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Nonparametric Regression between General Riemannian Manifolds∗
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Abstract. We study nonparametric regression between Riemannian manifolds based on regularized empirical
risk minimization. Regularization functionals for mappings between manifolds should respect the
geometry of input and output manifold and be independent of the chosen parametrization of the
manifolds. We define and analyze the three most simple regularization functionals with these prop-
erties and present a rather general scheme for solving the resulting optimization problem. As appli-
cation examples we discuss interpolation on the sphere, fingerprint processing, and correspondence
computations between three-dimensional surfaces. We conclude with characterizing interesting and
sometimes counterintuitive implications and new open problems that are specific to learning between
Riemannian manifolds and are not encountered in multivariate regression in Euclidean space.
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1. Introduction. The concept of a Riemannian manifold is a useful abstraction for many
data types in image processing and beyond. For example, the human perception of color
values can be modelled via a color circle [38]. Similarly, circular structure is found for in-
terpherometric measurements in SAR (synthetic aperture radar) images [25]. In image and
video sequence formation, classic manifolds such as rotations and combinations thereof are
ubiquitous, and more complex Riemannian manifolds appear as surfaces of three-dimensional
objects [40]. More abstractly, it is often useful in image processing to study whole sets of
images themselves as Riemannian manifolds [42], or similarly in shape processing, to define a
Riemannian structure on the set of all shapes [19, 9].

In this paper we focus on a classic statistical problem with such data, namely regres-
sion between two Riemannian manifolds. Nonparametric regression subsumes interpolation,
extrapolation, and smoothing as special cases, which are ubiquitous problems in image pro-
cessing and image formation. The common problem is to learn from given pairs of input and
output examples a mapping between the input and the output space.

The regression problem where input and output domains are Riemannian manifolds is
quite distinct from standard multivariate regression between Euclidean spaces. It produces a
large variety of new and interesting features, some of which we will describe in this paper. One
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fundamental problem of using traditional regression methods for manifold-valued regression is
that most standard regression schemes assume that the output space is linear. It thus makes
sense to linearly combine simple basis functions, since the addition of function values is still
an element of the target space. While this approach still works for manifold-valued input, it
is no longer feasible if the output space is a manifold, as general Riemannian manifolds do
not have linear structure.

One way that one can still learn manifold-valued mappings using standard regression
techniques is to learn mappings directly into charts of the manifold. Another approach is to
use an embedding of the manifold in Euclidean space and utilize back-projections onto the
manifold. While both approaches yield manifold-valued mappings, the solution will depend
on the chart or embedding, respectively, and in particular will not respect the geometric local
relationships of the manifold, since close points in Euclidean space need not be close in the
geometry of the manifold.

Our approach for regression between manifolds is based on regularized empirical risk
minimization, directly influencing the smoothness of the learned mappings via the regularizer.
We describe the construction of general regularization functionals based on the derivatives of
mappings between Riemannian manifolds and discuss in more detail three specific functionals,
namely the harmonic, biharmonic, and novel Eells energy, which can be seen as a generalization
of the thin-plate-spline energy. One important property of a regularization functional is its
null space, the set of mappings which are not penalized. Interestingly, in the case of the Eells
energy the null space turns out to be the set of totally geodesic maps. These maps can be seen
as a proper generalization of the set of linear mappings to the case of Riemannian manifolds.
Computing the regularization functionals straightforwardly from their definition is often quite
difficult. However, if the input and/or output manifold can be embedded isometrically in
Euclidean space, the regularization functionals can be rewritten in a much simpler form.
From this formulation we construct a relatively simple yet very versatile implementation,
which allows us to demonstrate regression between manifolds in four applications. First, we
show the differences among the three regularizers for two interpolation tasks on the sphere.
We continue with an application to fingerprint reconstruction and finally apply the presented
framework in a realistic surface registration problem. We conclude the article by discussing
some challenging yet very interesting new mathematical and statistical questions which arise
due to the non-Euclidean structure of input and/or output space.

The general learning setup is described in section 2. In section 3 we define regulariza-
tion functionals for manifold-valued mappings, followed by a discussion of their properties in
section 4. In section 5 we provide expressions of the regularization functionals in terms of
embeddings, which turns out to be crucial for efficient implementation, our version of which is
described in section 6. Experimental results are shown in section 7, and we conclude with some
interesting aspects and open problems arising for learning between Riemannian manifolds in
section 8.

1.1. Related work. Riemannian manifolds are commonly used in so-called manifold learn-
ing, where either only the input domain is considered to be a manifold [3] or a description of
the manifold itself is learned [42]. In both cases the manifold is unknown, and only a sample
of points from this manifold is given. Instead, the focus in this work is to learn a predictor
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from given pairs of input/output examples lying on known input and output manifolds.
For regression with manifold-valued output there are classic methods for spherical data

[13]. Recently, k-nearest neighbor [17, 6], Nadaraya–Watson [9], and wavelet [35] types estima-
tors have been adapted for this task. In contrast, our work is based on differential energies for
mappings between general Riemannian manifolds. It unifies and extends previous approaches
in that direction in various ways. The harmonic [12, 44] and biharmonic [27] energies have
been studied extensively in the differential geometry community, but less so in a learning
context. Close to our setting are [14, 30, 22, 7]. All of these consider the problem of learning
a curve in the output manifold; that is, in contrast to our approach, the input domain is
constrained to be one-dimensional and Euclidean. Interpolation is performed in [14, 30] with
a regularizer that penalizes second-order derivatives, whereas [7] proposes regularization func-
tionals of arbitrary order. Approximation is analyzed in [22], but only a first-order regularizer
is used. All these approaches fix start- and endpoints of the curve. The closest in spirit to
our approach is [26], where the harmonic energy is used in an approximation setting.

Parts of the present work have been previously presented at conferences [40, 39]. This
paper summarizes our previous work in a unified and self-contained way. Additionally, we
here compare our approach with other potential regularization energies such as the harmonic
and the biharmonic energy and provide arguments as to why the proposed intrinsic approach
is superior to an extrinsic treatment [16]. Moreover, we present interesting and challenging
problems that arise in nonparametric regression between manifolds and that are not present
in the Euclidean case. Finally, in the appendix we derive the Euler–Lagrange equations for
all discussed energies.

1.2. Notation. Throughout the article we use the following notation. M is always the
input manifold, N the target manifold, and φ : M → N is a mapping from input to target
manifold. The dimensions of M and N are m and n, and x and y are coordinates in M and
N . Moreover, we will use the Einstein summation convention and Penrose’s abstract index
notation; see [46, Chapter 2.4]. “Abstract” indices indicate only the tensor type; they should
not be confused with the indices for the components. For example, a two-times covariant
tensor h is written as hab, and the coordinate representation would be hab = hμν dx

μ
a ⊗ dxνb .

In general, we use Greek letters for components (α, β, γ for components in M and μ, ν, ρ for
components in N) and Latin for abstract indices (a, b, c for indices in M and r, s, t in N). We
denote by gab, hab the metrics onM andN , and by M∇ and N∇ the Levi–Civita connections on
M and N with corresponding Christoffel symbols MΓ

α
βγ and NΓ

ρ
νμ. We follow [21] in defining

the Riemannian curvature tensor R : ⊗3TM ⊗ T ∗M → R as ∇a∇bZ
c −∇b∇aZ

c = Rabd
c Zd.

As usual, ⊗ denotes the tensor product.

2. Regularized empirical risk minimization for manifold-valued regression. Given a set
of K training pairs (Xi, Yi) with Xi ∈ M and Yi ∈ N , we would like to learn a mapping
φ : M → N . This learning problem reduces to standard multivariate regression ifM andN are
both Euclidean spaces Rm and R

n, and to regression on a manifold if at least N is Euclidean.
We propose to use regularized empirical risk minimization, which can be formulated in our
setting as

argmin
φ∈C∞(M,N)

1

K

K∑
i=1

L
(
Yi, φ(Xi)

)
+ λS(φ),(2.1)
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where C∞(M,N) denotes the set of smooth mappings φ between M and N , L : N ×N → R+

is the loss function, λ ∈ R+ the regularization parameter, and S : C∞(M,N) → R the
regularization functional. The regularization functional should measure the complexity of the
mapping φ; the proper definition of such a functional will be the topic of the next section.

2.1. Loss function. In multivariate regression, f : R
m → R

n, the most common loss
function is the squared Euclidean distance of f(Xi) and Yi, L(Yi, f(Xi)) = ‖Yi − f(Xi)‖2Rn .
A direct generalization to a loss function on a Riemannian manifold N is to use the squared
geodesic distance in N , L(Yi, φ(Xi)) = d2N (Yi, φ(Xi)). The correspondence to the multivariate
case can be seen from the fact that dN (Yi, φ(Xi)) is the length of the shortest path between
Yi and φ(Xi) in N , as the norm ‖f(Xi)− Yi‖ is the length of the shortest path, namely the
length of the straight line, between f(Xi) and Yi in R

n. Naturally, taking the pth power of
the geodesic distance as well as any other function Θ : R+ → R+ of the geodesic distance is
also possible.

In general, we assume our problem to be in a statistical setting (however, the frame-
work works also if this is not the case), where the given input/output pairs (Xi, Yi) are i.i.d.
(independent and identically distributed) samples from a probability measure P on X × Y.
The setting we have in mind is that our data is perturbed by noise in the output space. In
multivariate regression it is well known that, using the squared Euclidean distance as a loss
function, L(yi, f(xi)) = ‖yi − f(xi)‖2Rn , the Bayes optimal predictor f∗, that is, the function
f∗ minimizing the expected loss,

f∗ = argmin
f measurable

E ‖Y − f(X)‖2 = argmin
f measurable

EX EY |X [‖Y − f(x)‖2 |X],

is given by the regression function f∗(x) = E[Y |X = x]. The regression function f∗(x) is
uniquely determined (almost everywhere) since the risk functional is strictly convex in f(x).

Naturally, the question arises of which is the Bayes optimal mapping φ∗ : M → N in the
manifold case; that is, using the squared geodesic distance in N as a loss measure, which map
φ∗ minimizes the expected loss,

φ∗ = argmin
φ:M→N, φ measurable

EX EY |X [d2N (Y, φ(X)) |X],

where we assume that E d2N (Y, φ(X)) < ∞ for some measurable φ : M → N . Using the
factorization of the probability measure P, the Bayes optimal mapping φ∗ can be determined
pointwise,

φ∗(x) = argmin
p∈N

E[d2N (Y, p) |X = x] = argmin
p∈N

∫
N

d2(y, p) dμx(y)︸ ︷︷ ︸
≡F (p)

,

where dμx is the conditional probability measure for Y given X = x. The global minimizer of
F (p) is called the Frechét or Karcher mean [17].1 It is the direct generalization of the mean

1In some cases the set of all local minimizers is denoted as the Frechét mean set, and the mean is called
unique if there exists only one global minimizer.
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in Euclidean space to general metric spaces. Unfortunately, it need no longer be unique as in
the Euclidean case. A simple example is the sphere with a uniform probability measure on
it. In this case every point p on the sphere attains the same value F (p), and thus the global
minimum is nonunique. We refer to [18, 4] for more information on the conditions under which
uniqueness can be proven.

2.2. Function space. Note, that in (2.1) we constrain φ to be smooth. However, it is
well known for Euclidean output spaces that optimizing a regularization functional based on
derivatives over the set of differentiable functions may in some situations yield trivial non-
continuous solutions; see Sobolev’s embedding theorem [2]. However, one can give conditions
on the dimension of the input space or alternatively on the order of the penalized derivatives
for which such trivial solutions are not possible. While the generalization of this theory to
the manifold-valued case is beyond the scope of this paper, we discuss these issues and the
theory of spaces of manifold-valued mappings in more detail in section 8.1. As Euclidean out-
put is a special case of manifold-valued output, it is likely that the restrictions encountered
there translate to the more general problem discussed in this paper. In all the experiments of
this work, these restrictions are satisfied. For simplicity, we assume in the following that all
considered mappings are smooth.

