif A«— Band A— B

Directed nearest neigbors:
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Undirected k-nearest neighbor graphs (2)

kNN graph, k=5

Mutual kNN graph, k=5
&

e

:ﬁg& *

Note: by construction, the
symmetric kNN graph.
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e-neighborhood graph
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e Given data objects and their pairwise distances d;

e Connect each point to all other points which have distance dj;
smaller than a threshold ¢

e Either use unweighted graph

e or additionally transform distances to similarities and use
similarities as weights

epsilon—graph, epsilon=0.3
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DemoSimilarityGraphs

Now want to explore graph properties in a demo:
e Go to http://agbs.kyb.tuebingen.mpg.de/wikis/mlss07
e Download file DemoSimilarityGraphs.zip

Unzip it in some convenient folder

Start matlab, go to the folder DemoSimilarityGraphs

Start the demo by typing DemoSimilarityGraphs in matlab
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http://agbs.kyb.tuebingen.mpg.de/wikis/mlss07
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DemoSimilarityGraphs (2)

Tuning the similarity function:

As similarity function, demo uses the Gaussian kernel:

s(x,y) = exp(—|x — y[I?/(20?))
Want to select a good parameter o.

e Data set: two moons

Noise dimensions: 0
Choose different values for the kernel parameter ¢ and press
“Update Data Plots”

Look at top panel only

How do you know whether a certain o is useful?
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DemoSimilarityGraphs (3)

Effect of noise on the similarity function:

Same data set as before
Now increase the number of noise dimensions.

Try to re-adjust sigma.

What can you observe?

Do you have an explanation?
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DemoSimilarityGraphs (4)
What happens is: distances in high-dimensional spaces become less
meaningful, they mainly model noise:

Let X and Y be points drawn from two d-dim Gaussians:
X ~ N(pz, 021)

Y ~ N(u2,03)

Then their expected distance satisfies

EIIX = YIP= EXL 1% — YiP

=0 [ Var(X; — Y;) + (E(X; — Y1))? ]
= d(of +03) + [lpn — p2?

If d is large, the noise term d(o? + o3) will always dominate the
“informative term” ||py — pol|?!!!
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DemoSimilarityGraphs (5)
Comparing symmetric and mutual kNN graph:
e Choose data set Gaussians unbalanced

e 500 data points

e Noise dimensions: 0

e First adjust a reasonable o

e In the two graph panels, choose symmetric kNN and mutual kNN

e Now try to find the smallest parameter k for which both graphs
are connected (have one connected component).

e What can you observe?
e How do both graphs look like for a k which is just a bit smaller?
e And if k is much higher?
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DemoSimilarityGraphs (6)

Symmetric and mutal kNN graph for high noise:
e Data set Gaussians different variance

e 150 data points

e Slowly increase the number of noise dimensions.

e What happens for 200 noise dimensions?

Any explanation?
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DemoSimilarityGraphs (7)
Have already seen:

X ~ N(pz, 031), Y ~ N(pz, 031)

—

EIIX = Y| = — p2|* + dof + do3

Assume d is large and o1 < 0,. Then:

E||X — X'||? = 2do?
<E[IX = Y| = |1 — pall? + doi + doj
<E|Y = Y'||? = 2do?

e Points Y in the low-density cluster are closer to points X in the
high-density cluster than to points Y’ in their own cluster!
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DemoSimilarityGraphs (8)
Symmetric kNN graph vs. e-neighborhood graph:

e Data set Gaussians different variance
e 100 data points
0 noise dimensions

Try to adjust ¢ for the e-graph such that the graph is connected.

What can you observe?

What happens if € is smaller than this?

How does the symmetric kNN graph behave compared to this?
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DemoSimilarityGraphs (9)

The degrees of the graph vertices

e Any data set
e 0 noise dimensions

e All three graphs

e Look at the plot of the degrees of the graph. How are the graph
degrees related to the data set?

)
=
Ei
&
3
3
o
=
=
S
8
=
=
«
2
S
<
o
>
)
5
£
i
Z
2
=
=}
S
H
o
=
3
-
2
&
A
4
I
P
&=
s
-
=
=

N
N




