
The Total Variation on Hypergraphs - Learning on
Hypergraphs Revisited

Matthias Hein, Simon Setzer, Leonardo Jost and Syama Sundar Rangapuram
Department of Computer Science

Saarland University

Abstract

Hypergraphs allow one to encode higher-order relationships in data and are thus a
very flexible modeling tool. Current learning methods are either based on approx-
imations of the hypergraphs via graphs or on tensor methods which are only appli-
cable under special conditions. In this paper, we present a new learning framework
on hypergraphs which fully uses the hypergraph structure. The key element is a
family of regularization functionals based on the total variation on hypergraphs.

1 Introduction

Graph-based learning is by now well established in machine learning and is the standard way to deal
with data that encode pairwise relationships. Hypergraphs are a natural extension of graphs which
allow to model also higher-order relations in data. It has been recognized in several application
areas such as computer vision [1, 2], bioinformatics [3, 4] and information retrieval [5, 6] that such
higher-order relations are available and help to improve the learning performance.

Current approaches in hypergraph-based learning can be divided into two categories. The first one
uses tensor methods for clustering as the higher-order extension of matrix (spectral) methods for
graphs [7, 8, 9]. While tensor methods are mathematically quite appealing, they are limited to so-
called k-uniform hypergraphs, that is, each hyperedge contains exactly k vertices. Thus, they are not
able to model mixed higher-order relationships. The second main approach can deal with arbitrary
hypergraphs [10, 11]. The basic idea of this line of work is to approximate the hypergraph via a stan-
dard weighted graph. In a second step, one then uses methods developed for graph-based clustering
and semi-supervised learning. The two main ways of approximating the hypergraph by a standard
graph are the clique and the star expansion which were compared in [12]. One can summarize [12]
by stating that no approximation fully encodes the hypergraph structure. Earlier, [13] have proven
that an exact representation of the hypergraph via a graph retaining its cut properties is impossible.

In this paper, we overcome the limitations of both existing approaches. For both clustering and semi-
supervised learning the key element, either explicitly or implicitly, is the cut functional. Our aim is
to directly work with the cut defined on the hypergraph. We discuss in detail the differences of the
hypergraph cut and the cut induced by the clique and star expansion in Section 2.1. Then, in Section
2.2, we introduce the total variation on a hypergraph as the Lovasz extension of the hypergraph
cut. Based on this, we propose a family of regularization functionals which interpolate between
the total variation and a regularization functional enforcing smoother functions on the hypergraph
corresponding to Laplacian-type regularization on graphs. They are the key for the semi-supervised
learning method introduced in Section 3. In Section 4, we show in line of recent research [14, 15, 16,
17] that there exists a tight relaxation of the normalized hypergraph cut. In both learning problems,
convex optimization problems have to be solved for which we derive scalable methods in Section
5. The main ingredients of these algorithms are proximal mappings for which we provide a novel
algorithm and analyze its complexity. In the experimental section 6, we show that fully incorporating
hypergraph structure is beneficial. All proofs are moved to the supplementary material.

1

2 The Total Variation on Hypergraphs

A large class of graph-based algorithms in semi-supervised learning and clustering is based either
explicitly or implicitly on the cut. Thus, we discuss first in Section 2.1 the hypergraph cut and the
corresponding approximations.In Section 2.2, we introduce in analogy to graphs, the total variation
on hypergraphs as the Lovasz extension of the hypergraph cut.

2.1 Hypergraphs, Graphs and Cuts

Hypergraphs allow modeling relations which are not only pairwise as in graphs but involve multiple
vertices. In this paper, we consider weighted undirected hypergraphs H = (V,E,w) where V is
the vertex set with |V | = n and E the set of hyperedges with |E| = m. Each hyperedge e ∈ E
corresponds to a subset of vertices, i.e., to an element of 2V . The vector w ∈ Rm contains for
each hyperedge e its non-negative weight we. In the following, we use the letter H also for the

incidence matrix H ∈ R|V |×|E| which is for i ∈ V and e ∈ E, Hi,e =

{
1 if i ∈ e,
0 else.

. The degree

of a vertex i ∈ V is defined as di =
∑
e∈E weHi,e and the cardinality of an edge e can be written

as |e| =
∑
j∈V Hj,e. We would like to emphasize that we do not impose the restriction that the

hypergraph is k-uniform, i.e., that each hyperedge contains exactly k vertices.

The considered class of hypergraphs contains the set of undirected, weighted graphs which is equiv-
alent to the set of 2-uniform hypergraphs. The motivation for the total variation on hypergraphs
comes from the correspondence between the cut on a graph and the total variation functional. Thus,
we recall the definition of the cut on weighted graphs G = (V,W) with weight matrix W . Let
C = V \C denote the complement of C in V . Then, for a partition (C,C), the cut is defined as

cutG(C,C) =
∑

i,j : i∈C,j∈C
wij .

This standard definition of the cut carries over naturally to a hypergraph H

cutH(C,C) =
∑

e∈E:

e∩C 6=∅, e∩C 6=∅
we. (1)

Thus, the cut functional on a hypergraph is just the sum of the weights of the hyperedges which have
vertices both in C and C. It is not biased towards a particular way the hyperedge is cut, that is, how
many vertices of the hyperedge are in C resp. C. This emphasizes that the vertices in a hyperedge
belong together and we penalize every cut of a hyperedge with the same value.

In order to handle hypergraphs with existing methods developed for graphs, the focus in previous
works [11, 12] has been on transforming the hypergraph into a graph. In [11], they suggest using
the clique expansion (CE), i.e., every hyperedge e ∈ H is replaced with a fully connected subgraph
where every edge in this subgraph has weight we|e| . This leads to the cut functional cutCE ,

cutCE(C,C) :=
∑

e∈E:

e∩C 6=∅, e∩C 6=∅

we
|e|
|e ∩ C| |e ∩ C|. (2)

Note that in contrast to the hypergraph cut (1), the value of cutCE depends on the way each hyper-
edge is cut since the term |e∩C| |e∩C|makes the weights dependent on the partition. In particular,
the smallest weight is attained if only a single vertex is split off, whereas the largest weight is attained
if the partition of the hyperedge is most balanced. In comparison to the hypergraph cut, this leads
to a bias towards cuts that favor splitting off single vertices from a hyperedge which in our point of
view is an undesired property for most applications. We illustrate this with an example in Figure
1, where the minimum hypergraph cut (cutH) leads to a balanced partition, whereas the minimum
clique expansion cut (cutCE) not only cuts an additional hyperedge but is also unbalanced. This is
due to its bias towards splitting off single nodes of a hyperedge. Another argument against the clique
expansion is computational complexity. For large hyperedges the clique expansion leads to (almost)
fully connected graphs which makes computations slow and is prohibitive for large hypergraphs.