3. Regularization functionals for mappings between Riemannian manifolds. We would
like to define regularization functionals,

S : C∞(M,N) → R+,

for mappings between two Riemannian manifolds M and N measuring the smoothness of
mapping φ : M → N via its derivatives. Two objectives should hold for the regularization
functional:

1. independence of the parametrization of M and N ,
2. intrinsic formulation; that is, the energy should depend only on the geometry of M

and N .
The first objective means that the energy should not depend on the coordinate representation
of the manifold; e.g., the energy of curves on the sphere should be the same if we represent
the sphere in spherical or stereographic coordinates. This can be achieved by formulating the
energy in the covariant language of differential geometry. The second requirement is that the
energy should depend only on the geometry of M and N ; that is, only intrinsic properties of
M and N should matter. In particular, if M and N are isometrically embedded in Euclidean
space like the sphere S2 in R

3 or SO3 in R
3×3, no properties of the ambient spaces should

be taken into account, since the embedding is not unique. We will show in section 5.3 that
the penalization of components in the ambient space (extrinsic quantities) leads to a notion
of smoothness for manifold-valued mappings which contradicts our intuitive expectations.

The remainder of this section requires some technical notions from differential geometry,
particularly that of a pull-back connection. For the sake of a clear presentation we have moved
the exact definition of this term to Appendix A. The basic properties can be understood also
without this knowledge.

Before we discuss general regularization functionals penalizing derivatives of arbitrary
order let us begin with the most simple energy functional for manifold-valued mappings. The
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differential or Jacobian dφr
a : TxM → Tφ(x)N of a mapping φ : M → N evaluated at x is given

as

(3.1) dφr
a(x) =

∂φμ

∂xα
dxαa

∣∣∣
x
⊗ ∂r

∂yμ

∣∣∣
φ(x)

.

It measures the change of the output φ(x) ∈ N as one varies x in the input manifold M . This
1-1-tensor can be used to define the most simple differential energy, the so-called harmonic
energy.

Definition 3.1. The harmonic energy Sharmonic(φ) of a mapping φ : M → N is defined as

Sharmonic(φ) =

∫
M

‖dφ‖2T ∗
xM⊗Tφ(x)N

dV (x)(3.2)

=

∫
M

gαβ(x)hμν(φ(x))
∂φμ

∂xα
∂φν

∂xβ
dV (x),

where dV =
√
det g dx is the volume element of M .

For standard regression, that is, M = R
m and N = R, the harmonic energy reduces to

Sharmonic(φ) =

∫
Rm

‖∇φ‖2 dx.

For m = 1 this functional in turn reduces to the energy functional of linear splines, and using
this energy in approximation or interpolation as in objective (2.1) leads to piecewise linear
solutions which are nondifferentiable at the mapped data points φ(Xi). Similar behavior can
be observed for curves on manifolds, that is, for M = [a, b] and N a Riemannian manifold,
where

Sharmonic(φ) =

∫ b

a

∥∥∥φ̇∥∥∥2 dt
with φ̇(t) = dφ

dt (t). In this case, minimizers of (2.1) are piecewise geodesic [22].
Since we are generally interested in solutions which have higher smoothness, we have to use

higher-order derivatives in the regularizer. In the Euclidean case this is typically done, e.g.,
by using the thin-plate spline energy

∫
Rm ‖Hf‖2F dx, where Hf is the Hessian of f : Rm → R

and ‖.‖F the Frobenius norm. Another alternative is the biharmonic regularizer,
∫
Rm |Δf |2dx,

where Δf = trace(Hf).
For the generalization of regularizers of this type to the case of mappings between manifolds

we have to define the second derivative of mappings between Riemannian manifolds, that is,
the covariant derivative of the differential dφr

a. The problem is here that dφ “lives” in the
cotangent and tangent space, T ∗

xM and Tφ(x)N , of two different manifolds. Thus we cannot

simply use the connection M∇ of M . The solution is to use the pull-back connection ∇′

defined in Appendix A, which yields a notion of the derivative of a vector field on N with
respect to a variation in M , where M and N are connected via φ : M → N . We then use
the pull-back connection for derivatives of vector fields in the target manifold N plus the
connection on M for derivatives on the input manifold together in a so-called tensor product
connection; see also Appendix A. The pth-order covariant derivative of the differential dφ will
yield the tensor field

∇′
a1 · · · ∇′

apdφ
r
ap+1

∈ ⊗p+1T ∗M ⊗ φ−1TN,



NONPARAMETRIC REGRESSION BETWEEN MANIFOLDS 533

where φ−1TN is the pull-back bundle; see Definition A.2. This derivative is by definition
invariant with respect to parametrization and respects the intrinsic geometry of M and N .
For a function φ : Rm → R

n the pth-order covariant derivative equals

∂p+1φμ

∂xα1 · · · ∂xαp+1
dxα1

a1 ⊗ · · · ⊗ dx
αp+1
ap+1 ⊗ ∂r

∂yμ
.

In this form the Euclidean (p + 1)-order derivative is covariant, that is invariant under coor-
dinate changes.

We can now define higher-order differential energies. In order to obtain a real-valued
regularization functional, we have to define an operation Θ : ⊗p+1T ∗M ⊗ φ−1TN → R+. The
function Θ usually consists of two steps. One first takes traces in some entries and then the
norm or some power of the norm of the resulting tensor. This yields the general regularization
functional, S : C∞(M,N) → R+, defined as

S(φ) =

∫
M

Θ
(
∇′

a1 · · · ∇′
apdφ

r
ap+1

)
dV.(3.3)

We will illustrate this for second-order differential energies (p = 1). The tensor field ∇′
bdφ

r
a is

given in coordinates (see Appendix A) as

∇′
bdφ

r
a =

[
∂2φμ

∂xβ∂xα
− ∂φμ

∂xγ
MΓ

γ
βα +

∂φρ

∂xα
∂φν

∂xβ
NΓ

μ
νρ

]
dxβb ⊗ dxαa ⊗ ∂r

∂yμ
.(3.4)

Note that nonvanishing Christoffel symbols of M keep the expression linear in φ, whereas
nonzero Christoffel symbols of N render the second-order differential a nonlinear operator.
This illustrates again why manifold-valued input is easier to handle than manifold-valued
output.

For the tensor field ∇′
bdφ

r
a we can first take the trace in b and a and then use the squared

norm in Tφ(x)N , which yields the biharmonic energy.
Definition 3.2. The biharmonic energy Sbiharmonic(φ) is defined as

Sbiharmonic(φ) =

∫
M

∥∥∥gba∇′
bdφ

r
a

∥∥∥2
Tφ(x)N

dV (x)(3.5)

=

∫
M

gba gcd hrs∇′
bdφ

r
a∇′

cdφ
s
d dV (x).

Another possibility is to directly use the squared norm in T ∗
xM ⊗ T ∗

xM ⊗ Tφ(x)N .
Definition 3.3. The Eells energy SEells(φ) is defined as

SEells(φ) =

∫
M

∥∥∇′
bdφ

r
a

∥∥2
T ∗
xM⊗T ∗

xM⊗Tφ(x)N
dV (x)

=

∫
M

gac gbd hrs∇′
bdφ

r
a∇′

ddφ
s
c dV (x).(3.6)

While the biharmonic energy has been discussed in the differential geometry community
(see [27]), the Eells energy has to our knowledge not been studied in differential geometry or
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elsewhere before. We have named it after James Eells, recently deceased, who pioneered the
study of harmonic maps between Riemannian manifolds [12].

The Eells energy reduces to the thin-plate spline energy in the Euclidean case. If M and
N are Euclidean, we obtain

SEells(φ) =

∫
M

gαβgγδhμν
∂2Φμ

∂xα∂xγ
∂2Φν

∂xβ∂xδ
dV (x),

where g and h are the Riemannian metrics corresponding to Euclidean space. This is the
parametrization-independent form of the thin-plate spline energy. In Cartesian coordinates
we have gαβ = δαβ and hμν = δμν , where δ is the Kronecker symbol. The Eells energy thus
reduces to the standard form of the thin-plate spline energy:

SEells(φ) =

n∑
μ=1

∫
M

m∑
α,γ=1

(
∂2Φμ

∂xα∂xγ

)2

dx.(3.7)

For curves φ in a manifold N , that is, M = [a, b], the Eells energy and the biharmonic energy
are identical,

(3.8) SEells(φ) = Sbiharm.(φ) =

∫ b

a

∥∥∥∇φ̇(t)φ̇(t)
∥∥∥2
Tφ(t)N

dt,

where φ̇(t) = ∂
∂tφ(t). Using this energy, we recover the interpolation problem of cubic splines

on curved spaces proposed by [14, 30] in our framework (2.1) for λ → 0.

4. Properties of the regularization functionals. In this section we describe and compare
general properties of the harmonic, biharmonic, and Eells energy and their use as regularizers
for regression between two general Riemannian manifolds. We start by describing the null-
space of the different functionals, which characterizes the mappings which are not penalized;
continue with an analysis of the difference between biharmonic and Eells energy; and end with
a discussion of why second-order energies are useful in modelling physical systems.

4.1. The null space. The null space of a regularization functional S(φ), that is, the set
{φ |S(φ) = 0}, is interesting for two reasons. First, the null space consists of the mappings
which are not penalized and therefore defines a set of mappings with which we are free to fit
the data. In standard regression these are usually linear mappings or polynomials of small
degree. The other reason is that, as the regularization parameter λ tends to infinity, the
regularized empirical risk minimization problem in (2.1) reduces to

argmin
φ∈C∞(M,N)

1

K

K∑
i=1

L(Yi, φ(Xi)) s.t. S(φ) = 0.(4.1)

Thus, in this limit the only feasible set of mappings is the null space of S.
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Harmonic energy. The null space of the harmonic energy Sharmonic(φ) consists of the con-
stant maps φ ≡ y, y ∈ N (see [11]); that is, all input points in M are mapped to a single
point y in N . The property that the harmonic energy penalizes deviations from a constant
mapping has severe consequences for the learning task. Namely, if the image of the boundary
∂M is not fixed, then the harmonic energy can always be reduced by contracting the mapping
as much as the trade-off between loss and regularizer allows. It is often not easy to know a
priori how to fix the image of the boundary boundary ∂M such that no big distortions arise.
One example of the negative contraction effects following from this problem can be seen in
Figure 6(c) below, another in [26, Figure 4]. It is interesting to note that for the squared
geodesic distance loss the learning problem in (4.1) reduces to a classical problem in differen-
tial geometry: the task is to find the mean of a set of points on a Riemannian manifold, the
so-called Karcher mean [17].

Eells energy. We have shown in the last section that the Eells energy reduces to the classical
thin-plate spline energy if input and output manifolds are Euclidean. In this case the null
space consists of the linear mappings between input and output space; that is, we are free to
fit the data with linear maps, but any deviation from linearity will be penalized. The concept
of linearity breaks down in the manifold setting since input and output space have no linear
structure.

An interesting question is whether there exists a proper generalization of linear mappings
to the case where input and output space are Riemannian manifolds. A key observation
towards a natural generalization of the concept of linearity is that linear maps map straight
lines to straight lines. Now a straight line between two points in Euclidean space corresponds
to a path of shortest length and is thus a geodesic between the two points. In analogy to
the Euclidean case we will therefore consider in Riemannian manifolds mappings which map
geodesics to geodesics as the proper generalization of linear maps. The following proposition
adapted from [11] defines this concept and characterizes the corresponding mappings.

Proposition 4.1 (see [11]). A map φ : M → N is totally geodesic if φ maps geodesics of M
linearly to geodesics of N ; i.e., the image of any geodesic in M is also a geodesic in N though
potentially with a different constant speed. The following three properties are equivalent:

1. φ is totally geodesic;
2. φ preserves the connection, i.e.,

N∇dφ(X)dφ(Y ) = dφ(M∇XY ),

where dφ is the differential of φ and X,Y are smooth vector fields on M ;
3. ∇′

adφ
r
b = 0.

Proposition 4.1 immediately characterizes the null space of the Eells energy as the set of
totally geodesic maps.

Linear maps encode a very simple relation in the data: the relative changes between input
and output are the same everywhere. This is the simplest relation that a nontrivial mapping
can encode between input and output, and totally geodesic mappings encode the same “linear”
relationship even though the input and output manifolds are nonlinear. However, note that as
linear maps, totally geodesic maps are not necessarily distortion-free, i.e., isometric. However,
every distortion-free mapping is totally geodesic. Moreover, given “isometric” training points,

dM (Xi,Xj) = dN (Yi, Yj), i, j = 1, . . . , k,



536 F. STEINKE, M. HEIN, AND B. SCHÖLKOPF

then among all minimizers of (2.1), there will be an isometry fitting the data points, given
that such an isometry exists. With this restriction in mind, one can see the Eells energy
also as a measure of distortion of the mapping φ. This makes the Eells energy an interesting
candidate for a variety of geometric fitting problems, for example, for surface registration as
demonstrated in the experimental section.

