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Abstract

Spectral clustering is based on the spectral relaxation of the normalized/ratio graph
cut criterion. While the spectral relaxation is known to be loose, it has been shown
recently that a non-linear eigenproblem yields a tight relaxation of the Cheeger
cut. In this paper, we extend this result considerably by providing a character-
ization of all balanced graph cuts which allow for a tight relaxation. Although
the resulting optimization problems are non-convex and non-smooth, we provide
an efficient first-order scheme which scales to large graphs. Moreover, our ap-
proach comes with the quality guarantee that given any partition as initialization
the algorithm either outputs a better partition or it stops immediately.

1 Introduction

The problem of finding the best balanced cut of a graph is an important problem in computer sci-
ence [9, 27, 13]. It has been used for minimizing the communication cost in parallel computing,
reordering of sparse matrices, image segmentation and clustering. In particular, in machine learning
spectral clustering is one of the most popular graph-based clustering methods as it can be applied
to any graph-based data or to data where similarity information is available so that one can build
a neighborhood graph. Spectral clustering is originally based on a relaxation of the combinatorial
normalized/ratio graph cut problem, see [31]. The relaxation with the best known worst case approx-
imation guarantee yields a semi-definite program, see [3]. However, it is practically infeasible for
graphs with more than 100 vertices due to the presence of O(n3) constraints where n is the number
of vertices in the graph. In contrast, the computation of eigenvectors of a sparse graph scales easily
to large graphs. In a line of recent work [6, 29, 14] it has been shown that relaxation based on the
nonlinear graph p-Laplacian lead to similar runtime performance while providing much better cuts.
In particular, for p = 1 one obtains a tight relaxation of the Cheeger cut, see [8, 29, 14].

In this work, we generalize this result considerably. Namely, we provide for almost any balanced
graph cut problem a tight relaxation into a continuous problem. This allows flexible modeling of
different graph cut criteria. The resulting non-convex, non-smooth continuous optimization problem
can be efficiently solved by our new method for the minimization of ratios of differences of convex
functions, called RatioDCA. Moreover, compared to [14], we also provide a more efficient way
how to solve the resulting convex inner problems by transferring recent methods from total variation
denoising, cf. [7], to the graph setting. In first experiments, we illustrate the effect of different
balancing terms and show improved clustering results of USPS and MNIST compared to [14].

2 Set Functions, Submodularity, Convexity and the Lovasz Extension

In this section we gather some material from the literature on set functions, submodularity and the
Lovasz extension, which we need in the next section. We refer the reader to [11, 4] for a more
detailed exposition. We work on weighted, undirected graphs G = (V,W ) with vertex set V and
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a symmetric, non-negative weight matrix W . We define n := |V | and denote by A = V \A the
complement of A in V , set functions are denoted with a hat, Ŝ, whereas the corresponding Lovasz
extension is simply S. The indicator vector of a set A is written as 1A. In the following we always
assume that for any considered set function Ŝ it holds Ŝ(∅) = 0. The Lovasz extension is a way to
extend a set function from 2V to RV .

Definition 2.1 Let Ŝ : 2V → R be a set function with Ŝ(∅) = 0. Let f ∈ RV be ordered in
increasing order f1 ≤ f2 ≤ . . . ≤ fn and define Ci = {j ∈ V | fj > fi} where C0 = V . Then
S : RV → R given by

S(f) =

n∑
i=1

fi

(
Ŝ(Ci−1)− Ŝ(Ci)

)
=

n−1∑
i=1

Ŝ(Ci)(fi+1 − fi) + f1Ŝ(V )

is called the Lovasz extension of Ŝ. Note that S(1A) = Ŝ(A) for all A ⊂ V .

Note that for symmetric set functions Ŝ, that is Ŝ(A) = Ŝ(A) for all A ⊂ V , the property Ŝ(∅) = 0

implies Ŝ(V ) = 0. A particular interesting class of set functions are the submodular set functions
as their Lovasz extension is convex.

Definition 2.2 A set function, F̂ : 2V → R is submodular if for all A,B ⊂ V ,

F̂ (A ∪B) + F̂ (A ∩B) ≤ F̂ (A) + F̂ (B).

F̂ is called strictly submodular if the inequality is strict whenever A * B or B * A.

Note that symmetric submodular set functions are always non-negative as for all A ⊂ V ,

2F̂ (A) = F̂ (A) + F̂ (A) ≥ F̂ (A ∪A) + F̂ (A ∩A) = F̂ (V ) + F̂ (∅) = 0.

An important class of set functions for clustering are cardinality-based set functions.

Proposition 2.1 ([4]) Let e ∈ RV+ and g : R+ → R is a concave function, then F̂ : A 7→ g(s(A))

is submodular. If F̂ : A 7→ g(s(A)) is submodular for all s ∈ RV+ , then g is concave.

The following properties hold for the Lovasz extension.

Proposition 2.2 ([11, 4]) Let S : RV → R be the Lovasz extension of Ŝ : 2V → R with Ŝ(∅) = 0.

• Ŝ is submodular if and only if S is convex,

• S is positively one-homogeneous,

• S(f) ≥ 0, ∀ f ∈ RV and S(1) = 0 if and only if Ŝ(A) ≥ 0, ∀A ⊂ V and Ŝ(V ) = 0.

• S(f + α1) = S(f) for all f ∈ RV , α ∈ R if and only if Ŝ(V ) = 0,

• S is even, if Ŝ is symmetric.