We omit the discussion of the star graph approximation of hypergraphs discussed in [12] as it is
shown there that the star graph expansion is very similar to the clique expansion. Instead, we want
to recall the result of Ihler et al. [13] which states that in general there exists no graph with the same
vertex set V which has for every partition (C,C) the same cut value as the hypergraph cut.

2

Figure 1: Minimum hypergraph cut cutH vs. minimum cut of the clique expansion cutCE : For edge
weights w1 = w4 = 10, w2 = w5 = 0.1 and w3 = 0.6 the minimum hypergraph cut is (C1, C1)
which is perfectly balanced. Although cutting one hyperedge more and being unbalanced, (C2, C2)
is the optimal cut for the clique expansion approximation.

Finally, note that for weighted 3-uniform hypergraphs it is always possible to find a corresponding
graph such that any cut of the graph is equal to the corresponding cut of the hypergraph.
Proposition 2.1. Suppose H = (V,E,w) is a weighted 3-uniform hypergraph. Then, W ∈
R|V |×|V | defined as W = 1

2Hdiag(w)HT defines the weight matrix of a graph G = (V,W) where
each cut of G has the same value as the corresponding hypergraph cut of H .

Proof. The cut value of a partition (C,C) of G is given as

cutG(C,C) =
1

2

∑
e∈E
|e ∩ C||e ∩ C|we.

The product |e ∩ C||e ∩ C| takes the values 2 if e is cut by C and zero otherwise. Because of the
factor 1

2 , we thus get equivalence to the hypergraph cut.

2.2 The Total Variation on Hypergraphs

In this section, we define the total variation on hypergraphs. The key technical element is the Lovasz
extension which extends a set function, seen as a mapping on 2V , to a function on R|V |.
Definition 2.1. Let Ŝ : 2V → R be a set function with Ŝ(∅) = 0. Let f ∈ R|V |, let V be ordered
such that f1 ≤ f2 ≤ . . . ≤ fn and define Ci = {j ∈ V | j > i}. Then, the Lovasz extension
S : R|V | → R of Ŝ is given by

S(f) =

n∑
i=1

fi

(
Ŝ(Ci−1)− Ŝ(Ci)

)
=

n−1∑
i=1

Ŝ(Ci)(fi+1 − fi) + f1Ŝ(V).

Note that for the characteristic function of a set C ⊂ V , we have S(1C) = Ŝ(C).

It is well-known that the Lovasz extension S is a convex function if and only if Ŝ is submodular
[18]. For graphs G = (V,W), the total variation on graphs is defined as the Lovasz extension of the
graph cut [18] given as TVG : R|V | → R, TVG(f) = 1

2

∑n
i,j=1 wij |fi − fj |.

Proposition 2.2. The total variation TVH : R|V | → R on a hypergraph H = (V,E,w) defined as
the Lovasz extension of the hypergraph cut, Ŝ(C) = cutH(C,C), is a convex function given by

TVH(f) =
∑
e∈E

we

(
max
i∈e

fi −min
j∈e

fj

)
=
∑
e∈E

we max
i,j∈e

|fi − fj |.

Proof. Using Ci−1 = Ci ∪ {i} and Ci = Ci−1 ∪ {i} the Lovasz extension can be written as

TVH(f) =

n∑
i=1

fi

(
cut(Ci−1, Ci−1)− cut(Ci, Ci)

)
=

n∑
i=1

fi

(
cut({i}, Ci−1)− cut(Ci, {i})

)
=

n∑
i=1

fi

(∑
e∈E,i∈e

e∩{1,...,i−1}6=∅

we −
∑

e∈E,i∈e
e∩{i+1,...,n}6=∅

we

)
=
∑
e∈E

we

(
max
i∈e

fi −min
j∈e

fj

)
.

3

It is easy to see that the Lovasz extension of the hypergraph cut is a convex function. Since the
maximum of convex functions is convex, −mini∈e fi = maxi∈e fi and the hyperedge weights are
non-negative, we have a non-negative combination of convex functions which is convex. Alter-
natively, one could use that the hypergraph cut is submodular and the Lovasz extension of every
submodular set function is convex.

Note that the total variation of a hypergraph cut reduces to the total variation on graphs if H is
2-uniform (standard graph). There is an interesting relation of the total variation on hypergraphs
to sparsity inducing group norms. Namely, defining for each edge e ∈ E the difference operator
De : R|V | → R|V |×|V | by (Def)ij = fi − fj if i, j ∈ e and 0 otherwise, TVH can be written
as, TVH(f) =

∑
e∈E we ‖Def‖∞, which can be seen as inducing group sparse structure on the

gradient level. The groups are the hyperedges and thus are typically overlapping. This could lead
potentially to extensions of the elastic net on graphs to hypergraphs.

It is known that using the total variation on graphs as a regularization functional in semi-supervised
learning (SSL) leads to very spiky solutions for small numbers of labeled points. Thus, one would
like to have regularization functionals enforcing more smoothness of the solutions. For graphs this
is achieved by using the family of regularization functionals ΩG,p : R|V | → R,

ΩG,p(f) =
1

2

n∑
i,j=1

wij |fi − fj |p.

For p = 2 we get the regularization functional of the graph Laplacian which is the basis of a large
class of methods on graphs. In analogy to graphs, we define a corresponding family on hypergraphs.

Definition 2.2. The regularization functionals ΩH,p : R|V | → R for a hypergraph H = (V,E,w)
are defined for p ≥ 1 as

ΩH,p(f) =
∑
e∈E

we

(
max
i∈e

fi −min
j∈e

fj

)p
.

Lemma 2.1. The functionals ΩH,p : R|V | → R are convex.

