
Robust sparse recovery with non-negativity constraints
Martin Slawski and Matthias Hein

Department of Computer Science, Saarland University
Email: {ms, hein}@cs.uni-saarland.de

Abstract—It has been established recently that sparse non-negative
signals can be recovered using non-negativity constraints only. This
result is obtained within an idealized setting of exact sparsity and
absence of noise. We propose non-negative least squares − without any
regularization − followed by thresholding for the noisy case. We develop
conditions under which one can prove a finite sample result for support
recovery and tackle the case of an approximately sparse target. Under
weaker conditions, we show that non-negative least squares is consistent
for prediction. As illustration, we present a feature extraction problem
from Proteomics.

I. INTRODUCTION

In various applications, the sparse target β∗ ∈ Rp to be recovered
is known to be non-negative. Several recent papers discuss to what
extent this additional prior knowledge may simplify the problem of
recovering β∗ from n, n < p, uncorrupted linear measurements
y = Xβ∗. In [1], [2], [3], it is pointed out that `1-minimization
is no longer needed if the set A = {β : y = Xβ, β � 0} is
a singleton. Donoho and Tanner [2] study the faces of the cone
XRp+ generated by the columns of X , showing that for random
matrices with entries from a symmetric distribution, A fails to be
a singleton with high probability if n < 2p already for s = 0, where
s = |S|, S = {j : β∗j > 0}. On the other hand, they show that with
X as the concatenation of a row of ones and a random Gaussian
matrix eX , the faces of XRp+ are in a one-to-one relation with those ofeXT p−1, where T p−1 is the standard simplex in Rp, i.e. A is a single-
ton if and only if argminβ∈ eA 1>β, eA = {β : eXβ∗ = eXβ, β � 0}
is. A similar result is shown in [3] with eX replaced by a random
binary matrix. In [4], we have generalized these two positive results
to concatenations of random isotropic sub-Gaussian matrices and a
row of ones as well as to random matrices with entries from a sub-
Gaussian distribution on R+. A major shortcoming of these results
is that they are derived within a little realistic noise-free setting,
and it is unclear how they can be transferred to the noisy case.
Contradicting the well-established paradigm in statistics suggesting
that a regularizer is necessary to prevent over-adaptation to noise, we
show that such a transfer is indeed possible.

II. SPARSE RECOVERY FOR THE NOISY CASE

A. Approach

In [4], we assume that y = Xβ∗ + ε, where ε is zero-mean sub-
Gaussian noise with parameter σ. We suggest to find a minimizer bβ of
the non-negative least squares (NNLS) criterion minβ�0 ‖y −Xβ‖22
first, and to estimate the support S of β∗ by bS(λ) = {j : bβj(λ) > 0},
where bβ(λ) is obtained by hard thresholding bβ with threshold λ ≥ 0,
i.e. all components of bβ smaller than λ are set to zero.

B. Key condition and main result

In the noiseless case, S can be recovered if XSRs+ is a face of
XRp+, i.e. there exists a hyperplane separating the cone generated
by the columns of the support {Xj}j∈S from the cone generated by

the columns of the off-support {Xj}j∈Sc . For the noisy case, we
employ a quantitative notion of separation captured by the constant

bτ(S) = max
τ, w:‖w‖2≤1

τ sb.t. X>S w = 0, n−1/2X>Scw � τ1.

From convex duality, it is easy to see that bτ(S) equals the distance
of the subspace spanned by XS and the simplex generated by
XSc . Based on this relation, we investigate how bτ(S) scales in
dependency of n, p, s. We find that bτ2(S) is of the order s−1 minus
a random deviation term for the random designs well-suitable for
sparse recovery in the noiseless case as mentioned in Section 1.
A brief, qualitative version of our main result is as follows.

Theorem. Set λ > 2σbτ2(S)

q
2 log p
n

. If minj∈S β
∗
j > eλ, eλ = λC(S),

for a constant C(S), bβ(λ) satisfies ‖bβ(λ)−β∗‖∞ ≤ eλ, and bS(λ) =
S, with high probability.

III. APPROXIMATELY SPARSE TARGETS

Using a lower bound on bτ(S) again, we can bound the reconstruction
error as long as β∗ is concentrated on components in S.

IV. PREDICTION CONSISTENCY

We show that for a broad classes of non-negative designs, NNLS pos-
sesses a ’self-regularizing property’ which prevents over-adaption to
noise. For these designs, the mean square prediction error n−1‖X bβ−
Xβ∗‖22 is upper bounded by a term of order O(‖β∗‖1

p
log p/n), a

result resembling that obtained in [5] for `1-regularized least squares.

V. APPLICATION

An important challenge in the analysis of protein mass spectrometry
data is to extract peptide masses from a raw spectrum. In [6],
this is formulated as a sparse recovery problem with non-negativity
constraints in the presence of heteroscedastic noise. It is demonstrated
that NNLS plus thresholding with a locally adaptive threshold out-
performs standard sparse recovery methods.
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