Proof: All except the fourth property can be found in [11, 4]. The non-negativity of the Lovasz
extension S follows from the non-negativity of Ŝ and fi+1 − fi ≥ 0 for i = 1, . . . , n − 1 and
Ŝ(V ) = 0. One has Ŝ(A) = S(1A) and thus the other direction follows immediately. �

One might wonder if the Lovasz extension of all submodular set functions generates the set of
all positively one-homogeneous convex functions. This is not the case, as already Lovasz [21]
gave a counter-example. In the next section we will be interested in the class of positively one-
homogeneous, even, convex functions S with S(f + α1) = S(f) for all f ∈ RV . From the above
proposition we deduce that these properties are fulfilled for the Lovasz extension of any symmetric,
submodular set function. However, also for this special class there exists a counter-example. Take

S(f) =

∥∥∥∥f − 1

|V |
〈f,1〉1

∥∥∥∥
∞
.
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It fulfills all the stated conditions but it induces the set function Ŝ(A) := S(1A) given as

Ŝ(A) =
1

|V |

{
max{|A|, |V \A|}, 0 < |A| < |V |
0, else

It is easy to check that this function is not submodular. Thus different convex one-homogeneous
functions can induce the same set function via Ŝ(A) := S(1A).

It is known [15] that a large class of functions e.g. every f ∈ C2(Rn) can be written as a difference
of convex functions. As submodular functions correspond to convex functions in the sense of the
Lovasz extension, one can ask if the same result holds for set functions: Is every set function a
difference of submodular set functions ? The following result has been reported in [24]. As some
properties assumed in the proof in [24] do not hold, we give an alternative constructive proof.

Proposition 2.3 Every set function Ŝ : 2V → R can be written as the difference of two submodular
functions. The corresponding Lovasz extension S : RV → R can be written as a difference of convex
functions.

Proof: We introduce for every set function Ŝ the gap-function ∆Ŝ : 2V × 2V → R defined as

∆Ŝ(A,B) := Ŝ(A) + Ŝ(B)− Ŝ(A ∪B)− Ŝ(A ∩B).

Ŝ is submodular if and only if ∆Ŝ(A,B) ≥ 0 for all A,B ⊂ V . Note that for any set function
∆Ŝ(A,B) = 0 if A ⊂ B or B ⊂ A. By adding a strictly submodular function T̂ to Ŝ, we can
make the gap of Ŝ + λT̂ for some λ ≥ 0 positive, so that Ŝ = Ŝ + λT̂ − λT̂ can be written as a
difference of submodular functions. We use T̂ (A) := |A||A|. A straightforward calculation shows
for all A,B ⊂ V with A * B and B * A,

∆T̂ (A,B) = 2|A||B| − 2|A ∩B|(|A|+ |B|) + 2|A ∩B|2 = 2 |A\B| |B\A| ≥ 2.

As ∆Ŝ(A,B) ≥ −2(maxA Ŝ(A)−minA Ŝ(A)) we get that with λ = (maxA Ŝ(A)−minA Ŝ(A))

it suffices to add λT̂ to Ŝ in order that Ŝ + λT̂ is submodular. �

Note that the proof of Proposition 2.3 is constructive. Thus we can always find the decomposition
of the set function into a difference of two submodular functions and thus also the decomposition of
its Lovasz extension into a difference of convex functions.

Corollary 2.1 Every symmetric set function Ŝ : 2V → R can be written as a difference of two
non-negative submodular set functions.

Proof: Every symmetric submodular function T̂ is non-negative. Thus Ŝ + λT̂ (in the notation of
the proof of Proposition 2.3) as a symmetric and submodular set function is non-negative and T̂ is
as well symmetric and submodular. �

3 Tight Relaxations of Balanced Graph Cuts

In graph-based clustering a popular criterion to partition the graph is to minimize the cut cut(A,A),
defined as

cut(A,A) =
∑

i∈A,j∈A

wij ,

where (wij) ∈ R|V |×|V | are the non-negative, symmetric weights of the undirected graph G =
(V,W ) usually interpreted as similarities of vertices i and j. Direct minimization of the cut leads
typically to very unbalanced partitions, where often just a single vertex is split off. Therefore one has
to introduce a balancing term which biases the criterion towards balanced partitions. Two popular
balanced graph cut criterion are the Cheeger cut RCC(A,A) and the ratio cut RCut(A,A)

RCC(A,A) =
cut(A,A)

min{|A|, |A|}
, RCut(A,A) = |V |cut(A,A)

|A||A|
= cut(A,A)

( 1

|A|
+

1

|A|

)
.
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We consider later on also their normalized versions. Spectral clustering is derived as relaxation
of the ratio cut criterion based on the second eigenvector of the graph Laplacian. While the sec-
ond eigenvector can be efficiently computed, it is well-known that this relaxation is far from being
tight. In particular there exist graphs where the spectral relaxation is as bad [12] as the isoperimetric
inequality suggests [1]. In a recent line of work [6, 29, 14] it has been shown that a tight relax-
ation for the Cheeger cut can be achieved by moving from the linear eigenproblem to a nonlinear
eigenproblem associated to the nonlinear graph 1-Laplacian [14].