Proof. The p-th power of positive, convex functions for p ≥ 1 is convex as(
f(λx+ (1− λ)y)

)p ≤ (λf(x) + (1− λ)f(y)
)p ≤ λf(x)p + (1− λ)f(y)p

where the last inequality follows from the convexity of xp on R+. Thus, the p-th power of max
i∈e

fi−
min
j∈e

fj is convex.

Note that ΩH,1(f) = TVH(f). IfH is a graph and p ≥ 1, ΩH,p reduces to the Laplacian regulariza-
tion ΩG,p. Note that for characteristic functions of sets, f = 1C , it holds ΩH,p(1C) = cutH(C,C).
Thus, the difference between the hypergraph cut and its approximations such as clique and star
expansion carries over to ΩH,p and ΩGCE ,p, respectively.

3 Semi-supervised Learning

With the regularization functionals derived in the last section, we can immediately write down a
formulation for two-class semi-supervised learning on hypergraphs similar to the well-known ap-
proaches of [19, 20]. Given the label set L we construct the vector Y ∈ Rn with Yi = 0 if i /∈ L
and Yi equal to the label in {−1, 1} if i ∈ L. We propose solving

f∗ = arg min
f∈R|V |

1

2
‖f − Y ‖22 + λΩH,p(f), (3)

where λ > 0 is the regularization parameter. In Section 5, we discuss how this convex optimization
problem can be solved efficiently for the case p = 1 and p = 2. Note, that other loss functions than
the squared loss could be used. However, the regularizer aims at contracting the function and we
use the label set {−1, 1} so that f∗ ∈ [−1, 1]|V |. Hence, on the interval [−1, 1] the squared loss
behaves very similar to other margin-based loss functions. In general, we recommend using p = 2

4

as it corresponds to Laplacian-type regularization for graphs which is known to work well. For
graphs p = 1 is known to produce spiky solutions for small numbers of labeled points. This is due
to the effect that cutting “out” the labeled points leads to a much smaller cut than, e.g., producing a
balanced partition. However, in the case where one has only a small number of hyperedges this effect
is much smaller and we will see in the experiments that p = 1 also leads to reasonable solutions.

4 Balanced Hypergraph Cuts

In Section 2.1, we discussed the difference between the hypergraph cut (1) and the graph cut of
the clique expansion (2) of the hypergraph and gave a simple example in Figure 1 where these
cuts yield quite different results. Clearly, this difference carries over to the famous normalized cut
criterion introduced in [21, 22] for clustering of graphs with applications in image segmentation.
For a hypergraph the ratio resp. normalized cut can be formulated as

RCut(C,C) =
cutH(C,C)

|C||C|
, NCut(C,C) =

cutH(C,C)

vol(C) vol(C)
,

which incorporate different balancing criteria. Note, that in contrast to the normalized cut for graphs
the normalized hypergraph cut allows no relaxation into a linear eigenproblem (spectral relaxation).

Thus, we follow a recent line of research [14, 15, 16, 17] where it has been shown that the standard
spectral relaxation of the normalized cut used in spectral clustering [22] is loose and that a tight, in
fact exact, relaxation can be formulated in terms of a nonlinear eigenproblem. Although nonlinear
eigenproblems are non-convex, one can compute nonlinear eigenvectors quite efficiently at the price
of loosing global optimality. However, it has been shown that the potentially non-optimal solutions
of the exact relaxation, outperform in practice the globally optimal solution of the loose relaxation,
often by large margin. In this section, we extend their approach to hypergraphs and consider general
balanced hypergraph cuts Bcut(C,C) of the form, Bcut(C,C) = cutH(C,C)

Ŝ(C)
, where Ŝ : 2V → R+

is a non-negative, symmetric set function (that is Ŝ(C) = Ŝ(C)). For the normalized cut one has
Ŝ(C) = vol(C) vol(C) whereas for the Cheeger cut one has Ŝ(C) = min{volC, volC}. Other
examples of balancing functions can be found in [16]. Our following result shows that the balanced
hypergraph cut also has an exact relaxation into a continuous nonlinear eigenproblem [14].

Theorem 4.1. LetH = (V,E,w) be a finite, weighted hypergraph and S : R|V | → R be the Lovasz
extension of the symmetric, non-negative set function Ŝ : 2V → R. Then, it holds that

min
f∈R|V |

∑
e∈E we

(
max
i∈e

fi −min
j∈e

fj
)

S(f)
= min
C⊂V

cutH(C,C)

Ŝ(C)
.

Further, let f ∈ R|V | and define Ct := {i ∈ V | fi > t}. Then,

min
t∈R

cutH(Ct, Ct)

Ŝ(Ct)
≤

∑
e∈E we

(
max
i∈e

fi −min
j∈e

fj
)

S(f)
.

Proof. By Prop. 2.2 the Lovasz extension of cutH(C,C) is given by
∑
e∈E we

(
max
i∈e

fi −min
j∈e

fj
)
.

Noting that both cutH(C,C) and Ŝ(C) vanish on the full set V , the proof then follows from the
recent result [17], which shows in this case the equivalence between the set problem and the contin-
uous problem written in terms of the Lovasz extensions.

The last part of the theorem shows that “optimal thresholding” (turning f ∈ RV into a partition)
among all level sets of any f ∈ R|V | can only lead to a better or equal balanced hypergraph cut.

The question remains how to minimize the ratio Q(f) = TVH(f)
S(f) . As discussed in [16], every

Lovasz extension S can be written as a difference of convex positively 1-homogeneous functions1

S = S1 − S2. Moreover, as shown in Prop. 2.2 the total variation TVH is convex. Thus, we have
to minimize a non-negative ratio of a convex and a difference of convex (d.c.) function. We employ

5

Algorithm 1 RatioDCA – Minimization of a non-negative ratio of 1-homogeneous d.c. functions

1: Objective: Q(f) = R1(f)−R2(f)
S1(f)−S2(f) . Initialization: f0 = random with

∥∥f0
∥∥ = 1, λ0 = Q(f0)

2: repeat
3: s1(fk) ∈ ∂S1(fk), r2(fk) ∈ ∂R2(fk)
4: fk+1 = arg min

‖u‖2≤1

{
R1(u)−

〈
u, r2(fk)

〉
+ λk

(
S2(u)−

〈
u, s1(fk)

〉)}
5: λk+1 = (R1(fk+1)−R2(fk+1))/(S1(fk+1)− S2(fk+1))

6: until |λ
k+1−λk|
λk

< ε

7: Output: eigenvalue λk+1 and eigenvector fk+1.

the RatioDCA algorithm [16] shown in Algorithm 1. The main part is the convex inner problem. In
our case R1 = TVH , R2 = 0, and thus the inner problem reads

min‖u‖2≤1{TVH(u) + λk
(
S2(u)−

〈
u, s1(fk)

〉)
}. (4)

For simplicity we restrict ourselves to submodular balancing functions, in which case S is convex
and thus S2 = 0. For the general case, see [16]. Note that the balancing functions of ratio/normalized
cut and Cheeger cut are submodular. It turns out that the inner problem is very similar to the semi-
supervised learning formulation (3). The efficient solution of both problems is discussed next.