Despite the similarity of linear and totally geodesic maps it should be noted that there
are circumstances in which they show completely different behavior. One important example
is discussed in section 8.3.

In contrast to the harmonic energy, the Eells energy does not lead to contraction effects.
Imagine the situation of only two given training points in a regression problem from the
real line to the sphere. While the solution for the harmonic energy tends to contract and
passes only in the limit λ → 0 exactly through the points, the solution for the Eells energy
yields a geodesic which exactly fits the given training data points for any λ ≥ 0. It also
extrapolates “linearly,” whereas the harmonic solution which minimizes the change of the
prediction function does not extrapolate beyond the first and last training points. These
effects are demonstrated in Figures 4 and 6 below.

Biharmonic energy. The null space of the biharmonic energy is a superset of the null space
of the Eells energy, since here only the trace of the “Hessian” of φ has to vanish, not all its
components. Apart from totally geodesic mappings, the null space of the biharmonic energy
also contains all stationary maps of the harmonic energy; see Theorem D.2 in Appendix
D. Although this sounds reasonable at first, the null space may thus be too big for some
applications. This can be seen from a simple example in Euclidean space. Consider the
mapping φ : R2 → R with φ(x1, x2) = x21 − x22, which is clearly nonlinear and intuitively
not very smooth. Nevertheless, the biharmonic energy of this mapping is zero. We therefore
recommend the Eells energy as a better smoothness measure.

4.2. Difference of biharmonic and Eells energy. One can show (see Theorem 4.2 below)
that in Euclidean spaces the biharmonic and the Eells/thin-plate spline energy differ only by
a boundary term. In the literature they are therefore often considered as equivalent; see, for
example, [10]. However, even in Euclidean space, this is only justified, given that one can
guarantee that the first or second derivative of the function one wants to learn vanishes on
the boundary of the domain or decays to zero at infinity. Furthermore, if either M or N is
non-Euclidean, the two energies are different due to curvature effects, even when one neglects
boundary terms. Interestingly, this difference also holds for simple real-valued functions on
a non-Euclidean Riemannian manifold M , that is, for N = R. The proof of the following
theorem is found in Appendix B.

Theorem 4.2. The biharmonic and Eells energy are related in the following way:

Sbiharmonic(φ) = SEells(φ) +

∫
M

hrs g
ab gcd dφr

c

(
RM

adb
e dφs

e −RN
tuv

s dφt
a dφ

u
d dφ

v
b

)
dV

+

∫
∂M

N bhrs g
cd
(
dφr

b ∇′
cdφ

s
d − dφr

c ∇′
bdφ

s
d

)
dṼ ,

where RM
adb

e, RN
tuv

s is the Riemannian curvature tensor of M , N , and dṼ is the volume form
of the boundary ∂M .
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4.3. Physical interpretation of intrinsic second-order energies. In [24] classical mechan-
ics is reformulated in terms of differential geometry. Namely, one considers the set of possible
configurations of a system to form manifold N . The standard example is rigid body motion
which has configuration space R

3 × SO(3), that is, position plus orientation. The manifold
of configurations is then given a geometric structure by using the kinetic energy as Rie-
mannian metric. Newton’s equation for the time-dependent state γ of the physical system,
γ : [a, b] → N , can then be written as

∇γ̇(t)γ̇(t) = τ(t, γ(t)),

where τ are the external forces acting upon the system. Noting that it is exactly this ac-
celeration ∇γ̇(t)γ̇(t) which is penalized in the biharmonic/Eells energy of curves (3.8), one
can interpret the smoothing problem (2.1) for γ as optimizing the trade-off between passing
through the set of given points and following free motion as much as possible. Since the ac-
celeration is directly related to the external forces acting on the system, the biharmonic/Eells
energy penalizes the amount of external forces which have to act on a physical system to push
it along a certain trajectory. For applications like animation or robot control, where a real
physical system is lying beneath the learning problem, the biharmonic/Eells energy is thus
particularly useful.

5. From intrinsic to extrinsic representation. One can deduce from (3.4) that the rep-
resentation of the Eells energy in coordinates of M and N is quite complicated and not easily
accessible for optimization. Moreover, the use of local coordinate systems introduces the
complication that the mapped point φ(x) can be in different coordinate systems during the
optimization.

In this section we show that these difficulties can be elegantly circumvented if M and
N are assumed to be isometrically embedded submanifolds in Euclidean spaces R

k and R
l,

respectively. We show that in this case the first- and second-order differential energies pre-
sented above have equivalent but much simpler forms in terms of the derivatives with respect
to the embedding spaces. Expressing the regularization functionals in terms of ambient space
also allows the usage of a global coordinate system, which reduces the algorithmic overhead
dramatically.

The assumption of the existence of an isometric embedding into Euclidean space is not
restrictive. Any compact manifold can be isometrically embedded into Euclidean space Rk for
large enough k; see [28]. For a huge class of manifolds an isometric embedding in Euclidean
space is known. Often the manifold is even defined as a constrained set in R

k or given just
as a point cloud in R

k, where in both cases the metric is induced from R
k and the isometric

embedding is trivial.
Below, quantities which are defined on M or N are called intrinsic, whereas quantities

related to the embedding spaces Rk and R
l are called extrinsic. The goal will be to represent

the intrinsic expressions introduced above with simpler computable extrinsic ones. We stress
that in doing this we neither lose the invariance with respect to parametrization nor change
the regularizer.

For simplicity we split the discussion below. We first consider the case where N is a
general Riemannian manifold isometrically embedded in R

l, and then the case where M is a
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Ψ(xi−1)

Ψ(xi+1)

Ψ(xi)

Figure 1. Comparison of extrinsic and intrinsic second derivative. Suppose φ : R → N , N the black curve
on the left. Thus, Ψ : R → R

2, but Ψ(x) ∈ N . If the images Ψ(xi) of equidistant points xi in the input manifold
M = R are also equidistant on the output manifold, then Ψ has no acceleration in terms of N ; i.e., its intrinsic
second derivative in N should be zero. However, the extrinsic second derivative of Ψ in the ambient space,
which is marked red in the figure, is not vanishing in this case. The Eells energy penalizes only the intrinsic
acceleration, that is, only the component parallel to the tangent space at Ψ(xi), the green arrow.

general manifold embedded in R
k. The proofs of all theorems are in Appendix C.

5.1. Computation of the energies for general output manifolds. Assume that the output
manifold N can be embedded isometrically into R

l, and let i : N → R
l be the embedding map.

Denote by Ψ : M → R
l the composition Ψ = i ◦ φ. Let zμ be standard Cartesian coordinates

in R
l. Then the differential of Ψ is given as dΨr

a = ∂Ψμ

∂xα dx
α
a⊗ ∂r

∂zμ . In order to define derivatives

of the differential dΨr
a we need a pull-back connection ∇̃ : TM ⊗ Ψ−1TRl → Ψ−1TRl for Ψ;

see Appendix A. It is

∇̃ ∂
∂xα

∂r

∂zμ
:= Rl∇dΨ( ∂

∂xα
)

∂r

∂zμ
= 0,

the second equation due to the flatness of the connection of Rl. Because of this property the
expressions for the covariant derivatives of Ψ simplify significantly. However, note that the
coordinate vector ∂r

∂yμ of N has the derivative ∇̃ ∂
∂xα

(
di( ∂r

∂yμ )
)
= ∂2iρ

∂yν∂yμ
∂φν

∂xα
∂r

∂zρ . The following

theorem shows how intrinsic expressions in φ can be expressed in terms of the extrinsic ones
in Ψ.

Theorem 5.1. The following relations of intrinsic and extrinsic objects hold:

dφr
a = dΨr

a, ∇′
cdφ

r
a =

(∇̃cdΨ
r
a

)

,(5.1)

where 
 denotes the projection onto the tangent space TΨ(x)N of N .
Theorem 5.1 is visualized in Figure 1. If M is a domain in R

m, it allows us to derive a
dramatic simplification of the energy expressions.

Theorem 5.2. Let M ⊂ R
m and xα be Cartesian coordinates; then

Sharmonic(Ψ) =

∫
M

l∑
μ=1

m∑
α=1

(
∂2Ψμ

∂xα

)2

dx,(5.2)



NONPARAMETRIC REGRESSION BETWEEN MANIFOLDS 539

Figure 2. Second-order approximation of a sphere at the south pole. Note that the principal curvature, also
called the extrinsic curvature, quantifies how much the manifold bends with respect to the ambient space.

Sbiharmonic(Ψ) =

∫
M

l∑
μ=1

m∑
α=1

[(
∂2Ψμ

∂xα∂xα

)
]2
dx,(5.3)

SEells(Ψ) =

∫
M

l∑
μ=1

m∑
α,β=1

[(
∂2Ψμ

∂xα∂xβ

)
]2
dx.(5.4)

5.2. Computation of the energies for general input manifolds. Now assume that the
input manifold M is isometrically embedded in R

k. This allows us to construct local second-
order parametrizations of M , for which the evaluation of the Christoffel symbols MΓ

γ
βα in the

second derivative (3.4) is particularly easy.
Proposition 5.3. Let x1, . . . , xm be the coordinates associated with an orthonormal basis of

the tangent space of M at p ∈ M . Then in Cartesian coordinates z of Rk, the manifold can
locally be approximated up to second order as

z(x) =
(
x1, . . . , xm, fm+1(x), . . . , fk(x)

)
,

where f i(x) =
∑m

α,β=1Π
i
αβx

αxβ and Πi
αβ is the second fundamental form of M at p. If M is a

hypersurface in R
k (k = m+1) and if the coordinates xα are aligned with the principal direc-

tions of M at p, then one has fk(x) =
∑m

α=1 κα(x
α)2, where κα are the principal curvatures

at p.
A visualization of this standard result of differential geometry (see, e.g., [21]) is given in

Figure 2. The principal curvature, also called the extrinsic curvature, quantifies how much the
input manifold bends with respect to the ambient space. Local second-order approximations
allow us to compute the second derivative in (3.4) efficiently, as the next proposition shows.

Proposition 5.4. Given a second-order approximation of M centered at p as in Proposi-
tion 5.3, then for coordinates x we have that

gαβ(0) = δαβ ,
MΓ

α
βγ(0) = 0.
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Furthermore, at p ∈ M ,[
∂2Ψμ

∂xβ∂xα
− ∂Ψμ

∂xγ
MΓ

γ
βα

]
=

∂2Ψμ

∂xβ∂xα
=

[
∂2Ψμ

∂zβ∂zα
+

k∑
r=m+1

∂Ψμ

∂zr
Πr

βα

]
.(5.5)

For a hypersurface M (k = m + 1), one has Πr
βα = δβακα if the coordinates xα are aligned

with the principal directions and κα are the principal curvatures of M at p.
Note that (5.5) is not an approximation but the true second derivative of Ψ at p on M .

This is due to the following argument: If we allowed for higher-order terms in fm+1, . . . , fk,
we could fit M exactly in a local neighborhood around p. Then x would be coordinates of
M and not of its second-order approximation. However, since the computation of Christoffel
symbols at p and of (5.5) requires only second derivatives of fm+1, . . . , fk at p, we would
obtain identical results.

A straightforward consequence of Proposition 5.4 is Corollary 5.5 below, which gives simple
extrinsic forms for the Eells and biharmonic energies with manifold-valued input. These
expressions are derived by replacing the second partial derivatives in (5.3) and (5.4) with the
slightly more complicated expression (5.5). We show only the energy densities here, since
coordinates z are different for each point p ∈ M .

Corollary 5.5. For general input manifolds M and a second-order approximation as in
Proposition 5.3, the energy densities of the Eells and biharmonic energies of Ψ at p are given
as

biharmonic:
l∑

μ=1

m∑
α=1

⎡
⎣( ∂2Ψμ

∂zα∂zα
+

k∑
r=m+1

∂Ψμ

∂zr
Πr

αα

)
⎤⎦2

,(5.6)

Eells:

l∑
μ=1

m∑
α,β=1

⎡
⎣( ∂2Ψμ

∂zβ∂zα
+

k∑
r=m+1

∂Ψμ

∂zr
Πr

βα

)
⎤⎦2

.(5.7)

The principal curvatures are known in analytic form for many manifolds. For point cloud
data one can estimate them using a local fit with a quadratic function.