In this work we generalize this result considerably by showing in Theorem 3.1 that a tight relaxation
exists for every balanced graph cut measure which is of the form cut divided by balancing term.
More precisely, let Ŝ : 2V → R be a symmetric non-negative set function. Then a balanced graph
cut criterion φ : 2V → R+ of a partition (A,A) has the form,

φ(A) :=
cut(A,A)

Ŝ(A)
. (1)

As we consider undirected graphs, the cut is a symmetric set function and thus φ(A) = φ(A). In
order to get a balanced graph cut, Ŝ is typically chosen as a function of |A| (or some other type of
volume) which is monotonically increasing on [0, |V |/2]. The first part of the theorem showing the
equivalence of combinatorial and continuous problem is motivated by a result derived by Rothaus
in [28] in the context of isoperimetric inequalities on Riemannian manifolds. It has been transferred
to graphs by Tillich and independently by Houdre in [30, 17]. We generalize their result further so
that it now holds for all possible non-negative symmetric set functions. In order to establish the link
to the result of Rothaus, we first state the following characterization

Lemma 3.1 A function S : V → R is positively one-homogeneous, even, convex and S(f + α1) =
S(f) for all f ∈ RV , α ∈ R if and only if S(f) = supu∈U 〈u, f〉 where U ⊂ Rn is a closed
symmetric convex set and 〈u,1〉 = 0 for any u ∈ U .

Proof: Note that every convex, positively one-homogeneous function, S : RV → R, has the form,

S(f) = sup
u∈U
〈u, f〉 ,

where U is a convex set, see e.g. [16]. If U is symmetric, we have for any f ∈ RV ,

S(f) = sup
u∈U
〈u, f〉 = sup

u∈U
〈−u, f〉 = sup

u∈U
〈u,−f〉 = S(−f),

and thus S is even. Moreover, if S is even we have for all f ,

S(f) = sup
u∈U
〈u, f〉 = sup

u∈U
〈−u,−f〉 = sup

u∈U
〈u,−f〉 = S(−f),

which implies that U is symmetric. Second, if S(f + α1) = S(f) for all f ∈ RV and α ∈ R, we
have in particular

S(1) = sup
u∈U
〈u,1〉 = 0.

As U is symmetric, this is only possible if for all u ∈ U , 〈u,1〉 = 0. The other direction follows
easily. �

Theorem 3.1 Let G = (V,E) be a finite, weighted undirected graph and S : RV → R and let
Ŝ : 2V → R be symmetric with Ŝ(∅) = 0, then

inf
f∈RV

1
2

∑n
i,j=1 wij |fi − fj |

S(f)
= inf
A⊂V

cut(A,A)

Ŝ(A)
,

if either one of the following two conditions holds

1. S is positively one-homogeneous, even, convex and S(f + α1) = S(f) for all f ∈ RV ,
α ∈ R and Ŝ is defined as Ŝ(A) := S(1A) for all A ⊂ V .
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2. S is the Lovasz extension of the non-negative, symmetric set function Ŝ with Ŝ(∅) = 0.

Let f ∈ RV and denote by Ct := {i ∈ V | fi > t}, then it holds under both conditions,

mint∈R
cut(Ct, Ct)

Ŝ(Ct)
≤

1
2

∑n
i,j=1 wij |fi − fj |

S(f)
.

Proof: Let us define R(f) = 1
2

∑n
i,j=1 wij |fi − fj |. Then with Ct := {i ∈ V | fi > t} one has,

R(f) =
∑
fi>fj

wij (fi − fj) =
∑
fi>fj

wij

∫ fi

fj

1dt =

∫ ∞
−∞

∑
fi>t≥fj

wij dt =

∫ ∞
−∞

cut(Ct, Ct) dt,

where we use that cut(∅, V ) = 0. Let f be ordered in increasing order f1 ≤ f2 ≤ . . . ≤ fn. With
Lemma 3.1 we have S(f) = supu∈U 〈u, f〉, where U is a symmetric and convex set with 〈u,1〉 = 0
for all u ∈ U . We have for any u ∈ U , 〈u, f〉 ≤ S(f) and thus∫ ∞

−∞
cut(Ct, Ct) dt =

∫ maxi fi

mini fi

cut(Ct, Ct) dt

≥
∫ maxi fi

mini fi

cut(Ct, Ct)

Ŝ(Ct)
〈u,1Ct〉 dt

≥ inf
t∈R

cut(Ct, Ct)

Ŝ(Ct)

∫ maxi fi

mini fi

〈u,1Ct〉 dt.

Let Ci := Cfi . Note that Cn = ∅ and we define C0 = V and use the convention 0/0 = ∞. Then
with 〈u,1V 〉 = 〈u,1C0

〉 = 0,∫ maxi fi

mini fi

〈u,1Ci〉 dt =

n−1∑
i=1

〈u,1Ci〉
(
fi+1 − fi

)
=

n∑
i=1

fi

( 〈
u,1Ci−1

〉
− 〈u,1Ci〉

)
=

n∑
i=1

fiui

Thus we get,

R(f) =

∫ ∞
−∞

cut(Ct, Ct) dt ≥ inf
t∈R

cut(Ct, Ct)

Ŝ(Ct)
sup
u∈U
〈u, f〉

= inf
t∈R

cut(Ct, Ct)

Ŝ(Ct)
S(f).