5 Algorithms for the Total Variation on Hypergraphs

The problem (3) we want to solve for semi-supervised learning and the inner problem (4) of Ra-
tioDCA have a common structure. They are the sum of convex functionals where one of them is the
novel regularizer ΩH,p. We propose to solve these problems using a primal-dual algorithm, denoted
PDHG in this paper, which was proposed in [23, 24]. Its main idea is to iteratively solve for each
convex term in the objective function a so-called proximal problem. Solving the proximal problem
w.r.t. a mapping g : Rn → R and a vector x̃ ∈ Rn means to compute the proximal map proxg
defined by

proxg(x̃) = arg min
x∈Rn

{1

2
‖x− x̃‖22 + g(x)}.

The main idea here is that often these proximal problems can be solved efficiently leading to a fast
convergence of the overall algorithm. In order to point out the common structure of PDHG for both
(3) and the inner problems of Algorithm 1, we first consider a general optimization problem of the
form

minf∈Rn{G(f) + F (Kf)}, (5)
where K ∈ Rm,n and G : Rn → R, F : Rm → R are lower-semicontinuous convex functions.
Recall that the conjugate function of G∗ of G is defined as

G∗(x) = sup
f∈Rn

{〈x, f〉 −G(f)}

and similarly for F ∗. In terms of these conjugate functions, we can write the dual problem of (5) as

−minα∈Rm{G∗(−KTα) + F ∗(α)}. (6)

The PDHG algorithm for (5) has the following general form. For convergence proofs we refer to
[23, 24].

We will now apply this general setting to the convex optimization problems arising in this paper.
First, the following Table 1 shows how one can chooseG in (5) in order to solve (3) and (4), provides
the solutions of the corresponding proximal problems, and gives the conjugate functions. However,
note that smooth convex terms can also be directly exploited [25]. Note that we write the constraint
in the inner problem of RatioDCA via the indicator function ι‖·‖2≤1 defined by ι‖·‖2≤1(x) = 0, if
‖x‖2 ≤ 1 and +∞ otherwise. Clearly, both proximal problems have an explicit solution.

Second, we discuss the choice of F and K to incorporate ΩH,p.

1A function f : Rd → R is positively 1-homogeneous if ∀α > 0, f(αx) = αf(x).

6

Algorithm 2 PDHG

1: Initialization: f (0) = f̄ (0) = 0, θ ∈ [0, 1], σ, τ > 0 with στ < 1/‖K‖22
2: repeat
3: α(k) = proxσF∗(α

(k) + σKf̄ (k))
4: f (k+1) = proxτG(f)(f

(k) − τKT(α(k)))

5: f̄ (k+1) = f (k+1) + θ(f (k+1) − f (k))
6: until relative duality gap < ε
7: Output: f (k+1).

G(f) = 1
2‖f − Y ‖

2
2 G(f) = −〈s1(fk), f〉+ ι‖·‖2≤1(f)

proxτG(f)(x̃) = 1
1+τ (x̃+ τY) proxτG(f)(x̃) = x̃+τs1(fk)

max{1,‖x̃+τs1(fk)‖2}
G∗(x) = 1

2‖x+ Y ‖22 − 1
2‖Y ‖

2
2 G∗(x) = ‖x+ s1(fk)‖2

Table 1: Data terms of the SSL functional (3) (left) and the inner problem of RatioDCA (4) (right)
with respective proximal map and conjugate.

PDHG algorithm for ΩH,1. Let me denote the number of vertices in hyperedge e ∈ E. The main
idea is to write

λΩH,1(f) = F (Kf) :=
∑
e∈E

(F(e,1)(Kef) + F(e,2)(Kef)), (7)

where the rows of the matrices Ke ∈ Rme,n are the i-th standard unit vectors for i ∈ e and the
functionals F(e,j) : Rme → R are defined as

F(e,1)(α
(e,1)) = λwe max(α(e,1)), F(e,2)(α

(e,2)) = −λwe min(α(e,2)).

The primal problem has thus the form

minf∈Rn{G(f) +
∑
e∈E

(F(e,1)(Kef) + F(e,2)(Kef))}.

In contrast to the function G, we need in the PDHG algorithm the proximal maps for the conjugate
functions of F(e,j). They are given by

F ∗(e,1) = ιSλwe , F ∗(e,2) = ι−Sλwe ,

where Sλwe = {x ∈ Rme :
∑me
i=1 xi = λwe, xi ≥ 0} is the scaled simplex in Rme . By (6) the

dual problem has the form

−minα(e,1),α(e,2){G∗(−
∑
e∈E

KT
e(α(e,1) + α(e,2))) +

∑
e∈E

(ιSeλwe (α(e,1)) + ι−Seλwe (α(e,2)))},

where G∗ is given as in Table 1. The solutions of the proximal problems for F ∗(e,1) and F ∗(e,1) are the
orthogonal projections onto these simplexes written here as PSeλwe and P−Seλwe , respectively. These
projections can be performed in linear time, cf., [26].

Using the proximal mappings we have presented so far, we obtain Algorithm 3. In line 1, ci =∑
e∈E Hi,e is the number of hyperedges the vertex i lies in. The bound on the product of the step

sizes can be derived as follows

‖K‖22 = ‖KTK‖2 = 2‖
∑
e∈E

KT
eKe‖2 = 2 maxi=1,...,n{ci}.

It is important to point out here that the algorithm decouples the problem in the sense that in every
iteration we solve subproblems which treat the functionals G,F(e,1), F(e,2) separately and thus can
be solved in an efficient way.