5.3. Comparison of intrinsic and extrinsic energies. The expression of the intrinsic sec-
ond derivative in terms of extrinsic quantities allows us to discuss the differences between our
approach, which penalizes only intrinsic variations of the mapping, and the approach recently
proposed in [16, 47], where extrinsic variations are penalized. In this section, we will briefly
argue why this extrinsic energy has worse properties than our proposed intrinsically defined
one, demonstrating the difference for curves γ : M → N , M ⊆ R.

Suppose the output manifold N is isometrically embedded in R
l. The extrinsic second-

order regularization functional Sex(γ) is given as

Sex(γ) =

∫
M

‖γ̈‖2 dt,

where γ̈ is the second derivative in R
l. In contrast, the Eells energy Sin(γ) reduces for curves

to

Sin(γ) =

∫
M

‖∇γ̇ γ̇‖2 dt.
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Figure 3. Example showing that geodesics are in general not minimizers of the extrinsic second-order
energy. Solid: the manifold N is given as the graph of a function f : (0,∞) → R. Dotted: the curvature
of N , that is, the scalar second fundamental form, at (x, f(x))T ∈ N as a function of x. Dashed: gradient
of the extrinsic energy density Sex(γ) along TN for unit-speed curve γ(t) ∈ N . The tangential gradient at
γ(t) = (x, f(x))T is plotted as a function of x. While γ is a geodesic in N , the tangential gradient of Sex(γ)
does not vanish.

In both cases one has the constraint γ(x) ∈ N for all x ∈ M . The extrinsic and intrinsic
derivative are related via γ̈ = ∇γ̇ γ̇ + Π(γ̇, γ̇), where Π : TN × TN → NN is the second
fundamental form of N and NN denotes the normal bundle of N ; see also Figure 1. That
means that the extrinsic energy penalizes the intrinsic tangential acceleration and the normal
component. We have ‖γ̈‖2 = ‖∇γ̇ γ̇‖2 + ‖Π(γ̇, γ̇)‖2, and therefore

Sex(γ) = Sin(γ) +

∫
M

‖Π(γ̇, γ̇)‖2 dt.

If N has constant extrinsic curvature as, for example, the sphere, then ‖Π(γ̇, γ̇)‖2 =
C ‖γ̇‖2, so that the extrinsic energy functional is just a combination of harmonic and Eells
energy. For simplicity suppose that we are given only two data points. Using the intrinsic
energy, we will find a connecting geodesic as the solution of the learning problem in (2.1),
since geodesics have zero energy Sin. For the extrinsic energy, the harmonic part of the energy
aims to contract the curve; thus the minimum of (2.1) will be a geodesic segment that ends
short of the training points, depending on the regularization parameter λ.

While in the special situation above the solutions are at least similar, the extrinsic energy
leads to less intuitive solutions in the general case of nonconstant extrinsic curvature. The
following simple example shows that geodesic segments are no longer minimizers of the ex-
trinsic energy Sex if the second fundamental form is nonconstant. Yet, they would be global
minimizers of the intrinsic energy Sin.

Assume now that the output manifold N is the graph of a smooth function f : (0,∞) → R,
that is, N = {x ∈ R

2|x1 > 0, f(x1) = x2} with f(x) = cosh(x) − 1. A unit speed curve in
N is given as γ(t) = (arsinh(t), f(arsinh(t)))T , i.e., ‖ ∂

∂tγ(t)‖ = 1. Curves which minimize the
extrinsic energy Sex in R

2, equivalent to cubic splines, need to have their fourth derivative
orthogonal to N . In Figure 3 we plot the tangential component of ∂4

∂t4
γ(t),

〈
γ̇, γ(4)

〉
= 6t/(1+

t2)3, which is clearly nonzero. Thus the geodesic γ is not a minimizer of the extrinsic energy
Sex.
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6. Implementation. A classic route to solving the variational learning problem (2.1)
would be to derive the Euler–Lagrange variational equations and to solve these. We have
computed the first variation for all energies in Appendix D. However, this generally leads
to systems of fourth-order differential equations which are numerically very difficult to solve.
If M is one-dimensional and N is a bi-invariant Lie group, one can reduce such systems to
second-order differential equations; see [29, 31]. For general Riemannian manifolds, such re-
ductions are not obvious. Instead, we propose to solve the problem in a way similar to finite
element approaches. That is, we directly minimize the optimization problem (2.1) over a
parametrized class of functions φ. This way, only second derivatives are needed, and further-
more no boundary conditions have to be specified explicitly.

In the following we will explain how to express objective (2.1) in terms of finitely many
parameters, and how these can then be optimized efficiently with a pseudo-Newton method.
All information about the manifolds that are used in a specific application is made available to
the optimization routine through a number of interface functions. An implementation of these
interfaces for two standard types of manifolds, namely spheres and point clouds, is described
afterward. Since we aim at using the tools from the previous section, we will throughout this
section assume that M and N are isometrically embedded in R

k and R
l, respectively, and the

targeted function is thus represented as Ψ : M ⊆ R
k → R

l.

6.1. The optimization. Concerning a suitable representation of Ψ in terms of parameters,
consider the following arguments. If the output space was Euclidean, then the Euler–Lagrange
equations of the different energies derived in Theorem D.2 would be linear differential equa-
tions that could elegantly be solved using Green’s functions centered at the data points.
Optimization problem (2.1) could then be reduced to an optimization in the span of such
functions [45]. However, this reasoning is critically dependent on the linear structure of the
output space N , and no simple parametric form exists for the minimizer of (2.1) if the output
is a general Riemannian manifold, simply because the set of all mappings from M to N is not
even a vector space.

In the general manifold case, we thus have to resort to some form of discretization. Typical
approaches are gridding combined with finite difference approximations for the derivative
operators or alternatively finite element methods. Here, we propose using a collocation-like
approach, choosing the local polynomials as a flexible function class. Note that the minimizer
of (2.1) will almost surely not lie exactly in this set. However, by adding additional polynomial
centers we can make the function class more and more flexible and thus approximate the
optimal solution more and more closely. The proposed approach also allows computing the
required derivatives analytically, without the necessity of a uniform grid on the input space.

Let M be an open subset or submanifold of Rk. Then we parametrize the μth component
of mapping Ψ : Rk → R

l as a local polynomial of low order; that is,

Ψμ(x) =

∑S
i=1 kσi(‖Δxi‖)g(Δxi, w

μ
i )∑S

j=1 kσj (‖Δxj‖)
.

Here, g(Δxi, w
μ
i ) is a first- or second-order polynomial in Δxi with parameters wμ

i , Δxi =
(x−ci) is the difference between x and the local polynomial centers ci, and kσi(x) = k(r ≡ x

σi
)

is a compactly supported smoothing kernel with bandwidth σi. We choose the local polynomial
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centers ci approximately uniformly distributed over M , thereby adapting the function class
to the shape of the input manifold M . If we stack all parameters wμ

i into a single vector w,
then Ψ and its partial derivatives are just linear functions of w, which allows computing these
values in parallel for many points using simple matrix multiplication.

We compute the energy integral (3.3) as a function of w, by summing up the energy
densities at an (approximately) uniformly chosen set of samples from M . The projection onto
the tangent space, used in (5.6) and (5.7), and the second-order approximation for computing
intrinsic second derivatives, used in (5.6) and (5.7), are manifold-specific and are explained
below.

If N is non-Euclidean, which is the case in which we are mostly interested, we need to
satisfy the constraints Ψ(x) ∈ N for x ∈ M throughout the optimization process. We soften
this condition and add it to the objective function as γ

∫
M d(Ψ(x), N)2dx, where d(y,N)

denotes the Euclidean distance of a point y ∈ R
l from the manifold N . We increase the weight

γ during the iterative optimization process until all points are within a given prespecified
distance of N . As initial solution for Ψ, we compute the free solution, i.e., where N is
assumed to be R

l. In this case the problem becomes convex quadratic, since there are no
constraints and no location-dependent projections. The iteratively increasing penalization of
the distance to the manifold leads to a slow settling of the initial solution towards the target
manifold. In contrast to a simple projection of the initial solution onto N , as done in [40], this
procedure is much more robust. The projection of Ψ can lead to large distortions which, in
turn, can cause the optimization to become numerically unstable or to stop in local minima.

If we allow for Ψ(x) �∈ N during the optimization, then we have to declare how the projec-
tion of the second derivative of Ψ onto the tangent space is meant and how we deal with the
loss term in this case. We propose to determine the projection using the isodistance manifolds
NΨ(x) = {y ∈ R

l|d(y,N) = d(Ψ(x), N)} of N . For the loss we use the geodesic distance be-
tween the projection of Ψ(Xi) onto N and Yi, that is, dN (argminy∈N ‖Ψ(Xi)− y‖ , Yi). These
two constructions are sensible, since as the weight γ of the constraint γ

∫
M d(Ψ(x), N)2dx

increases, Ψ will approach the manifold N , and both terms converge to the corresponding op-
erations directly executed on the manifold N . The computation of d(Ψ(x), N), the projection
onto tangent spaces of isodistance manifolds, and the computations of geodesic distances on
N are again manifold-specific and can be found below.

Having expressed all parts of the optimization problem (2.1) in terms of the parameters w,
we obtain an unconstrained nonlinear optimization problem minw f(w), which we solve using
a pseudo-Newton method as follows. For each update we compute the true gradient ∇f(w),
but only an approximation ∇̃2f(w) of the Hessian, that is, the Hessian of f(w) but without the
projection onto the tangent space of N in the Eells energy. We then perform a line search in the
direction −(∇̃2f(w))−1∇f(w) and update w accordingly. Computing only an approximation
of the exact Hessian is advantageous for two reasons. First, it is computationally much
simpler since no second derivative of the projection operator is required. Second, it adds to
the robustness of the algorithm due to the following argument. The Eells energy does not
penalize oscillations in the normal direction of the manifold. While such oscillations cannot
occur if Ψ(w) ∈ N is strictly enforced, they can occur during the optimization process where
we have relaxed that constraint. Using the approximate Hessian discourages such distorting
oscillations; however, we are still guaranteed to minimize the true Eells energy. This can
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be seen as follows. The approximate Hessian of the Eells energy is positive semidefinite. If
we assume that the training points fix an optimal linear transformation, then the combined
approximate Hessian of the whole objective (2.1) is positive definite, and the multiplication
of the gradient with the inverse of this matrix just corresponds to a change of the used
inner product of the Euclidean embedding space. Finally, note that computation of the
descent direction −(∇̃2f(w))−1∇f(w) can be performed efficiently with sparse methods, since
the compact support of the smoothing kernel k implies sparsity of the approximate Hessian
∇̃2f(w).

6.2. Manifold operations. It remains to describe the required manifold-specific opera-
tions. First, we need to be able to project onto the tangent space of the output manifold
N and its isodistance manifolds. Second, we need to be able to project from the embed-
ding space of the output manifold R

l onto N , and third, we require geodesic distances on N .
For curved input manifolds M we additionally need the principle curvatures for the intrinsic
second derivatives; see Proposition 5.4.

In this section we focus on the two types of manifolds that we used in our experiments,
that is, the sphere S l−1 ⊆ R

l and two-dimensional surfaces in R
3 which are given as point

clouds with surface normals. Note that the projection P
 onto the tangent space of N and its
isodistance manifolds can conveniently be performed for any embedded manifold if we have
access to a signed distance function η of the manifold N . The projection P
 at x ∈ R

l is then
given as P
(x) = 1− 1

‖∇η(x)‖2∇η(x)∇η(x)T .