For the other case we note that with the definition of the Lovasz extension we get

R(f) =

∫ ∞
−∞

cut(Ct, Ct) dt ≥ inf
t∈R

cut(Ct, Ct)

Ŝ(Ct)

∫ maxi fi

mini fi

Ŝ(Ct) dt

= inf
t∈R

cut(Ct, Ct)

Ŝ(Ct)
S(f)

�

Theorem 3.1 can be generalized by replacing the cut with an arbitrary other set function. However,
the emphasis of this paper is to use the new degree of freedom for balanced graph clustering. The
more general approach will be discussed elsewhere. Note that the first condition in Theorem 3.1
implies that Ŝ is symmetric as

Ŝ(A) = S(1A) = S(−1A) = S(1− 1A) = S(1A) = Ŝ(A).

Moreover, Ŝ is non-negative with Ŝ(∅) = Ŝ(V ) = 0 as S is even, convex and positively one-
homogeneous. For the second condition note that by Proposition 2.3 the Lovasz extension of any
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set function can be written as a difference of convex (d.c.) functions. As the total variation term in
the enumerator is convex, we thus have to minimize a ratio of a convex and a d.c. function. The
efficient minimization of such problems will be the topic of the next section.

We would like to point out a related line of work for the case where the balancing term Ŝ is sub-
modular and the balanced graph cut measure is directly optimized using submodular minimization
techniques. In [26] this idea is proposed for the ratio cut and subsequently generalized [25, 18] so
that every submodular balancing function Ŝ can be used. While the general framework is appealing,
it is unclear if the minimization can be done efficiently. Moreover, note that Theorem 3.1 goes well
beyond the case where Ŝ is submodular.

3.1 Examples of Balancing Set Functions

Theorem 3.1 opens up new modeling possibilities for clustering based on balanced graph cuts. We
discuss in the experiments differences and properties of the individual balancing terms. However,
it is out of the scope of this paper to answer the question which balancing term is the “best”. An
answer to such a question is likely to be application-dependent. However, for a given random graph
model it might be possible to suggest a suitable balancing term given one knows how cut and volume
behave. A first step in this direction has been done in [22] where the limit of cut and volume has
been discussed for different neighborhood graph types.

In the following we assume that we work with graphs which have non-negative edge weights W =
(wij) and non-negative vertex weights e : V → R+. The volume vol(A) of a set A ⊂ V is defined
as vol(A) =

∑
i∈A ei. The volume reduces to the cardinality if ei = 1 for all i ∈ V (unnormalized

case) or to the volume considered in the normalized cut, vol(A) =
∑
i∈A di for ei = di for all

i ∈ V (normalized case), where di is the degree of vertex i. We denote by E the diagonal matrix
withEii = ei, i = i, . . . , n. Using general vertex weights allows us to present the unnormalized and
normalized case in a unified framework. Moreover, general vertex weights allow more modeling
freedom e.g. one can give two different vertices very large vertex weights and so implicitly enforce
that they will be in different partitions.

We report here the Lovasz extension of two important set functions which will be needed in the
sequel. For that we define the functions gmax,α and gmin,α as:

gmax,α(f) = max
{
〈ρ, f〉

∣∣ 0 ≤ ρi ≤ ei, ∀ i = 1, . . . , n,

n∑
i=1

ρi = α vol(V )
}
,

gmin,α(f) = min
{
〈ρ, f〉

∣∣ 0 ≤ ρi ≤ ei, ∀ i = 1, . . . , n,

n∑
i=1

ρi = α vol(V )
}

and the weighted p-mean wmeanp(f) is defined as wmeanp(f) = infa∈R
∑n
i=1 ei|fi − a|p. Note

that gmax,α is convex, whereas gmin,α is concave. Both functions can be easily evaluated by sorting
the componentwise product eifi.

Proposition 3.1 Let Ŝ : 2V → R, Ŝ(A) := min{vol(A), vol(A)}. Then the Lovasz extension
S : V → R is given by S(f) = ‖E(f − wmean1(f)1)‖1 .

Let ei = 1,∀i ∈ V and Ŝ : 2V → R, Ŝ(A) :=

{
min{|A|, |A|}, if min{|A|, |A|} ≤ K,

K, else.
. Then

the Lovasz extension S : V → R is given as S(f) = gmax, K|V |
(f)− gmin, K|V |

(f).

Proof: One has,
Ŝ(Ci−1)− Ŝ(Ci) = min{vol(Ci−1), vol(Ci−1)} −min{vol(Ci), vol(Ci)}

=


ei, if vol(Ci) ≤ vol(V )

2 − ei,
−ei, if vol(Ci) >

vol(V )
2 ,

vol(V )− 2 vol(Ci)− ei, if vol(V )
2 − ei < vol(Ci) ≤ vol(V )

2 .

There can be only one unique element i∗ where the third condition holds as it has to fulfill,

vol(Ci∗) ≤
vol(V )

2
, and vol(Ci∗−1) ≤ vol(V )

2
.
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Name S(f) Ŝ(A)

Cheeger p-cut
( n∑
i=1

ei|fi − wmeanp(f)|p
) 1
p

(
vol(A) vol(A)

) 1
p(

vol(A)
1
p−1 +vol(A)

1
p−1
)1− 1

p

Normalized p-cut
( n∑
i=1

ei|fi − 〈e,f〉
vol(V )

|p
) 1
p

(
vol(A) vol(A)p+vol(A)p vol(A)

) 1
p

vol(V )

Trunc. Cheeger cut gmax,α(f)− gmin,α(f)

 vol(A), if vol(A) ≤ α vol(V ),
vol(A), if vol(A) ≤ α vol(V ),
α vol(V ), else.