7

Algorithm 3 PDHG for ΩH,1

1: Initialization: f (0) = f̄ (0) = 0, θ ∈ [0, 1], σ, τ > 0 with στ < 1/(2 maxi=1,...,n{ci})
2: repeat
3: α(e,1)(k+1)

= PSeλwe (α(e,1)(k)
+ σKef̄

(k)), e ∈ E

4: α(e,2)(k+1)
= P−Seλwe (α(e,2)(k)

+ σKef̄
(k)), e ∈ E

5: f (k+1) = proxτG(f (k) − τ
∑
e∈E K

T
e(α(e,1)(k+1)

+ α(e,2)(k+1)
))

6: f̄ (k+1) = f (k+1) + θ(f (k+1) − f (k))
7: until relative duality gap < ε
8: Output: f (k+1).

PDHG algorithm for ΩH,2. We define G and Ke as above. Moreover, we set

Fe(α
e) = λwe (max(αe)−min(αe))2︸ ︷︷ ︸

=:he(αe)

. (8)

Hence, the primal problem can be written as

minf∈Rn{G(f) +
∑
e∈E

Fe(Kef)}.

In order to formulate the dual problem, we need the conjugate of Fe. To this end, we first derive the
conjugate function of he defined in (8), i.e.,

h∗e(α
e) = sup

φ∈Rme
{〈αe, φ〉 − (max(φ)−min(φ))2}.

Lemma 5.1. Let αe ∈ Rme and t+ =
∑
i:αei>0 α

e
i and t− =

∑
i:αei<0 α

e
i . It holds that

h∗e(α
e) =

{
1
4 t

2
+ if 〈αe,1〉 = 0,

+∞ otherwise.

Proof. Using the decomposition, φ = ψ + γ1, where 〈ψ,1〉 = 0 and γ ∈ R, we can write

〈αe, φ〉 − (max(φ)−min(φ))2 = γ 〈αe,1〉+ 〈αe, ψ〉 − (max(ψ)−min(ψ))2.

Thus for 〈αe,1〉 6= 0, we have h∗e(α
e) = ∞. Now we consider the case where 〈αe,1〉 = 0. We

write I− = {i : αei < 0} and I+ = {i : αei > 0} and define t+ =
∑
i∈I+ α

e
i and t− =

∑
i∈I− α

e
i .

Note that 〈αe,1〉 = 0 implies t+ = −t−. Let us assume a = max(φ) and b = min(φ) are fixed. To
maximize 〈αe, φ〉 − (max(φ)−min(φ))2 it is clearly best to choose φi = a for i ∈ I− and φi = b
for i ∈ I+. Consequently,

〈αe, φ〉 − (max(φ)−min(φ))2 = t+(b− a)− (b− a)2. (9)

We maximize the gap ∆ = b− a for the objective m(∆) = t+∆−∆2 and obtain the maximizer as

∆ = t+
2 . Thus we have h∗e(α

e) =
t2+
4 if 〈αe,1〉 6= 0.

With t+ =
∑
i:αei>0 α

e
i and t− =

∑
i:αei<0 α

e
i we thus get

F ∗e (αe) = λwe h
∗
(
αe

λwe

)
=

{
1

4λwe
t2+ if t+ = −t−,

+∞ otherwise.
(10)

So, we obtain the dual problem

−minαe{G∗(−
∑
e∈E

KT
eα

e) +
∑
e∈E

1

4λwe
(te+)2 +

∑
e∈E

ι{0}(t
e
+ + te−)},

where te+ =
∑
i:αei>0 α

e
i and te− =

∑
i:αei<0 α

e
i .

8

As we have seen in (10), the conjugate functions F ∗e are not indicator functions and we thus solve
the corresponding proximal problems via proximal problems for Fe. More specifically, we exploit
the fact that

proxσF∗e (α̃e) = α̃e − prox 1
σFe

(α̃e), (11)

see [27, Lemma 2.10], and use the following novel result concerning the proximal problem on the
right-hand side of (11).
Proposition 5.1. For any σ > 0 and any α̃e ∈ Rme the proximal map

prox 1
σFe

(α̃e) = arg min
αe∈Rme

{1

2
‖αe − α̃e‖22 +

1

σ
λwe(max(αe)−min(αe))2}

can be computed with O(me logme) arithmetic operations.

We will now derive such an algorithm. To simplify the notation, we consider instead of 1
σFe the

function h : Rm → R defined by

h(α) = (max(α)−min(α))2

and show that proxµh(α), µ > 0, can be computed with O(m logm) arithmetic operations.

Let us fix α ∈ Rm. For every pair r, s ∈ [min(α),max(α)] with r ≥ s, we define α(r,s) by

α
(r,s)
i =

{
r if αi ≥ r
αi if αi ∈ (r, s)
s if αi ≤ s

(12)

Clearly, if r = max(proxµh(α)) and s = min(proxµh(α)) then α(r,s) = proxµh(α). Hence, the
above definition allows us to write the proximal problem in terms of the variables r, s since for

(r, s) = arg min
r̃,s̃

{1

2
‖α(r̃,s̃) − α‖22︸ ︷︷ ︸

=:E1(r̃,s̃)

+µ(r̃ − s̃)2︸ ︷︷ ︸
=:E2(r̃,s̃)

} (13)

we have
proxµh(α) = α(r,s).

Our goal is now to find a minimizer of (13). To this end, we first order α in an increasing order which
can be done inO(m logm) arithmetic operations. W.l.o.g. we assume here that the components of α
are pairwise different. Moreover, we introduce the following notation. For r, s ∈ [α1, αm] there exist
unique p, q ∈ {1, . . . ,m} characterized by αm−p+1 = min{αi|αi ≥ r} and αq = max{αi|αi ≤
s}. Thus, the directional partial derivatives w.r.t. r and s are given by

∂E1

∂r−
(r, s) =

m∑
i=m−p+1

(αi − r),
∂E1

∂s+
(r, s) =

q∑
i=1

(s− αi). (14)

They tell us how much we increase E1 by decreasing r and increasing s, respectively. On the other
hand both of these changes lead to a decrease in the energy E2. More precisely, it holds that

∂E2

∂r−
(r, s) =

∂E2

∂s+
(r, s) = 2µ(s− r). (15)

Thus, the main ideas behind our algorithm are as follows. Starting with r = max(α) and s =
min(α), we decrease r and increase s keeping the two partial derivatives of (14) equal. We stop
when the sum of the partial derivatives vanishes. So, the optimal r, s are characterized by the system

m∑
i=m−p+1

(αi − r) =

q∑
i=1

(s− αi), (16)

m∑
i=m−p+1

(αi − r) + 2µ(s− r) = 0. (17)

We will now generate a sequence of pairs r(k), s(k) satisfying r(k) ≥ s(k) and (16) for each k. The
corresponding indices needed to calculate the partial derivatives will be denoted by p(k), q(k). The
main procedure is described in the next lemma.