For the unit sphere S l−1, the signed distance function is simply given as η(x) = 1− ‖x‖.
The projection from the embedding space onto the sphere is trivial, and the geodesic distance
is d(x, y) = arccos

( 〈x,y〉
‖x‖‖y‖

)
for x, y ∈ S l−1. The principle curvatures are both −1 for all

p ∈ M .
For point cloud surfaces in three dimensions, there exist many known methods for con-

structing signed distance functions, e.g., [33, 41]. Here, we choose a particularly simple ap-
proach for computing the signed distance value η(p) for some test point p ∈ R

l: we first
search for the closest point to p in the given point cloud, then compute a local second-order
approximation there based on the 10 nearest neighbors using least squares, and finally use
the distance to this second-order approximation as the desired signed distance function η.
The computation of the distance to the local second-order approximation (x1, x2, f(x1, x2))
involves solving third-order equations. However, since we assume that our manifolds are
densely sampled, we will always obtain local coordinates (p1, p2, p3) for p with small values for
p1, p2. Thus, a good approximation to the true distance is to use η(p) = p3 − f(p1, p2). The
signed distance function so constructed readily allows us to compute the required projections
onto the tangent spaces. Furthermore, the same procedure also allows us to determine the
closest point on N for a given query point, using just (p1, p2, f(p1, p2)). If the point cloud
serves as an input manifold M , the same local second-order approximations are used to ob-
tain the required principal curvatures. What remains is the geodesic distance for point clouds.
Either one can use approaches like [20], or alternatively geodesic distances can be computed
using the length of a curve which minimizes the harmonic energy and whose endpoints are
fixed at the two points of interest [40]. However, since in our surface registration problem we
used rather large weights for the loss, Ψ(Xi) and Yi were always very close on the surface. In
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(a) (b) (c) (d)

Method: linear spline Linear spline Harm. energy Eells energy
Target space: angles R

3 + Proj. S2 S2

Figure 4. The interval [0, 1] is mapped onto the unit sphere S2 in three dimensions. Green markers show
the given data points Yi ∈ S2, and respective training times Xi ∈ [0, 1] are given as numbers close by. Red
markers indicate Ψ(Xi) for the approximating spline Ψ : [0, 1] → S2. Yellow dots mark the Ψ-images of equally
spaced points in [0, 1].

this case the geodesic distance can be well approximated by the Euclidean one, so that for
performance reasons we directly used the Euclidean distance.

7. Experiments. We now show some illustrative examples for regression between Rie-
mannian manifolds. The examples show an increasing amount of theoretical and algorithmic
complexity. While the first results are similar in flavor to [6, 32], the subsequent examples
present novel applications for regression between manifolds.

7.1. Curves on spheres. To understand the basic problems of manifold-valued regression
and to get a qualitative idea of the features of our approach, it is helpful to discuss Figure 4
in detail. The aim is here to fit a curve on the sphere S2 ⊆ R

3 through six given data points,
that is, φ : [0, 1] → S2.

A naive first idea for solving this problem could be to parametrize the surface of the sphere
using spherical coordinates and to interpolate the coordinates of the given data points using
linear splines. (For visualization purposes we use linear splines corresponding to first-order
differential energies here.) This is computationally attractive since the coordinates form a
linear space such that the splines can be computed using simple basis function expansions.
However, as shown in Figure 4(a), no path can go through the parametrization boundary at
−π and π, and, moreover, the geometry is heavily distorted by the nonlinear parametrization
mapping from S2 to (−π, π) × (0, π). Another naive idea, shown in Figure 4(b), is to first
compute a linear spline in R

3 and then project it radially onto the sphere. While the trajectory
can now surround the sphere, the metric is still distorted through the projection. This can be
seen in that the yellow points, which are equally spaced in the input, are not equally spaced
in the output; see the locations indicated by the red arrows in Figure 4(b).

Manifold-adapted approaches are much better suited for this regression problem. In Fig-
ure 4(c), the harmonic energy (3.2) is used in the learning objective (2.1). Note that the
yellow points are now equally spaced between any two data points, up to small distortions
resulting from the two-dimensional visualization. However, since the minimizers of the har-
monic energy are piecewise geodesic [22], the curve is not differentiable at the data points.
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Figure 5. Regression from [0, 1] to the sphere. (a) Noisy data samples (black crosses) of the black ground-
truth curve. The blue dots show the estimated curve for our Eells-regularized approach, the green dots depict
TPS in R

3 radially projected onto the sphere, and the red dots show results for the local approach of [9].
(b) Cross-validation errors for given sample size K and noise concentration k. Von Mises distributed with
k = 10000 roughly corresponds to Gaussian noise with standard deviation 0.01. (c) Test errors for different K
but fixed k. In all experiments the regularization parameter λ is found using cross-validation. (d) Test errors
for different k but fixed K.

It also does not extend outside of the first/last marker. Using the Eells energy, both these
problems are avoided; see Figure 4(d). The curves are smooth and extrapolate linearly or,
more precisely, “geodesically.”

Turning to quantitative analysis, we expect that a manifold-adapted approach is much
better at approximating some unknown curve from noisy observations. As ground-truth we
use the curve given in spherical coordinates as θ(t) = (40t2, 1.3πt+π sin(πt)). The K training
inputs were sampled uniformly from [0, 1], and the outputs perturbed by “additive” noise from
the von Mises distribution with concentration parameter k. The von Mises distribution is the
maximum entropy distribution on the sphere for fixed mean and variance [23], and thus is the
analogue of the Gaussian distribution for spheres. The optimal regularization parameter λ
was determined by 10-fold cross-validation; the experiments were repeated 10 times for each
training sample size K and noise parameter k.

We compare our framework for nonparametric regression between manifolds with stan-
dard cubic smoothing splines in R

3—the equivalent of thin-plate splines (TPS) for one in-
put dimension—projected radially on the sphere, and also with the local manifold-valued
Nadaraya–Watson estimator of [9] using Gaussian weights, where the bandwidth parameter
is also determined by cross-validation. As can be seen in Figure 5, our globally regularized
approach performs significantly better than [9] for this task. One can observe in Figure 5(a)
that, even in places where the estimated curve of [9] follows the ground-truth relatively closely,
the spacing between points varies greatly. These sampling-dependent speed changes, which
are not seen in the ground truth curve, cannot be avoided without a global smoothness prior
such as, for example, the Eells energy. The Eells approach also outperforms the projected
TPS method, particularly for small sample sizes and reasonable noise levels. For a fixed noise
level of k = 10000 a paired t-test showed that our reduction in test error is statistically sig-
nificant at level α = 5% for the sample sizes K = 70, 200, 300, 500. Clearly, as the curve is
very densely sampled for high K, both approaches perform similarly, since the problem then
is essentially local and the manifold is locally linear. For small sample sizes, however, i.e.,
for situations where the a priori information is more important, the TPS method is outper-
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(a) Original in R
2 (b) TPS to R

3 + proj. (c) Harmonic S2 (d) Eells S2

Figure 6. The Lena image (a) is used to visualize a mapping from the unit square in R
2 to the unit sphere

S2 in R
3. Green markers show the given data point pairs, and red stars on S2 denote positions of the input

markers in R
2 mapped to the sphere by the approximating spline. (b) shows a TPS mapping from R

2 to R
3

projected onto S2.

formed by the proposed Eells-regularized approach, as we are using an application-adapted
smoothness functional.

7.2. Two-dimensional patches on the sphere. As in the last section, we here demonstrate
qualitative differences between projected TPS, the harmonic energy, and the Eells energy
solution, but now for a two-dimensional input manifold M = [0, 1]2 ⊂ R

2. Such a setup is
common for many geometric modelling tasks such as surface parametrization, remeshing, or
texture mapping.

In Figure 6(b), we first compute a TPS solution in R
3, which in this case yields a plane

cutting through the four given markers, and then project it radially onto the sphere. This
results in an extreme fish-eye distortion. In Figure 6(c), the results are shown for the varia-
tional setting using the harmonic energy. The harmonic energy is commonly used in geometric
modelling, e.g., [50], although mostly in targeting linear spaces. The mapped image does not
fill the convex hull of the training points, and we observe an undesirable contraction of the
image. This is why the harmonic energy is traditionally used only for input domains without
boundary, or when the output boundary can be fixed a priori. While there exist methods
to alleviate this problem [50], a theoretically clean way would be to use the proposed Eells
energy as a regularizer; see Figure 6(d). Since the Eells energy does not try to minimize the
distances between the points, but rather the variation of the distances, it is much less prone to
contraction of the image. Moreover, it extrapolates nicely out of the convex hull of the training
points. Furthermore, the distortion-minimizing property of the Eells energy can be observed
here nicely. While it is not possible to exactly map all geodesics in the input to geodesics
in the output, the Eells regularized approach performs much better than the projected TPS
solution in Figure 6(b).

7.3. Fingerprints. One task in fingerprint processing is estimating the direction of the
fingerprint’s contour lines; see Figure 7. In some regions where the contrast is high the
direction can be reliably estimated based on image gradients. The goal is now to predict
the directions in all regions based on the available estimated direction data. This can be
formulated as a regression problem, where the input domain M is the image Ω ∈ R

2 and the
output the set of line directions which equals real projective space RP1. RP1 is up to a global
scaling factor isometric isomorphic to S1. Thus we use this simpler representation as output
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(a) Original (b) Extracted directions (c) Eells reconstruction

Figure 7. Smoothing and hole filling fingerprints. (a) Original image I. (b) Extracted directions color-
coded. For the black regions the direction cannot be extracted reliably, since the image gradient ‖∇I‖ is too
small. (c) Eells energy–based reconstruction. Note that dark red and dark blue colors actually code for the same
direction.

space N .
As training and validation data, we use directions computed from the polar representation

of the gradients of the smoothed original image; see Figure 7(a). In low contrast regions
with radial gradient component smaller than 50 (image values ranging from 0 to 255) the
orientation extraction was deemed too unreliable to be considered, yielding the holey ground-
truth image shown in (b). We computed our reconstruction shown in (c) using Eells energy–
based regression. As training data, we used a subset of the nonblack pixels from (b), extracted
on a grid with 10 pixel spacing. Nonblack off-grid pixels in (b) were used for validation
purposes. The regularization parameter λ was chosen by 5-fold cross-validation.

The result shown in Figure 7(c) is a nicely smoothed version of the original noisy and
holey dataset (b). The validation error is 14.8◦. We compare our approach with the diffusion
method in [34], which minimizes an approximation of the harmonic energy. As opposed to
[34], our method is also able to fill holes in the dataset. Thus, when comparing on the same
training data as above, we had to initialize the diffusion method with the full direction image
that also covered the regions marked unreliable in (b). With an optimally selected data term,
the best validation error we could achieve for their method was 17.7◦, significantly higher than
for our Eells energy–based approach.

In total we did experiments with 47 fingerprint images taken from [43]. Selected images
had at least 20% of the pixels with gradient norm above the threshold. This guaranteed not
only sensible smoothing, but, more importantly, reliable validation. We obtained the following
results:

Method of [34] Eells-based approach

Validation error 25◦ ± 6◦ 22◦ ± 6◦

The relative improvement of our method is on average 12%. This is significant under a t-test
at level 5% (P-value 2× 10−4).
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7.4. Surface/head correspondence. Computing correspondence between the surfaces of
different but similar objects, such as human heads, is a central problem in shape processing. A
dense correspondence map, that is, an assignment of all points of one head to the anatomically
equivalent points on the other head, allows one to perform morphing [37] or to build linear
object models [5], also known as active appearance models [8], which are flexible tools for
computer graphics as well as computer vision. Though the problem is well studied, it remains
challenging and is still actively investigated. Most approaches minimize a functional that
consists of a local similarity measure and a smoothness functional or regularizer for the overall
mapping. Motivated by the fact that the Eells energy favors “linear” mappings, we propose
to use it as regularizer for correspondence maps between surface manifolds. For testing and
highlighting the role of this “prior” independent of the choice of local similarity measure, we
formulate the dense correspondence problem as a nonparametric regression problem between
manifolds where 55 point correspondences on characteristic local texture or shape features are
given. (Only on the forehead we fix some less well-defined markers, to determine a relevant
length-scale.)

It is in general difficult to evaluate correspondences numerically, since for different heads
anatomical equivalence is not easily specified. Here, we have used a subset of the head database
of [5] and considered the correspondence developed there as our ground-truth. These corre-
spondences are known to be perceptually highly plausible. We took the average head of one
part of the database and registered it to the other 10 faces, using the mean distance to the cor-
respondence of [5] as an error score. Apart from the average deviation over the whole head,
we also show results for an interior region (see Figure 8(g)), for which the correspondence
given by [5] is known to be more exact compared to other regions as, for example, around the
ear or below the chin.