Hard balanced cut

(
gmax, K|V |

(f)− gmin, K|V |
(f)
)

−
(
g
max,K−1

|V |
(f)− g

min,K−1
|V |

(f)
) {

1, if min{|A|, |A|} ≥ K
0, else.

Hard Cheeger cut
‖f −median(f)1‖1
−
(
g
max,K−1

|V |
(f)− g

min,K−1
|V |

(f)
)


0, if min{|A|, |A|} < K,

min{|A|, |A|}
−(K − 1), else.

Table 1: Examples of balancing set functions and their continuous counterpart. For the hard balanced
and hard Cheeger cut we have unit vertex weights, that is ei ≡ 1.

We will show in the following that this element is equal to the weighted median. We define
S+ = {i ∈ V | fi > wmean1(f)}, S− = {i ∈ V | fi < wmean1(f)} and S= = {i ∈ V | fi =
wmean1(f)}. The optimality condition for the weighted median reads,

0 ∈ ET sign(E(f − wmean1(f))),

and summing up yields
0 =

∑
i∈S+

ei −
∑
i∈S−

ei +
∑
i∈S=

αiei,

where αi ∈ [−1, 1]. Thus vol(S=) ≥ | vol(S−)−vol(S+)|which implies with vol(S−)+vol(S+)+

vol(S=) = vol(V ) that vol(S−) ≤ vol(V )
2 and vol(S+) ≤ vol(V )

2 . As this condition can only be
fulfilled for one element the weighted median has to be equal to the element fi∗ where the condition
above is fulfilled. We decompose S= as S= = S>i∗ ∪ S<i∗ ∪ i∗ according to the order of f used in
the Lovasz extension. Using Ci∗ = S+ ∪ S>i∗ we obtain,

‖E(f − wmean1(f)1)‖1
=
∑
i∈S+

ei(fi − c)−
∑
i∈S−

ei(fi − c)

=
∑
i∈S+

eifi −
∑
i∈S−

eifi + c
( ∑
i∈S−

ei −
∑
i∈S+

ei
)

=
∑
i∈S+

eifi −
∑
i∈S−

eifi + c
(

vol(V )− 2 vol(S+)− vol(S=)
)

=
∑
i∈S+

eifi −
∑
i∈S−

eifi + c
(

vol(V )− 2 vol(Cfi∗ ) + 2 vol(S>i∗)− vol(S>i∗)− ei∗ − vol(S<i∗)
)

=
∑

i∈S+∪S>i∗
eifi −

∑
i∈S−∪S<i∗

eifi + c
(

vol(V )− 2 vol(Cfi∗ )− ei∗
)

=

n∑
i=1

fi
(
Ŝ(Ci−1)− Ŝ(Ci)

)
The second case follows directly from the definition of the Lovasz extension. �

In Table 1 we collect a set of interesting set functions enforcing different levels of balancing. For
the Cheeger and Normalized p-cut family and the truncated Cheeger cut the functions S are convex
and not necessarily the Lovasz extension of the induced set functions Ŝ (first case in Theorem 3.1).
In the case of hard balanced and hard Cheeger cut the set function Ŝ is not submodular. However, in
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both cases we know an explicit decomposition of the set function Ŝ into a difference of submodular
functions and thus their Lovasz extension S can be written as a difference of the convex functions.

The RatioDCA algorithm in Section 4 requires a subgradient of a part of the balancing function.
Note that the subdifferential of a convex function S in the setting of Lemma 3.1 is given for any
f 6= 0,

∂S(f) = {u ∈ Rn |u ∈ U, 〈u, f〉 = S(f)},
so that one can always determine a subgradient using that description. However, in order to enable
a direct implementation we give an explicit description of the subdifferentials below.

Cheeger p-cut (CCp): The weighted p-mean wmeanp(f) of f ∈ RV is defined as

wmeanp(f) = inf
a∈R

n∑
i=1

ei|fi − a|p.

It reduces to the weighted median for p = 1. The convex function CCp induces the set function
ĈCp

CCp(f) =
( n∑
i=1

ei|fi − wmeanp(f)|p
) 1
p

=⇒ ĈCp(A) =

(
vol(A) vol(A)

) 1
p(

vol(A)
1
p−1 + vol(A)

1
p−1
)1− 1

p

.

For p = 1 we get the balance function ĈC1(A) = min{vol(A), vol(A)} of the Cheeger cut consid-
ered in [14, 29, 18].
An element u of the subdifferential ∂CCp(f) is given as

ui =
eiai|fi − wmeanp(f)|p−1(∑n
i=1 ei|fi − wmeanp(f)|p

) p−1
p

where1 ai ∈ sign(fi−wmeanp(f)) with 〈a,1〉 = 0. Using the optimality condition of wmeanp(f)
it is not difficult to see that such a choice is always possible.

Normalized p-cut (NCp): The convex function NCp induces the set function N̂Cp,

NCp(f) =
( n∑
i=1

ei|fi −
〈e, f〉

vol(V )
|p
) 1
p

=⇒ N̂Cp(A) =

(
vol(A) vol(A)p + vol(A)p vol(A)

) 1
p

vol(V )
.