9

Lemma 5.2. Assume r(k) ∈ (αm−p(k) , αm−p(k)+1] and s(k) ∈ [αq(k) , αq(k)+1) and property (16)
holds for (r(k), s(k)). Then, we can either choose

r(k+1) = r(k) − q(k)

p(k)
(s(k+1) − s(k)) and s(k+1) = αq(k)+1 (18)

or

r(k+1) = αm−p(k) and s(k+1) = s(k) +
p(k)

q(k)
(r(k) − r(k+1)) (19)

such that r(k+1) ∈ [αm−p(k) , αm−p(k)+1), s(k+1) ∈ (αq(k) , αq(k)+1] and (16) holds true for
(r(k+1), s(k+1)).

Proof. Property (16) for (r(k+1), s(k+1)) means that

m∑
i=m−p(k)+1

(αi − r(k+1)) =

q(k)∑
i=1

(s(k+1) − αi). (20)

Since by assumption (16) holds for (r(k), s(k)), equation (20) is equivalent to

p(k)(r(k+1) − r(k)) = q(k)(s(k) − s(k+1)).

If we set (r(k+1), s(k+1)) according to (18) but r(k+1) < αm−p(k) . Then we get

r(k) − q(k)

p(k)
(αq(k)+1 − s(k)) < αm−p(k)

⇒ s(k) +
p(k)

q(k)
(r(k) − αm−p(k)) < αq(k)+1,

i.e., we can choose r(k+1), s(k+1) according to (19) and vice versa.

After each computation of a new pair (r(k+1), s(k+1)) we check if the left-hand side of (17) is
smaller than zero (note that initially the left-hand side of (17) is negative and it is increasing for
every iteration). If this is not the case, we found the intervals where the optimal values r and s lie
in. Restricted to this domain the functional E1 +E2 is a differentiable. Hence, we can compute r, s
as follows.
Lemma 5.3. Assume that the optimal r, s of (13) fulfill r ∈ [αm−p, αm−p+1] and s ∈ [αq, αq+1].
Then, it holds that

s =
(
q + 2µ− (2µ)2∑m

i=m−p+1 αi + 2µ

)−1(2µ

p+ 2µ

m∑
i=m−p+1

αi +

q∑
i=1

αi
)

r =
1

2µ

(
(q + 2µ)s−

q∑
i=1

αi
)
.

Proof. When restricted to [αi, αi+1] × [αj , αj+1], the function (r, s) 7→ E1(r, s) + E2(r, s) is a
quadratic function in (r, s). We can thus simply set the gradient to zero and solve the corresponding
system of linear equations which yields the above result.

In conclusion, we obtain the following algorithm. Note that after the sorting, the algorithm takes in
the order of m steps to compute the proximal map which proves Proposition 5.1.

Hence, the corresponding PDHG algorithm can be formulated as follows.

We solve the subproblems in line 3 via Algorithm 4. Note that the bound on the step sizes is now
doubled, i.e., less restrictive since we have defined for each hyperedge one functional Fe and not
two as for p = 1, i.e.,

‖K‖22 = ‖KTK‖2 = ‖
∑
e∈E

KT
eKe‖2 = maxi=1,...,n{ci}.

10

Algorithm 4 – Solution of the proximal problem proxµh(α)

1: Sort α ∈ Rm in increasing order.
2: Initialization: r(0) = max(α), s(0) = min(α)
3: while ∂E1

∂r− (r(k), s(k)) < 2µ(r(k) − s(k)) and q(k) + 1 ≤ m− p(k) do
4: Find (r(k+1), s(k+1)) according to Lemma 5.2.
5: end while
6: Compute r, s as described in Lemma 5.3.
7: Output: After restoring the original order, set

(proxµh(α))i =

{
r if αi ≥ r,
αi if αi ∈ (r, s),
s if αi ≤ s,

for i = 1, . . . ,m.

Algorithm 5 PDHG for ΩH,2

1: Initialization: f (0) = f̄ (0) = 0, θ ∈ [0, 1], σ, τ > 0 with στ < 1/maxi=1,...,n{ci}
2: repeat
3: αe(k+1) = αe(k) + σKef̄

(k) − prox 1
σFe

(αe(k) + σKef̄
(k)), e ∈ E

4: f (k+1) = proxτG(f (k) − τ
∑
e∈E K

T
e(αe(k+1)))

5: f̄ (k+1) = f (k+1) + θ(f (k+1) − f (k))
6: until relative duality gap < ε
7: Output: f (k+1).

6 Experiments

The method of Zhou et al [11] seems to be the standard algorithm for clustering and SSL on hyper-
graphs. We compare to them on a selection of UCI datasets summarized in Table 2. Zoo, Mushrooms
and 20Newsgroups2 have been used also in [11] and contain only categorical features. As in [11],
a hyperedge of weight one is created by all data points which have the same value of a categorical
feature. For covertype we quantize the numerical features into 10 bins of equal size. Two datasets
are created each with two classes (4,5 and 6,7) of the original dataset.

Semi-supervised Learning (SSL). In [11], they suggest using a regularizer induced by the nor-
malized Laplacian LCE arising from the clique expansion

LCE = I−D−
1
2

CEHW
′HTD

− 1
2

CE ,

where DCE is a diagonal matrix with entries dEC(i) =
∑
e∈E Hi,e

we
|e| and W ′ ∈ R|E|×|E| is a

diagonal matrix with entries w′(e) = we/|e|. The SSL problem can then be formulated as

λ > 0, arg minf∈R|V |{‖f − Y ‖
2
2 + λ 〈f, LCEf〉}.

2This is a modified version by Sam Roweis of the original 20 newsgroups dataset available at http:
//www.cs.nyu.edu/˜roweis/data/20news_w100.mat.