We compared our approach against [37] and a TPS-like approach. The TPS method
represents the initial solution of our approach, that is, a mapping into R

3 minimizing the
TPS energy (3.7), which is then projected onto the heads’ surfaces. [37] uses a volume-
deformation based approach that directly finds smooth mappings from surface to surface,
without the need of projection, but their regularizer does not take into account the true
distances along the surface. We did not compare against the local regression approach of [9],
since their approach requires computing a large number of geodesics in each iteration. This is
computationally prohibitive on point clouds. In order to obtain a sufficiently flexible, yet not
too high-dimensional, function set for our implementation, we place polynomial centers ci on
all markers points and also use a coarse, approximately uniform sampling of the other parts
of the manifold. Free parameters, that is, the regularization parameter λ and the density of
additional polynomial centers, were chosen by 10-fold cross-validation for our and the TPS
methods, and by manual inspection for the approach of [37].

One computed correspondence example is shown in Figure 8, and the average over all 10
test heads is summarized in the table below.

TPS Eells [37]

Mean error for the full head (mm) 2.90 2.16 2.15
Mean error for the interior (mm) 1.49 1.17 1.36

The manifold-adapted Eells approach performs much better than the TPS method, espe-
cially in regions of high curvature such as around the nose; see the error heatmaps in Figure 8.
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(a) Original (b) 50% (c) Target (d) Mask

(e) TPS (f) Eells (g) [37] (h) 50%
3.19 (1.27) 2.13 (0.82) 2.47 (1.43) only 15 markers

Figure 8. Correspondence computation from the original head in (a) to the target head in (c) with 55
markers (yellow crosses). A resulting 50% morph using our method is shown in (b). Distance of the computed
correspondence from the correspondence of [5] is color-coded in (e)–(g) for different methods. The numbers
below give the average distance in mm over the whole head, and in brackets the average over an interior region
(red area in (d)). Using our method with only 15 markers (see (h)) still yields visually plausible morphing
results.

Compared to [37], our method finds a smoother, more plausible solution, particularly on large
textureless areas such as the forehead or the cheeks.

We repeated the experiment with only very few markers (15). While the alignment of
small texture details then becomes troublesome, which negatively affects numeric evaluation,
the overall visual impression of our method is still fairly good; see Figure 8(h). This shows
once more that the Eells energy is a suitable prior for mappings between three-dimensional
object surfaces.

8. Further topics in manifold-valued learning. In this final section we want to point out
structural differences of regression between Riemannian manifolds and standard multivariate
regression. The results derived here are rather preliminary, and the goal of this section is more
to identify interesting open problems than to provide an already fully developed solution.

8.1. Function spaces. The regularized risk minimization objective (2.1) is minimized over
all smooth mappings C∞(M,N). It is a classical problem in variational analysis that this
space is not sufficient to guarantee the existence of a minimizer, since it is not complete. For
Euclidean output, one therefore introduces the Sobolev space W s,2(M,Rl) as the completion
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of Cs(M,Rl) with respect to the norm

‖φ‖2s =
l∑

μ=1

s∑
r=0

∫
M

‖∇1 · · · ∇rφ
μ‖2 dV.

The functions in W s,2(M,Rl) need not be in Cs(M,Rl), but at least it is known that a
(weak) minimizer of the energy functional exists in W s,2(M,Rl). For example, consider linear
splines: the minimizers of (2.1) using the harmonic energy in W 1,2(R,R) are piecewise linear
but not differentiable at the data points φ(Xi). Under strong assumptions a similar result has
been derived for linear splines in manifolds without extending the theory of Sobolev-spaces to
manifold-valued output in [22]. However, a general approach which uses fewer assumptions
and which is also valid for higher-dimensional input will most likely require such an extension.

One problem with extending Sobolev theory to manifolds is that, if the output manifold
is non-Euclidean, any class of functions from M to N can not be a vector space due to the
missing linear structure of N . This is problematic, as the vector spaces structure is typically
one of the first abstractions introduced in derivations of Sobolev space, and it is also heavily
used in the proofs of existence and uniqueness of minimizers of (2.1) for Euclidean output.
Discarding this structure thus requires one to make fundamental changes. Instead of a vector
space structure, the space of admissible functions should rather be thought of as an infinite-
dimensional manifold where the tangent spaces have Hilbert space structure. Results for such
a generalization in the case of harmonic energy have been obtained in [15, 48]. However, the
generalization to higher-order regularization functionals is an open problem.

Another problem occurs already for Euclidean outputs. If dim(M) ≥ 2s, point evaluation
functionals on W s,2(M,Rl) are not necessarily continuous; see Sobolev’s embedding theorem
[2]. This implies that point interpolation or approximation with regularization of order s is
not well defined in this case. Since Euclidean output is only a special case of the more general
manifold-valued setup and since Riemannian manifolds are locally linear, we assume that the
problem similarly transfers to the manifold case. In the Euclidean setting, a classic route to
obtaining a well-defined learning objective (2.1) is to resort to higher-order regularization,
since for any input dimension m sufficiently large s guarantees continuity of point evaluation.
Higher-order regularization is feasible in the Euclidean-output case, since the optimal solution
is known to be a sum of Green’s functions centered at the data points [45], and since these
Green’s functions can be computed analytically [49]. In the general manifold-valued output
setting, however, the solution needs to be computed numerically via discretization, and higher-
order regularization leads to ever-more-complicated expressions for the derivatives. Thus, this
direction seems infeasible at the moment. Note that for second-order functionals such as the
Eells and biharmonic energy the critical condition is dim(M) ≤ 3. In all our experiments,
this condition was fulfilled, and we thus assume that a sensible well-defined minimizer of (2.1)
exists. For higher-dimensional input we plan to investigate in the future whether smoothing
of the loss or switching to the W s,p norm, p > 2, offers a solution to the described problem.

8.2. Homotopy and consistency. In the following we will explore the nontrivial topolog-
ical structure of manifold-valued mappings.

Definition 8.1.Two continuous mappings φ1, φ2 from M to N are said to be homotopic if
there exists a continuous mapping Ψ : M × [0, 1] → N with Ψ(x, 0) = φ1(x), Ψ(x, 1) = φ2(x).
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Homotopy defines an equivalence relation on C(M,N). We denote the set of resulting
equivalence classes, the so-called homotopy classes, by [M,N ]. One says that [M,N ] is trivial
if it consists of just the homotopy class of the constant map. It is easy to see that [M,Rl],
that is, the homotopy class of mappings considered in manifold learning, is trivial. However,
for the manifold-valued output this is generally not the case, with interesting theoretical as
well as practical implications.

Typically, the regularized empirical risk minimization problem is solved using a descent-
type algorithm which continuously deforms the current mapping φ. This implies that the
homotopy class is preserved during optimization, and thus the homotopy class of the final
solution is determined by the initial mapping. Theoretically, one could just search for the op-
timum in all homotopy classes. This is, however, practically not possible, since, e.g., [S1,S1] is
isomorphic to the set of integers—the number of cycles around the circle. Thus, consistent es-
timation practically requires that the initial solution be already in the same homotopy class as
the “true” solution, i.e., the Bayes optimal solution γ∗ = argminγ measurable EY,X d2(γ(X), Y ).

The following theorem provides a first step towards a consistent training procedure for
manifold-valued mappings, where [M,N ] is nontrivial.

Theorem 8.2. Given K training points (Xi, Yi) ∈ S1 × S1, let h be the maximal geodesic
nearest neighbor distance of {Xi}Ki=1. Let the Bayes optimal solution γ∗ be smooth and the
sampling distribution be deterministic, i.e., P(γ∗(X) �= Y ) = 0. Then for

∥∥γ̇∗∥∥ ≤ L and
h < π

L the piecewise geodesic interpolant of the training data is in the same homotopy class
as γ∗.

Proof. Let Xi and Xj be nearest neighbors in S1. We have
∫ Xj

Xi

∥∥γ̇∗∥∥ dt ≤ LdS1(Xi,Xj) ≤
Lh. With Lh < π we know that γ∗ can have made no cycle around S1 between Xi and Xj .
Moreover, the length of the shortest path between Yi and Yj is also bounded by Lh < π.

Thus the geodesic γ̂ interpolating (Xi, Yi) and (Xj , Yj) is homotopic to the segment of γ∗|Xj

Xi
.

Since this holds for any neighboring points of the training data, the whole curves γ∗ and γ̂
are homotopic.

The theorem can be extended to nondeterministic problems where P(Y |X) is sufficiently
concentrated, and to the setting where (Xi, Yi)

K
i=1 is a random sample from P on S1 × S1.

The generalization of this result to more general domains is nontrivial and is an interesting
problem for future research.

8.3. Capacity of totally geodesic maps. In section 4.1 we have argued that totally
geodesic maps share important geometric properties with linear maps in Euclidean spaces.
We now examine whether this also holds in a statistical perspective.

In statistics, linear maps are favorable since they are small capacity approximators. This
means that it is unlikely that one can fit a random training set exactly with linear maps,
which renders regression with linear maps relatively robust against overfitting [36]. Since
totally geodesic maps are identical to linear maps if one has Euclidean input and output,
their capacity is small, too, at least for some, most likely for many combinations of input-
output manifolds. However, the following example demonstrates that this is not always true.
There exists a nontrivial connection between the topology of the output manifold and the
capacity of the associated totally geodesic maps.

Consider again mappings from M = S1 to N = S1. In standard angular coordinates, all
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totally geodesic maps in this setting are of the form φa(x) = mod(a x + b) for a ∈ N and
b ∈ [0, 2π). The following theorem, which is a classical result in number theory, shows that
this set of mappings can fit any given set of training points arbitrarily well and thus has
infinite capacity.

Theorem 8.3 (see [1, p. 154]). Let (Xi, Yi) ∈ S1 × S1, i = 1, . . . ,K, be the training data.
Then there exists for any set of training data and any ε > 0 an a ∈ N such that

max
i=1,...,K

d(φa(Xi), Yi) ≤ ε.

Since totally geodesic mappings are not penalized by the Eells energy, the solution of
regularized empirical risk minimization in (2.1) is always given by the geodesic φa, which
obviously overfits the training data. However, note that the integer a, which corresponds
to the number of cycles around the circle of φa, (empirically) grows exponentially with the
number of data points. This is the reason why we did not encounter this phenomenon in the
implementation of [40]. The above phenomenon still holds if the input space is the real line
or a closed interval. At least for regression into S1 this example suggests that the null-space
of both the Eells and the biharmonic energies of manifold-valued mappings is already too
large to be useful. Since for the harmonic energy one has Sharm(φa) = 2πa, this suggests that
from a theoretical point of view one should use in this case either the harmonic energy or a
combination of harmonic and a second-order energy.

9. Conclusion. This paper has presented a universal theoretically sound framework for
regression between two Riemannian manifolds based on regularized empirical risk minimiza-
tion. The discussed differential energies are dependent only on the geometry of the input and
output manifold, but not on their respective parametric representation. We have derived an
intuitively desirable property of the proposed Eells energy, namely that it favors the so-called
totally geodesic maps, a suitable generalization of linear maps. Our implementation and our
experimental results have further supported the benefits of using a truly manifold-adapted
approach and especially the Eells energy.

Throughout the paper we tried to convey that the problem of manifold-valued regression
is far from being a trivial generalization of the Euclidean case, and there remain many chal-
lenging and interesting open questions in the mathematical and statistical analysis of this
problem. On the practical side, an interesting question is whether there exists a compact
but flexible representation for general mappings between Riemannian manifolds. Since our
implementation is based on discretization, it is so far limited to low-dimensional input spaces.
However, for many statistical problems higher-dimensional input would be desirable, requir-
ing a more compact function representation. In Euclidean space this is typically done with
sparse basis function expansions. However, since manifold-valued output does not allow for
the addition of functions, this route cannot be taken here. The construction of compact yet
flexible representations for mappings between general Riemannian manifolds thus remains an
important open point.

Appendix A. The pull-back connection, its curvature, and Green’s theorem. This
section is a self-contained review of the basic ingredients of connections and the curvature
of vector bundles. With the exception of the extension of the Green’s theorem to the tensor
product connection, the material can be found in [11].
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Let M be a smooth, connected, orientable Riemannian manifold. Let V be a smooth
vector bundle over M of finite rank with base projection π : V → M . We denote by C(V ) the
vector space of smooth sections of V , i.e., of smooth maps σ : M → V such that π ◦ σ = 1M .
Let V and W be two vector bundles over M ; then we define the following:

• V ∗ is the dual bundle of V ,
• V ⊕W is the direct sum of V and W ,
• V ⊗W is the tensor product of V and W ,
• ⊗pV is the pth tensor power of V ,
• ∧pV is the pth exterior power of V (completely antisymmetric),
• �pV is the pth tensor power of V (completely symmetric).

