Robust sparse recovery with non-negativity constraints
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Abstract—It has been established recently that sparse non-negative
signals can be recovered using non-negativity constraints only. This
result is obtained within an idealized setting of exact sparsity and
absence of noise. We propose non-negative least squares — without any
regularization — followed by thresholding for the noisy case. We develop
conditions under which one can prove a finite sample result for support
recovery and tackle the case of an approximately sparse target. Under
weaker conditions, we show that non-negative least squares is consistent
for prediction. As illustration, we present a feature extraction problem
from Proteomics.

I. INTRODUCTION

In various applications, the sparse target 3 € R? to be recovered
is known to be non-negative. Several recent papers discuss to what
extent this additional prior knowledge may simplify the problem of
recovering 3% from m, n < p, uncorrupted linear measurements
y = XpB*. In [1], [2], [3], it is pointed out that /;-minimization
is no longer needed if the set A = {8 : y = X3, B = 0} is
a singleton. Donoho and Tanner [2] study the faces of the cone
XR% generated by the columns of X, showing that for random
matrices with entries from a symmetric distribution, A fails to be
a singleton with high probability if n < 2p already for s = 0, where
s=15|, S={j: 67 > 0}. On the other hand, they show that with
X as the concatenation of a row of ones and a random Gaussian
matrix X, the faces of X} are in a one-to-one relation with those of
)?Tp’l, where TP~ is the standard simplex in R, i.e. A is a single-
ton if and only if argming 178, A= {3: X3" = X3, 8= 0}
is. A similar result is shown in [3] with X replaced by a random
binary matrix. In [4], we have generalized these two positive results
to concatenations of random isotropic sub-Gaussian matrices and a
row of ones as well as to random matrices with entries from a sub-
Gaussian distribution on Ry. A major shortcoming of these results
is that they are derived within a little realistic noise-free setting,
and it is unclear how they can be transferred to the noisy case.
Contradicting the well-established paradigm in statistics suggesting
that a regularizer is necessary to prevent over-adaptation to noise, we
show that such a transfer is indeed possible.

II. SPARSE RECOVERY FOR THE NOISY CASE
A. Approach

In [4], we assume that y = X (3" + ¢, where € is zero-mean S/Elb-
Gaussian noise with parameter o. We suggest to find a minimizer 3 of
the non-negative least squares (NNLS) criterion mingsxo ||y — X 5||3
first, and to estimate the support .S of 3* by §Q\) ={j:B;(\) >0},
where 3()\) is obtained by hard thresholding 3 with threshold A > 0,
i.e. all components of  smaller than X are set to zero.

B. Key condition and main result

In the noiseless case, S can be recovered if XsR% is a face of

X Rﬁ, i.e. there exists a hyperplane separating the cone generated

by the columns of the support { X} cs from the cone generated by

the columns of the off-support {X;};cse. For the noisy case, we
employ a quantitative notion of separation captured by the constant

7(S)= max 7 sbt. Xdw =0, n_1/2Xchw =7l

™, wil|wl|y <1

From convex duality, it is easy to see that 7(S) equals the distance
of the subspace spanned by Xgs and the simplex generated by
Xge. Based on this relation, we investigate how 7(S) scales in
dependency of n, p, s. We find that 72(S) is of the order s~ minus
a random deviation term for the random designs well-suitable for
sparse recovery in the noiseless case as mentioned in Section 1.

A brief, qualitative version of our main result is as follows.

Theorem. Set A > % 298P Jf minjes B > X, A= AC(9),
for a constant C(S), B()\) satisfies ||§()\)—ﬁ*||oO <X, and S(\) =

S, with high probability.

III. APPROXIMATELY SPARSE TARGETS

Using a lower bound on 7(S) again, we can bound the reconstruction
error as long as 3* is concentrated on components in S.

IV. PREDICTION CONSISTENCY

We show that for a broad classes of non-negative designs, NNLS pos-
sesses a ’self-regularizing property’ which prevents over-adaption to
noise. For these designs, the mean square prediction error n™* || X 5 —

X 3*||3 is upper bounded by a term of order O(||3* ||, \/log p/n), a
result resembling that obtained in [5] for ¢;-regularized least squares.

V. APPLICATION

An important challenge in the analysis of protein mass spectrometry
data is to extract peptide masses from a raw spectrum. In [6],
this is formulated as a sparse recovery problem with non-negativity
constraints in the presence of heteroscedastic noise. It is demonstrated
that NNLS plus thresholding with a locally adaptive threshold out-
performs standard sparse recovery methods.
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