Prop. \ Dataset Zoo Mushrooms Covertype (4,5) Covertype (6,7) 20Newsgroups
Number of classes 7 2 2 2 4
|V | 101 8124 12240 37877 16242
|E| 42 112 104 123 100∑

e∈E |e| 1717 170604 146880 454522 65451
|E| of Clique Exp. 10201 65999376 143008092 1348219153 53284642

Table 2: Datasets used for SSL and clustering. Note that the clique expansion leads for all datasets
to a graph which is close to being fully connected as all datasets contain large hyperedges. For
covertype (6,7) the weight matrix needs over 10GB of memory, the original hypergraph only 4MB.

11

http://www.cs.nyu.edu/~roweis/data/20news_w100.mat
http://www.cs.nyu.edu/~roweis/data/20news_w100.mat

The advantage of this formulation is that the solution can be found via a linear system. However, as
Table 2 indicates the obvious downside is that LCE is a potentially very dense matrix and thus one
needs in the worst case |V |2 memory and O(|V |3) computations. This is in contrast to our method
which needs 2

∑
e∈E |e| + |V | memory. For the largest example (covertype 6,7), where the clique

expansion fails due to memory problems, our method takes 30-100s (depending on λ). We stop our
method for all experiments when we achieve a relative duality gap of 10−6. In the experiments we
do 10 trials for different numbers of labeled points. The reg. parameter λ is chosen for both methods
from the set 10−k, where k = {0, 1, 2, 3, 4, 5, 6} via 5-fold cross validation. The resulting errors
and standard deviations can be found in the following table(first row lists the no. of labeled points).

Our SSL methods based on ΩH,p, p = 1, 2 outperform consistently the clique expansion technique
of Zhou et al [11] on all datasets except 20newsgroups3. However, 20newsgroups is a very difficult
dataset as only 10,267 out of the 16,242 data points are different which leads to a minimum possible
error of 9.6%. A method based on pairwise interaction such as the clique expansion can better deal
with such label noise as the large hyperedges for this dataset accumulate the label noise. On all
other datasets we observe that incorporating hypergraph structure leads to much better results. As
expected our squared TV functional (p = 2) outperforms slightly the total variation (p = 1) even
though the difference is small. Thus, as ΩH,2 reduces to the standard regularization based on the
graph Laplacian, which is known to work well, we recommend ΩH,2 for SSL on hypergraphs.

Zoo 20 25 30 35 40 45 50
Zhou et al. 35.1±17.2 30.3± 7.9 40.7±14.2 29.7± 8.8 32.9±16.8 27.6±10.8 25.3±14.4
ΩH,1 2.9± 3.0 1.4± 2.2 2.2± 2.1 0.7± 1.0 0.7± 1.5 0.9± 1.4 1.9± 3.0
ΩH,2 2.3± 1.9 1.5± 2.4 2.9± 2.3 0.9± 1.4 0.8± 1.7 1.2± 1.8 1.6± 2.9

Mushr. 20 40 60 80 100 120 160 200
Zhou et al. 15.5± 12.8 10.9±4.4 9.5± 2.7 10.3±2.0 9.0± 4.5 8.8± 1.4 8.8± 2.3 9.3± 1.0
ΩH,1 19.5±10.5 10.8±3.7 7.4± 3.8 5.6± 1.9 5.7± 2.2 5.4± 2.4 4.9± 3.8 5.6± 3.8
ΩH,2 18.4± 7.4 9.8± 4.5 9.9± 5.5 6.4± 2.7 6.3± 2.5 4.5± 1.8 4.4± 2.1 3.0± 0.6

covert45 20 40 60 80 100 120 160 200
Zhou et al. 18.9± 4.6 18.3±5.2 17.2±6.7 16.6±6.4 17.6±5.2 18.4±5.1 19.2±4.0 20.4±2.9
ΩH,1 21.4± 0.9 17.6±2.6 12.6±4.3 7.6± 3.5 6.2± 3.8 4.5± 3.6 2.6± 1.6 1.5± 1.3
ΩH,2 20.7± 2.0 16.1± 4.1 10.9± 4.9 5.9± 3.7 4.6± 3.4 3.3± 3.1 2.2± 1.8 1.0± 1.1

covert67 20 40 60 80 100 120 160 200
ΩH,1 40.6± 8.9 6.4±10.4 3.6± 3.2 3.3± 2.5 1.8± 0.8 1.3± 0.9 0.9± 0.4 1.2± 0.9
ΩH,2 25.2± 18.3 4.3± 9.6 2.1± 2.0 2.2± 1.4 1.4± 1.1 1.0± 0.8 0.7± 0.4 1.1± 0.8

20news 20 40 60 80 100 120 160 200
Zhou et al. 45.5± 7.5 34.4± 3.1 31.5± 1.4 29.8± 4.0 27.0± 1.3 27.3± 1.5 25.7± 1.4 25.0± 1.3
ΩH,1 65.7± 6.1 61.4±6.1 53.2±5.7 46.2±3.7 42.4±3.3 40.9±3.2 36.1±1.5 34.7±3.6
ΩH,2 55.0± 4.8 48.0±6.0 45.0±5.9 40.3±3.0 38.3±2.7 38.1±2.6 35.0±2.8 34.1±2.0

Test error and standard deviation of the SSL methods over 10 runs for varying number of labeled
points.

Clustering. We use the normalized hypergraph cut as clustering objective. For more than two
clusters we recursively partition the hypergraph until the desired number of clusters is reached.
For comparison we use the normalized spectral clustering approach based on the Laplacian LCE
[11](clique expansion). The first part (first 6 columns) of the following table shows the clustering
errors (majority vote on each cluster) of both methods as well as the normalized cuts achieved by
these methods on the hypergraph and on the graph resulting from the clique expansion. Moreover,
we show results (last 4 columns) which are obtained based on a kNN graph (unit weights) which
is built based on the Hamming distance (note that we have categorical features) in order to check if
the hypergraph modeling of the problem is actually useful compared to a standard similarity based
graph construction. The number k is chosen as the smallest number for which the graph becomes
connected and we compare results of normalized 1-spectral clustering [14] and the standard spectral
clustering [22]. Note that the employed hypergraph construction has no free parameter.