For p = 1 we get the balance function N̂C1(A) = 2 vol(A) vol(A)
vol(V ) of the ratio/normalized cut (up to a

constant factor).
The subdifferential of NCp at f is given as

∂NCp(f) = (E − 1

vol(V )
eeT )

sign
(
E(f − 1

vol(V ) 〈e, f〉1)
)∣∣E(f − 1

vol(V ) 〈e, f〉1)
∣∣p−1(∑n

i=1 ei|fi −
1

vol(V ) 〈e, f〉 |p
) p−1

p

,

where the power on the right hand side is taken componentwise.

Truncated Cheeger cut (TCCα): The truncated Cheeger cut of a partition (A,A) is defined as

cut(A,A)

min{vol(A), vol(A), α vol(V )}
.

Lemma 3.2 The one-homogeneous convex function TCCα(f) defined as

TCCα(f) =gmax,α(f)− gmin,α(f).

1The sign function sign is set-valued and defined as sign(x) = 1 if x > 0, sign(x) = −1 if x < 0 and
sign(x) ∈ [−1, 1] if x = 0.
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induces for α ≤ 1
2 the balancing function

T̂CCα(A) =


vol(A), if vol(A) ≤ α vol(V ),
α vol(V ), if vol(A) > α vol(A) and vol(A) > α vol(A),
vol(A), if vol(A) ≤ α vol(V ).

Proof: It is easy to check that

gmax,α(1A) =

{
vol(A), if vol(A) ≤ α vol(V ),
α vol(V ), else.

gmin,α(1A) =

{
α vol(V )− vol(A), if vol(A) ≤ α vol(V ),
0, else.

�

As T̂CCα(A) is a concave function of vol(A) it is submodular by Proposition 2.1, see also [23].
In the case where ei = 1, ∀i = 1, . . . , n it has been shown in Proposition 3.1 that TCCα is the
Lovasz-extension of T̂CCα. This fact will be used for the hard-balanced cut considered next. Let f
be ordered in decreasing order of ui = eifi. Then a subgradient v ∈ ∂TCCα(f) is given as

vr =


er, if

∑r
i=1 ei < α vol(V ),

α vol(V )−
∑r
i=1 ei, if

∑r
i=1 ei < α vol(V ) ≤

∑r+1
i=1 ei,

−α vol(V ) +
∑n
i=r ei, if

∑n
i=r−1 di ≥ α vol(V ) >

∑n
i=r ei,

−er, if
∑n
i=r ei < α vol(V ),

0, else

Hard balanced cut (HBCK): The hard balanced cut of a partition (A,A) is defined for K <
|V |/2,

HardCutK(A,A) =

{
cut(A,A) if min{|A|, |A|} ≥ K
∞ else

Thus the hard balanced cut problem is

minA⊂V HardCutK(A,A) = minmin{|A|,|A|}≥K cut(A,A), (2)

where one just minimizes the cut subject to hard constraints on the cardinality.

Lemma 3.3 Let ei = 1, i = 1, . . . , n then for K < |V |/2,

HBCK(f) =
[(
gmax, K|V |

(f)− gmin, K|V |
(f)
)
−
(
gmax,K−1

|V |
(f)− gmin,K−1

|V |
(f)
)]
,

is a non-negative difference of Lovasz extensions of submodular functions and thus a difference of
convex functions. HBCK(f) induces the set function

ĤBCK(A) =

{
0 if min{|A|, |A|} < K,

1 else.
.

Proof: The result follows from the statements for the truncated Cheeger cut. �

Thus we can write the constrained hard-balanced cut as HardCutK(A,A) = cut(A,A)/ĤBC(A)
and can minimize without constraints on the set A.

Hard Cheeger Cut (HCCK): The hard Cheeger cut has hard constraints on the size of the smallest
part of the partition and induces stronger balancing towards balanced partitions than the Cheeger
Cut. It is defined via the balancing function

ĤCCK(A) =

{
0, if min{|A|, |A|} < K,

min{|A|, |A|} − (K − 1) else.
.

One can write HCCK(A) as

ĤCCK(A) = ĈC1(A)− T̂CCK−1
n

(A),
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As ĈC1 and T̂CCK−1
n

are submodular and their convex Lovasz extension is provided in Proposition
3.1, we can write down directly the corresponding function HCCK(f) as a difference of convex
functions,

HCCK(f) = ‖f −median(f)1‖1 −
(
gmax,K−1

|V |
(f)− gmin,K−1

|V |
(f)
)
.

Figure 1: Left: Illustration of different balancing functions (rescaled so that they attain value |V |/2
at |V |/2). Right: Log-log plot of the duality gap of the inner problem vs. the number of iterations
of PDHG (dashed) and FISTA (solid) in outer iterations 3 (black), 5 (blue) and 7 (red) of RatioDCA
corresponding to increasing difficulty of the problem. PDHG significantly outperforms FISTA.

4 Minimization of Ratios of Non-negative Differences of Convex Functions

In [14], the problem of computing the optimal Cheeger cut partition is formulated as a nonlinear
eigenproblem. Hein and Bühler show that the second eigenvector of the nonlinear 1-graph Laplacian
is equal to the indicator function of the optimal partition. In Theorem 3.1, we have generalized this
relation considerably. In this section, we discuss the efficient computation of critical points of the
continuous ratios of Theorem 3.1. We propose a general scheme called RatioDCA for minimizing
ratios of non-negative differences of convex functions and thus generalizes Algorithm 1 of [14]
which could handle only ratios of convex functions. As the optimization problem is non-smooth and
non-convex, only convergence to critical points can be guaranteed. However, we will show that for
every balanced graph cut criterion our algorithm improves a given partition or it terminates directly.
Note that such types of algorithms have been considered for specific graph cut criteria [26, 25, 2].