An important concept for manifold-valued mappings is the pull-back bundle φ−1W .
Definition A.1. If φ : M → N and W is a vector bundle over N , then φ−1W denotes the

pull-back bundle, whose fiber over x ∈ M is Wφ(x), the fiber of W over φ(x).
Next we define the Riemannian metric and the connection on vector bundles.
Definition A.2. A Riemannian metric on a vector bundle V is a section a in C(V ∗ � V ∗)

which induces on each fiber a positive definite inner product. Let σ, ρ ∈ C(V ); then we use
〈σ, ρ〉 := a(σ, ρ).

As in the case of the tangent bundle, one can introduce the musical isomorphisms to
define maps V → V ∗ and V ∗ → V . One can also define a Riemannian metric on the pull-back
bundle. Let φ : M → N , and W be a vector bundle over N with metric b. We can identify
σ, ρ ∈ (φ−1W )x with σ, ρ ∈ Wφ(x) and thereby define 〈σ, ρ〉b.

Definition A.3. A linear connection on vector bundle V over M is a bilinear map ∇ on
spaces of sections,

∇ : C(TM)× C(V ) → C(V ), (X,σ) �→ ∇Xσ,

where X ∈ C(TM) and σ ∈ C(V ) such that for f ∈ C(M) we have
• ∇fXσ = f∇Xσ,
• ∇X(fσ) = X(f) σ + f ∇Xσ.

Since ∇ is linear in its first argument, we write in abstract index notation Xa∇aσ
t1,...,ts
b1,...,br

for
a (s, r) vector bundle V .

Definition A.4. Let V ∇ and W∇ be connections on V and W .
1. The dual connection on V ∗ is defined by

θ ∈ C(V ∗), σ ∈ C(V ); (∇Xθ)(σ) = X(θ(σ)) − θ(∇Xσ).(A.1)

2. The direct sum connection on V ⊕W is defined as

σ ∈ C(V ), λ ∈ C(W ); ∇X(σ ⊕ λ) = V ∇Xσ ⊕ W∇Xλ.(A.2)

3. The tensor product connection on V ⊗W is defined as

σ ∈ C(V ), λ ∈ C(W ); ∇X(σ ⊗ λ) = V∇Xσ ⊗ λ+ σ ⊗W∇Xλ.(A.3)

The following definition of the pull-back connection is the central key to the definition of
energy functionals for manifold-valued mappings.
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Definition A.5. For smooth map φ : M → N and vector bundle W over N with connection
W∇, the pull-back or induced connection on φ−1W is defined as the connection ∇′ on φ−1W
such that for each x ∈ M , X ∈ TxM , and λ ∈ C(W ),

∇′
X (φ∗λ) = φ∗ (W∇dφ(X)λ

)
,

where dφ : TxM → Tφ(x)N is the push-forward or differential of φ and φ∗λ = λ◦φ ∈ C(φ−1W ).
In abstract index notation,

∇′
aλ(φ(x)) = dφr

a
W∇rλ

∣∣
φ(x)

.

This definition, which formally applies only to elements φ∗λ ∈ φ−1W derived from λ ∈
C(W ), can be uniquely extended to all elements of φ−1W by using the defining properties of
a connection [11].

Definition A.6. A Riemannian structure on bundle V is a pair (∇, a), where a is a Rie-
mannian metric, ∇ is a connection, and ∇a = 0, where ∇a is defined using the tensor product
connection in (A.3).

The condition ∇a = 0 means that for all X ∈ C(TM), σ, ω ∈ C(V ) we have

X 〈σ, ω〉 = 〈∇Xσ, ω〉+ 〈σ,∇Xω〉 ;

i.e., the connection is compatible with the inner product. Let (V ∇, a) and (W∇, b) be Rie-
mannian structures on V and W ; then one can check that the direct sum, the tensor product,
and the pull-back connection are again Riemannian structures.

Definition A.7. The curvature tensor of a connection is the map R : C(TM) ∧ C(TM) ⊗
C(V ) → C(V ) defined by

R(X,Y )σ = ∇X∇Y σ −∇Y∇Xσ −∇[X,Y ]σ = −R(Y,X)σ.

Lemma A.8. Let RV and RW be the curvature tensors of V and W . Then,
• for V ∗, (R(X,Y )θ)(σ) = −θ(R(X,Y )σ) for all X,Y ∈ C(TM), θ ∈ C(V ∗), and

σ ∈ C(V );
• for V ⊕W , R(X,Y )(σ ⊕ λ) = RV (X,Y )σ ⊕RW (X,Y )λ, where λ ∈ C(W );
• for V ⊗W , R(X,Y )(σ ⊗ λ) = RV (X,Y )σ ⊗ λ+ σ ⊗RW (X,Y )λ;
• for φ−1W , Rx(X,Y )ρ(x) = RW

φ(x)(dφ(X), dφ(Y ))ρ(x), where ρ ∈ C(φ−1W ).
From here on, we consider only connections derived from the Levi–Civita connections on

tangent bundles on M and N . In particular, for smooth map φ : M → N we repeatedly
consider on φ−1TN the pull-back connection ∇′ of the Levi–Civita connection on N . For
mixed tensor T r

a ∈ T ∗M ⊗ φ−1TN we apply the tensor product connection by using M∇ for
T ∗M and ∇′ for φ−1TN . With some abuse of notation we use the same symbol ∇′ for all such
tensor product connections on ⊗kTM ⊗l T ∗M ⊗ φ−1TN , and refer to them as the pull-back
connections for all these bundles. The following recipe for a covariant derivative of mixed
tensor T can be generalized straightforwardly:

∇′
bT

r
a = ∇′

b(T
μ
α dxαa ⊗ ∂r

μ)

:=
(
M∇bT

μ
α

)
dxαa ⊗ ∂r

μ + T μ
α

(
M∇bdx

α
a

)
⊗ ∂r

μ + T μ
α dxαa ⊗

(
∇′

b∂
r
μ

)
.
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As an example consider the differential dφr
a : TxM → Tφ(x)N ,

dφr
a(x) =

∂φμ

∂xα
dxαa

∣∣∣∣
x

⊗ ∂r

∂yμ

∣∣∣∣
φ(x)

= M∇aφ
μ

∣∣∣∣
x

⊗ ∂r

∂yμ
∣∣
φ(x)

.

We obtain the coordinate expression for ∇′
bdφ

r
a as

∇′
bdφ

r
a = M∇b

M∇aφ
μ ⊗ ∂r

∂yμ
+ M∇aφ

μ ⊗∇′
b

∂r

∂yμ

=

[
∂2φμ

∂xβ∂xα
+

∂φμ

∂xγ
MΓ

γ
βα +

∂φρ

∂xα
∂φν

∂xβ
NΓ

μ
νρ

]
dxβb ⊗ dxαa ⊗ ∂r

∂yμ
.(A.4)

One can read off that ∇′
bdφ

r
a = ∇′

adφ
r
b , because the Levi–Civita connections on M and N are

symmetric, that is, because MΓ
γ
βα = MΓ

γ
αβ and NΓ

μ
νρ = NΓ

μ
ρν . With this in mind, we can

show the following lemma, which will be useful later on.
Lemma A.9. Let φ : M → N and X,Y ∈ C(TM); then we have

∇′
X(dφ(Y ))−∇′

Y (dφ(X)) = dφ([X,Y ]),

where [X,Y ] is the Lie-bracket.
Proof. We have

Xb∇′
b(dφ

r
aY

a)− Y b∇′
b(dφ

r
aX

a)

= dφr
a(X

b M∇bY
a − Y b M∇bX

a) +XbY a[∇′
bdφ

r
a −∇′

adφ
r
b ] = dφr

a[X,Y ]a,

where we used in the first step the definition of the pull-back connection for tensor product
spaces, and in the second step ∇′

bdφ
r
a = ∇′

adφ
r
b .

We generalize Green’s theorem to the case of the pull-back connection as follows.
Lemma A.10. Let T ∈ C(⊗p+1T ∗M ⊗φ−1TN) and S ∈ C(⊗pT ∗M ⊗φ−1TN). Then, with

∇′ being the pull-back connection, we have∫
M

〈
T,∇′S

〉
=

∫
∂M

〈T,N ⊗ S〉 −
∫
M

〈
traceg∇′T, S

〉
,

where N is the covector associated with the normal vector at ∂M and the trace is taken with
respect to the first two indices. In abstract index notation we obtain∫

M
gac0gb1c1 · · · gbpcp hrs T r

c0···cp ∇′
aS

s
b1···bp

=

∫
∂M

gac0gb1c1 · · · gbpcp hrs T r
c0···cp NaS

s
b1···bp

−
∫
M

gac0gb1c1 · · · gbpcp hrs
(
∇′

aT
r
c0···cp

)
Ss
b1···bp .

Proof. We show the result for T ∈ C(T ∗M ⊗ φ−1TN) and S ∈ C(φ−1TN) using ex-
plicit coordinates. The extension to higher tensor powers in T ∗M is then straightforward.
With ∇′

aS
s = ∇′

a(S
ν ∂s

∂yν ) = (M∇aS
ν) ∂s

∂yν + Sν∇′
a

∂s

∂yν we can write the part of the covariant
derivative associated with the pull-back connection explicitly,∫

M
gab hrs T

r
b ∇′

aS
s =

∫
M

gab hμν T μ
b [

M∇aS
ν + Sρ NΓ

ν
ρωdφ

ω
a ].(A.5)
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Furthermore, we have∫
M

gabhμνT
μ
b

M∇aS
ν

=

∫
M

gab M∇a(hμνT
μ
b S

ν)−
∫
M

gab (M∇ahμν)T
μ
b S

ν −
∫
M

gabhμν(
M∇aT

μ
b )S

ν

=

∫
∂M

N bhrsT
r
b S

s −
∫
M

gab
∂hμν
∂yρ

dφρ
aT

μ
b S

ν −
∫
M

gab hμν S
ν M∇aT

μ
b ,

where we use standard Green’s theorem [21] in the second step. With
∂hμν

∂yρ = hνω
NΓ

ω
ρμ +

hμω
NΓ

ω
ρν we get∫

M
gab

∂hμν
∂yρ

dφρ
a T

μ
b Sν =

∫
M

gab[hνω
NΓ

ω
ρμ + hμω

NΓ
ω
ρν ] dφ

ρ
a T

μ
b Sν .

Plugging the expression for
∫
M gabhμνT

μ
b

M∇aS
ν into (A.5), we obtain∫

M
gab hrs T

r
b ∇′

aS
s =

∫
∂M

N b hrs T
r
b Ss −

∫
M

gab hμν S
ν [M∇aT

μ
b + Tω

b
NΓ

μ
ωα dφ

α
a ]

=

∫
∂M

N b hrs T
r
b Ss −

∫
M

gab hrs S
s ∇′

aT
r
b .

Appendix B. Proof for section 4.
Proof of Theorem 4.2. We write the difference between the biharmonic and Eells energies

as a divergence of a vector field on M plus some curvature terms. We define

Fb = hrs g
cd
(
dφr

b ∇′
cdφ

s
d − dφr

c ∇′
bdφ

s
d

)
.

We have

gab ∇′
aFb = hrs g

ab gcd
(
∇′

adφ
r
b ∇′

cdφ
s
d + dφr

b ∇′
a∇′

cdφ
s
d(B.1)

−∇′
adφ

r
c∇′

bdφ
s
d − dφr

c∇′
a∇′

bdφ
s
d

)
.

The divergence contains the energy densities of the Eells and biharmonic energies plus two
other terms. The last term in (B.1) can be rewritten using ∇′

bdφ
s
d = ∇′

dφ
s
b and

∇′
a∇′

ddφ
s
b = ∇′

d∇′
adφ

s
b −RM

adb
e dφs

e +RN
tuv

s dφt
a dφ

u
d dφ

v
b ,

where we have used Lemma A.8 in Appendix A for elements in T ∗M ⊗ φ−1TN like dφs
b. The

first term of this new expansion and the second term in (B.1) cancel. Applying the extended
Green’s theorem, Lemma A.10, we obtain the desired result.

Appendix C. Extrinsic representation of the pull-back connection and proofs for sec-
tion 5. Here, we compute a representation of the pull-back connection for manifolds N which
are isometrically embedded in Euclidean space.
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Definition C.1. Let ∇′ be the connection pull-back via φ and ∇̃ the connection pull-back via
Ψ = i ◦φ. The pull-back second fundamental from Π′ : TM ⊗φ−1TN → φ−1(TN)⊥ is defined
via

Xa∇̃aS
r = Xa∇′

aS
r +XaΠ′r

asS
s.