Clustering Error % Hypergraph Ncut Graph(CE) Ncut Clustering Error % kNN-Graph Ncut
Dataset Ours [11] Ours [11] Ours [11] [14] [22] [14] [22]
Mushrooms 10.98 32.25 0.0011 0.0013 0.6991 0.7053 48.2 48.2 1e-4 1e-4
Zoo 16.83 15.84 0.6739 0.6784 5.1315 5.1703 5.94 5.94 1.636 1.636
20-newsgroup 47.77 33.20 0.0176 0.0303 2.3846 1.8492 66.38 66.38 0.1031 0.1034
covertype (4,5) 22.44 22.44 0.0018 0.0022 0.7400 0.6691 22.44 22.44 0.0152 0.02182
covertype (6,7) 8.16 - 8.18e-4 - 0.6882 - 45.85 45.85 0.0041 0.0041

3Communications with the authors of [11] could not clarify the difference to their results on 20newsgroups

12

First, we observe that our approach optimizing the normalized hypergraph cut yields better or similar
results in terms of clustering errors compared to the clique expansion (except for 20-newsgroup for
the same reason given in the previous paragraph). The improvement is significant in case of Mush-
rooms while for Zoo our clustering error is slightly higher. However, we always achieve smaller
normalized hypergraph cuts. Moreover, our method sometimes has even smaller cuts on the graphs
resulting from the clique expansion, although it does not directly optimize this objective in contrast
to [11]. Again, we could not run the method of [11] on covertype (6,7) since the weight matrix is
very dense. Second, the comparison to a standard graph-based approach where the similarity struc-
ture is obtained using the Hamming distance on the categorical features shows that using hypergraph
structure is indeed useful. Nevertheless, we think that there is room for improvement regarding the
construction of the hypergraph which is a topic for future research.

Acknowledgments

M.H. would like to acknowledge support by the ERC Starting Grant NOLEPRO and L.J. acknowl-
edges support by the DFG SPP-1324.

References
[1] Y. Huang, Q. Liu, and D. Metaxas. Video object segmentation by hypergraph cut. In CVPR, pages 1738

– 1745, 2009.

[2] P. Ochs and T. Brox. Higher order motion models and spectral clustering. In CVPR, pages 614–621,
2012.

[3] S. Klamt, U.-U. Haus, and F. Theis. Hypergraphs and cellular networks. PLoS Computational Biology,
5:e1000385, 2009.

[4] Z. Tian, T. Hwang, and R. Kuang. A hypergraph-based learning algorithm for classifying gene expression
and arraycgh data with prior knowledge. Bioinformatics, 25:2831–2838, 2009.

[5] D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: an approach based on dynamical
systems. VLDB Journal, 8:222–236, 2000.

[6] J. Bu, S. Tan, C. Chen, C. Wang, H. Wu, L. Zhang, and X. He. Music recommendation by unified hyper-
graph: Combining social media information and music content. In Proc. of the Int. Conf. on Multimedia
(MM), pages 391–400, 2010.

[7] A. Shashua, R. Zass, and T. Hazan. Multi-way clustering using super-symmetric non-negative tensor
factorization. In ECCV, pages 595–608, 2006.

[8] S. Rota Bulo and M. Pellilo. A game-theoretic approach to hypergraph clustering. In NIPS, pages 1571–
1579, 2009.

[9] M. Leordeanu and C. Sminchisescu. Efficient hypergraph clustering. In AISTATS, pages 676–684, 2012.

[10] S. Agarwal, J. Lim, L. Zelnik-Manor, P. Petrona, D. J. Kriegman, and S. Belongie. Beyond pairwise
clustering. In CVPR, pages 838–845, 2005.

[11] D. Zhou, J. Huang, and B. Schölkopf. Learning with hypergraphs: Clustering, classification, and embed-
ding. In NIPS, pages 1601–1608, 2006.

[12] S. Agarwal, K. Branson, and S. Belongie. Higher order learning with graphs. In ICML, pages 17–24,
2006.

[13] E. Ihler, D. Wagner, and F. Wagner. Modeling hypergraphs by graphs with the same mincut properties.
Information Processing Letters, 45:171–175, 1993.

[14] M. Hein and T. Bühler. An inverse power method for nonlinear eigenproblems with applications in 1-
spectral clustering and sparse PCA. In NIPS, pages 847–855, 2010.

[15] A. Szlam and X. Bresson. Total variation and Cheeger cuts. In ICML, pages 1039–1046, 2010.

[16] M. Hein and S. Setzer. Beyond spectral clustering - tight relaxations of balanced graph cuts. In NIPS,
pages 2366–2374, 2011.

[17] T. Bühler, S. Rangapuram, S. Setzer, and M. Hein. Constrained fractional set programs and their applica-
tion in local clustering and community detection. In ICML, pages 624–632, 2013.

[18] F. Bach. Learning with submodular functions: A convex optimization perspective. CoRR, abs/1111.6453,
2011.

[19] M. Belkin and P. Niyogi. Semi-supervised learning on manifolds. Machine Learning, 56:209–239, 2004.

13

[20] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with local and global consistency.
In NIPS, volume 16, pages 321–328, 2004.

[21] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans. Patt. Anal. Mach. Intell.,
22(8):888–905, 2000.

[22] U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17:395–416, 2007.

[23] E. Esser, X. Zhang, and T. F. Chan. A general framework for a class of first order primal-dual algorithms
for convex optimization in imaging science. SIAM Journal on Imaging Sciences, 3(4):1015–1046, 2010.

[24] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with applications to
imaging. J. of Math. Imaging and Vision, 40:120–145, 2011.

[25] L. Condat. A primaldual splitting method for convex optimization involving lipschitzian, proximable and
linear composite terms. J. Optimization Theory and Applications, 158(2):460–479, 2013.

[26] K. Kiwiel. On Linear-Time algorithms for the continuous quadratic knapsack problem. J. Opt. Theory
Appl., 134(3):549–554, 2007.

[27] P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward splitting. Multiscale
Modeling and Simulation, 4(4):1168–1200, 2005.

14

	Introduction
	The Total Variation on Hypergraphs
	Hypergraphs, Graphs and Cuts
	The Total Variation on Hypergraphs

	Semi-supervised Learning
	Balanced Hypergraph Cuts
	Algorithms for the Total Variation on Hypergraphs
	Experiments