4.1 General Scheme

The continuous optimization problem in Theorem 3.1 has the form

minf∈RV
1
2

∑n
i,j=1 wij |fi − fj |

S(f)
, (3)

where S is one-homogeneous and either convex or the Lovasz extension of a non-negative symmet-
ric set function. By Proposition 2.3 the Lovasz extension of any set function can be written as a
difference of one-homogeneous convex functions. Using the fourth property of Proposition 2.2 the
Lovasz extension S is non-negative, that is S(f) ≥ 0 for all f ∈ RV . With the algorithm RatioDCA
below, we provide a general scheme for the minimization of a ratio F (f) := R(f)/S(f), where
R and S are non-negative and one-homogeneous and each can be written as a difference of convex
functions: R(f) = R1(f)− R2(f) and S(f) = S1(f)− S2(f) with R1, R2, S1, S2 being convex.
In our setting R(f) = R1(f) = 1

2

∑n
i,j=1 wi,j |fi − fj |. Let

Φfk(u) := R1(u)−
〈
u, r2(fk)

〉
+ λk

(
S2(u)−

〈
u, s1(fk)

〉
.

Then we denote the convex optimization problem

min‖u‖2≤1 Φfk(u).

which has to be solved at each step in RatioDCA as inner problem. Note, that the exact form of the
constraint set which appears in the inner problem is irrelevant for the properties shown in the next
Proposition 4.1 as long as it is compact and contains the origin.
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Algorithm RatioDCA – Minimization of a non-negative ratio of 1-homogeneous d.c. functions

1: Initialization: f0 = random with
∥∥f0

∥∥ = 1, λ0 = F (f0)
2: repeat
3: s1(fk) ∈ ∂S1(fk), r2(fk) ∈ ∂R2(fk)
4: fk+1 = arg min

‖u‖2≤1

{
R1(u)−

〈
u, r2(fk)

〉
+ λk

(
S2(u)−

〈
u, s1(fk)

〉 )}
5: λk+1 = (R1(fk+1)−R2(fk+1))/(S1(fk+1)− S2(fk+1))

6: until |λ
k+1−λk|
λk

< ε

7: Output: eigenvalue λk+1 and eigenvector fk+1.

Proposition 4.1 The sequence fk produced by RatioDCA satisfies F (fk) > F (fk+1) for all k ≥ 0
or the sequence terminates.

Proof: The optimal value of the inner problem is non-positive as

Φfk(fk) = R1(fk)−
〈
fk, r2(fk)

〉
+ λk

(
S2(fk)−

〈
fk, s1(fk)

〉 )
= R1(fk)−R2(fk) + λk

(
S2(fk)− S1(fk)

)
= 0,

where we used
〈
fk, s1(fk)

〉
= S1(fk) and

〈
fk, r2(fk)

〉
= R2(fk). Moreover, as Φfk is 1-

homogeneous, the minimum of Φfk is always attained at the boundary of the constraint set. If the
optimal value is zero, then fk is a possible minimizer and the sequence terminates. Otherwise the
optimal value is negative and at the optimal point fk+1 we get

0 >R1(fk+1)−
〈
fk+1, r2(fk)

〉
+ λk

(
S2(fk+1)−

〈
fk+1, s1(fk)

〉 )
≥R1(fk+1)−R2(fk+1) + λk

(
S2(fk+1)− S1(fk+1)

)
where we have used that for a positively 1-homogeneous convex function one has for all f, g ∈ RV
and s ∈ ∂S(g),

S(f) ≥ S(g) + 〈f − g, s〉 = 〈f, s〉 ,
Thus we obtain

F (fk) = λk >
R1(fk+1)−R2(fk+1)

S1(fk+1)− S2(fk+1)
= F (fk+1).

Note, that the constraint of the inner problem plays no role in the proof. However, it is necessary as
otherwise the problem would be unbounded from below. �

The sequence F (fk) is not only monotonically decreasing but converges to a generalized nonlinear
eigenvector as introduced in [14].

Theorem 4.1 Each cluster point f∗ of the sequence fk produced by the RatioDCA is a nonlinear
eigenvector with eigenvalue λ∗ = R(f∗)

S(f∗) ∈
[
0, F (f0)

]
in the sense that it fulfills

0 ∈ ∂R1(f∗)− ∂R2(f∗)− λ∗
(
∂S1(f∗)− ∂S2(f∗)

)
.

If S1 − S2 is continuously differentiable at f∗, then F has a critical point at f∗.

Proof: By Lemma 4.1 the sequence F (fk) is monotonically decreasing. By assumption S =
S1 − S2 and R = R1 − R2 are nonnegative and hence F is bounded below by zero. Thus we have
convergence towards a limit

λ∗ = lim
k→∞

F (fk) .