Lemma C.2. The pull-back second fundamental form Π′e
ab : TM ⊗ φ−1TN → φ−1(TN)⊥

can be computed as
Π′r

as = dφu
a

NΠ
r
us,

where NΠ is the second fundamental form of N .
Proof. We have Ψ = i ◦ φ. With ∂r

∂yμ = ∂iα

∂yμ
∂r

∂zα we get

dΨr
a =

∂Ψα

∂xβ
dxβa ⊗ ∂r

∂zα
=

∂iα

∂yμ
∂φμ

∂xβ
dxβa ⊗ ∂r

∂zα
=

∂φμ

∂xβ
dxβa ⊗ ∂r

∂yμ
= dφr

a.

For Sr ∈ φ−1TN one then obtains

∇̃aS
r = dΨs

a
R
l∇sS

r = dφs
a

[
N∇sS

r + NΠ
r
su S

u
]
= ∇′

aS
r + dφs

a
NΠ

r
suS

u.

The generalization to covariant derivatives of ⊗mT ∗M ⊗ φ−1TN follows easily.
Now the proofs of section 5 can be derived as follows.
Proof of Theorem 5.1. For dΨr

a = dφr
a, see the proof of Lemma C.2. Moreover, a decompo-

sition of ∇̃bdΨ
r
a as in Definition C.1 is ∇̃bdΨ

r
a = ∇′

bdΨ
r
a + Π′r

bsdΨ
s
a, where ∇′

bdΨ
r
a = ∇′

bdφ
r
a ∈

TM∗ ⊗ TM∗ ⊗ φ−1TN and Π′r
bsdΨ

s
a = dφu

b
NΠ

r
usdφ

s
a ∈ TM∗ ⊗ TM∗ ⊗ φ−1(TN)⊥ due to

Lemma C.2. This shows the result.
Proof of Theorem 5.2. Application of Theorem 5.1 together with gab = δab for Cartesian

coordinates and ∇̃bdΨ
r
a = ∂2Ψμ

∂xα∂xβ dx
α
b ⊗ dxβa ⊗ ∂r

∂zμ yields the results.

Proof of Proposition 5.4. The function i : Rm → R
k defined here as (x1, . . . , xm) �→

i(x) = (x1, . . . , xm, fm+1(x), . . . , fk(x)) can be seen as the embedding of the second-order
approximation of M into R

k. The induced metric is given as

gαβ =
k∑

r=1

∂ir

∂xα
∂ir

∂xβ
=

{
1 +

∑k
r=m+1

(
∂fr

∂xα

)2
if α = β,∑k

r=m+1
∂fr

∂xα
∂fr

∂xβ if α �= β.

Since the functions f r are all quadratic in coordinates xα, we immediately see that gαβ(0) =

δαβ and
∂gαβ

∂xγ (0) = 0, and thus Γγ
αβ = 1

2g
γρ(∂αgβρ + ∂βgαρ − ∂ρgαβ) = 0 at the origin [21, p.

70]. Finally, we have

∂2Ψμ

∂xβ∂xα
=

∂2Ψμ

∂zr∂zu
∂zr

∂xα
∂zu

∂xβ
+

∂Ψμ

∂zr
∂2zr

∂xα∂xβ

and

∂zr

∂xα
=

{ 1 if r = α,
0 if r ≤ m and r �= α,
∂fr

∂xα if r > m,

∂2zr

∂xβ∂xα
=

{
0 if r ≤ m,
Πr

αβ if r > m.
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The result in (5.5) follows.

Appendix D. Variation of the harmonic, biharmonic, and Eells energy. In this section,
we derive necessary conditions for the minimizers of the energy functionals, that is, the Euler–
Lagrange equations. The variation of the energy functionals is based on the extended Green’s
theorem, Lemma A.10, and the commutator formula from Lemma D.1 for the exchange of
derivatives of the induced connection.

Letting I = (−ε, ε), we denote by φ(t, x), t ∈ I, a variation of the mapping φ such that
φ(0, x) = φ(x), and by T (M × I) the tangent space of the product manifold M × I. Note that
T (M × I) is isomorphic to TM ⊕ TI. The product metric is given as g = gTM ⊕ gTI and is
block-diagonal in any local coordinate system. This implies that also all other structures on
the product manifold like Christoffel-symbols or the curvature tensor have this block-diagonal
structure.

Lemma D.1. Let ∇′ be the pull-back connection on T ∗(M × I)⊗ φ−1TN . Then

∂a

∂t
∇′

adφ
r
b = ∇′

b

∂φr

∂t
= ∇′

b

(
dφr

a

∂a

∂t

)
,(D.1)

∂c

∂t
∇′

c∇′
adφ

r
b = ∇′

a∇′
b

∂φr

∂t
+RN

suv
r ∂φs

∂t
dφu

a dφv
b .(D.2)

Proof. Since ∂
∂t

and ∂
∂xi

are coordinate vectors, we have [ ∂∂t ,
∂
∂xi

] = 0. Moreover, the

tensor product of the pull-back connection of φ−1TN and T ∗(M × I) is compatible with
the Riemannian structure on T ∗(M × I) ⊗ φ−1

t TN . Using the result of Lemma A.9 with
Y a = ∂a

∂t ∈ T (M × I), we have

Xb∇′
b

(
dφr

a

∂a

∂t

)
− ∂a

∂t
∇′

a

(
dφr

bX
b
)
= 0.

With ∂b

∂t∇′
b

(
dφr

aX
a
)
= Xa ∂b

∂t∇′
bdφ

r
c + dφr

c
∂b

∂t∇′
bX

a and ∂a

∂t∇′
aX

b = 0 (Xb is a vector field on M
and does not change with t), we obtain

∇′
b

(
dφr

a

∂a

∂t

)
= ∇′

b

∂φr

∂t
=

∂a

∂t
∇′

bdφ
r
a =

∂a

∂t
∇′

adφ
r
b ,(D.3)

where the last equality follows by the symmetry of ∇′
ddφ

r
c . Taking the derivative of (D.3), we

get

∇′
a∇′

b

∂φr

∂t
=

(
∇′

a

∂c

∂t

)
∇′

cdφ
r
b +

∂c

∂t
∇′

a∇′
cdφ

r
b =

∂c

∂t
∇′

a∇′
cdφ

r
b ,

where we have used that
(∇′

a
∂c

∂t

)∣∣
TM

= 0. We will now exchange the order of the derivatives in
front of dφr

b using the definition of the curvature tensor for objects of type T ∗(M×I)⊗φ−1TN ,

∇′
c∇′

adφ
r
b = ∇′

a∇′
cdφ

r
b −RM×I

cab
d dφr

d +RN
suv

r dφs
cdφ

u
adφ

b
u,

where we have used that the curvature tensor of M×I is the direct sum of the curvature of M
and the curvature of I, which is zero. Moreover, we have, due to the block-diagonal structure
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of the curvature tensor, ∂c

∂tR
M×I
cab

ddφr
d = 0. Thus,

∂c

∂t
∇′

c∇′
adφ

r
b = ∇′

a∇′
b

∂φr

∂t
+RN

suv
r ∂φs

∂t
dφu

adφ
v
u,

where we have used the previous result.
The previous lemma basically tells us that the time derivative commutes with the pull-

back connection. But the “Hessian” does not commute with the time derivative, and one gets
an additional curvature term.

Theorem D.2. Let I = (−ε, ε) and φ(t, x) : I × M → N be a variation of the mapping
φ = φ(0, x), and let W b = ∂

∂tφ
b
t

∣∣
t=0

be the variational vector field at t = 0. The variation of
the harmonic energy is given as

1

2

d

dt
Sharmonic(φt)

∣∣∣
t=0

=−
∫
M

gachrsW
r∇′

cdφ
s
a dV +

∫
∂M

hrsN
cW rdφs

cdṼ .

The variation of the Eells energy is given as

1

2

d

dt
SEells(φt)

∣∣∣
t=0

=

∫
M
gabgcdhrsW

r
[
∇′

c∇′
a∇′

bdφ
s
d +RN

twv
s dφv

a dφ
w
c ∇′

bdφ
t
d

]
dV

+

∫
∂M

hrs g
ab N c

[
∇′

aW
r∇′

cdφ
s
b − W r ∇′

a∇′
bdφ

s
c

]
dṼ .

The variation of the biharmonic energy is given as

1

2

d

dt
Sbiharmonic(φt)

∣∣∣
t=0

=

∫
M
gacgbdhrsW

r
[
∇′

c∇′
a∇′

bdφ
s
d +RN

twv
s dφv

a dφ
w
c ∇′

bdφ
t
d

]
dV

+

∫
∂M

hrs g
ab N c

[
∇′

cW
r∇′

bdφ
s
a − W r ∇′

c∇′
bdφ

s
a

]
dṼ ,

where dṼ is the volume element of the boundary ∂M , RN
uvw

s is the curvature tensor of N , and
Na is the normal vector field at ∂M .

Proof. For the harmonic energy we get, using Lemma D.1 and the extended Green’s
theorem of Lemma A.10,

1

2

d

dt
Sharmonic(φt)

∣∣∣
t=0

=

∫
M

gab hrs∇′
aW

r dφs
b dV (x)

=

∫
∂M

W r hrsN
b dφs

b −
∫
M

W r hrs g
ab ∇′

adφ
s
b.

For the Eells energy we use the commutator of Theorem D.1 and obtain

1

2

d

dt
SEells(φt) =

∫
M

gab gcd hrs∇′
a∇′

c

∂φr

∂t
∇′

b(dφt)
s
ddV

+

∫
M

gab gcd hrsR
N
uvw

r ∂φu
t

∂t
(dφt)

v
a (dφt)

w
c ∇′

b(dφt)
s
d dV.
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Using ∇′
b(dφt)

s
d

∣∣
t=0

= ∇′
bdφ

s
d and twice the extended Green’s theorem yields

1

2

d

dt
SEells(φt)

∣∣∣
t=0

=

∫
M
gab gcd hrs∇′

a∇′
cW

r ∇′
bdφ

s
d dV +

∫
M
gab gcd hrsR

N
uvw

r W u dφv
a dφ

w
c ∇′

bdφ
s
d dV

=

∫
∂M

N b gcd hrs∇′
cW

r ∇′
bdφ

s
d dṼ −

∫
∂M

gab Nd hrsW
r ∇′

a∇′
bdφ

s
d dṼ

+

∫
M
gab gcd hrsW

r ∇′
c∇′

a∇′
bdφ

s
d dV+

∫
M
gab gcd hrsR

N
uvw

r W u dφv
a dφ

w
c ∇′

bdφ
s
d dV.

The result follows, noting that Ruvws = Rwsuv. The variation of the biharmonic energy can
be derived analogously.

A necessary condition for a minimizer of the energy S(φ) is that d
dtS(φt)

∣∣
t=0

= 0 for all

vector fields W = ∂φ
∂t .

Corollary D.3. For all points in the interior of M\{X1, . . . ,XK} the minimizer φ : M → N
of the learning objective (2.1) satisfies for the

harmonic energy: gac∇′
cdφ

r
a = 0,

biharmonic energy: gacgbd
[
∇′

c∇′
a∇′

bdφ
r
d +RN

twv
r dφv

a dφ
w
c ∇′

bdφ
t
d

]
= 0,

Eells energy: gabgcd
[
∇′

c∇′
a∇′

bdφ
r
d +RN

twv
r dφv

a dφ
w
c ∇′

bdφ
t
d

]
= 0.

The following are natural boundary conditions at ∂M for the

harmonic energy: N cdφr
c = 0,

biharmonic energy: gab ∇′
bdφ

r
a = 0, N cgab∇′

c∇′
bdφ

r
a = 0,

Eells energy: N c∇′
cdφ

r
b = 0, N cgab∇′

a∇′
bdφ

r
c = 0.

The boundary conditions for the biharmonic and Eells energies are sufficient but not
necessary for a minimizer. That means they guarantee that the sum of the two boundary
terms in the variation vanishes; however, they are not the weakest possible conditions on φ.
The given boundary conditions are nevertheless “natural” in the sense that both φ and its
derivative can be arbitrarily chosen on the boundary.
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