Note that
∥∥fk∥∥2

2
≤ 1 for every k, thus the sequence fk is contained in a compact set, which implies

that there exists a subsequence fkj converging to some element f∗. As the sequence F (fkj ) is a
subsequence of a convergent sequence, it has to converge towards the same limit, hence also

lim
j→∞

F (fkj ) = λ∗ .
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As shown before, the objective of the inner optimization problem is nonpositive at the optimal
point. Assume now that min‖f‖22≤1 Φf∗(f) < 0. Then using the proof of Lemma 4.1, the vector
f∗∗ = arg min

‖f‖22≤1

Φf∗(f) satisfies

R1(f∗∗)−R2(f∗∗) < λ∗
(
S1(f∗∗)− S2(f∗∗)

)
,

where we used the definition of the subdifferential and the 1-homogeneity of S. Hence

F (f∗∗) < λ∗ = F (f∗) ,

which is a contradiction to the fact that the sequence F (fk) has converged to λ∗. Thus we must
have min‖f‖22≤1 Φf∗(f) = 0, i.e. the function Φf∗(f) is nonnegative in the unit ball. Using the fact
that for any α ≥ 0,

Φf∗(αf) = αΦf∗(f) ,

we can even conclude that the function Φf∗(f) is nonnegative everywhere, and thus minf Φf∗(f) =
0. Note that Φf∗(f

∗) = 0, which implies that f∗ is a global minimizer of Φf∗ , and hence

0 ∈ ∂Φf∗(f
∗) = ∂R1(f∗)− r2(f∗) + λ∗

(
∂S2(f∗)− s1(f∗)

)
,

which implies that f∗ is an eigenvector with eigenvalue λ∗. Note that this argument was independent
of the choice of the subsequence, thus every convergent subsequence converges to an eigenvector
with the same eigenvalue λ∗. Clearly we have λ∗ ≤ F (f0). �

In the balanced graph cut problem (3) we minimize implicitly over non-constant functions. Thus
it is important to guarantee that the RatioDCA for this particular problem always converges to a
non-constant vector.

Lemma 4.1 For every balanced graph cut problem, the RatioDCA converges to a non-constant f∗
given that the initial vector f0 is non-constant.

Proof: For every convex function S : Rn → R satisfying the conditions of Lemma 3.1, the
subdifferential is given as

∂S(f) = {u ∈ Rn |u ∈ U, 〈u, f〉 = S(f)},

where 〈u,1〉 = 0 for all u ∈ U . Thus it always holds
〈
s1(fk),1

〉
= 0. Moreover, R(f) =

1
2

∑n
i,j=1 wij |fi − fj | is invariant under addition of a constant. Together with R2 ≡ 0, we therefore

derive that the objective is invariant under addition of the constant vector. Moreover, the constant
vector always attains objective value zero. As derived in Proposition 4.1 the optimal objective value
is always non-negative as long as descent is possible and thus RatioDCA converges towards a non-
constant vector. Note, moreover that if the method terminates and the objective value is zero, the
previous non-constant iterate also is a minimizer. �

Now we are ready to state the following key property of our balanced graph clustering algorithm.

Theorem 4.2 Let (A,A) be a given partition of V and let S : V → R+ satisfy one of the conditions
stated in Theorem 3.1. If one uses as initialization of RatioDCA, f0 = 1A, then either RatioDCA
terminates after one step or it yields an f1 which after optimal thresholding as in Theorem 3.1 gives
a partition (B,B) which satisfies

cut(B,B)

Ŝ(B)
<

cut(A,A)

Ŝ(A)
.

Proof: As f0 = 1A we get with

R(1A) =
1

2

n∑
i,j=1

wij |1A(i)− 1A(j)| = cut(A,A), and S(1A) = Ŝ(A),

for the initial value of the ratio F (f0) = cut(A,A)/Ŝ(A). Proposition 4.1 now states that either
RatioDCA produces a f1 with F (f1) < F (f0) or it terminates. If the second case happens we
are done, let us consider the first case. By Theorem 3.1 there exists a set C∗ in the set of sets
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Ci = {j ∈ V | f1
j > f1

i }, i = 1, . . . , n − 1 such that F (f1) ≥ F (1C∗). In total we get that there
exists a partition (C∗, C∗) such that

cut(C∗, C∗)/Ŝ(C∗) = F (1C∗) ≤ F (f1) < F (f0) = F (1A) = cut(A,A)/Ŝ(A).

�

The above “improvement theorem” implies that we can use the result of any other graph partitioning
method as initialization. In particular, we can always improve the result of spectral clustering.

4.2 Solution of the Convex Inner Optimization Problems

The performance of RatioDCA depends heavily on how fast we can solve the corresponding inner
problem. We propose to use a primal-dual algorithm for the inner problem and show experimentally
that this approach yields faster convergence than the FISTA method of [5] which was applied in
[14]. Let us restrict our attention to the case where R(f) = R1(f) = 1

2

∑n
i,j=1 wij |fi − fj | and

S2 = 0. In other words, we apply the RatioDCA algorithm to (3) with S = S1 which is what we
need, e.g., for the tight relaxations of the Cheeger cut, normalized cut and truncated Cheeger cut
families. Hence, the inner problem of the RatioDCA algorithm (line 4) has the form

fk+1 = arg min
‖u‖2≤1

{1

2

n∑
i,j=1

wij |fi − fj | − λk〈u, s1(fk)〉}. (4)

Recently, Arrow-Hurwicz-type primal-dual algorithms have become popular, e.g., in image pro-
cessing, to solve problems whose objective function consists of the sum of convex terms, cf., e.g.,
[10, 7]. We propose to use the following primal-dual algorithm of [7] where it is referred to as
Algorithm 2. We call this method a primal-dual hybrid gradient algorithm (PDHG) here since this
term is used for similar algorithms in the literature. Note that the operator P‖·‖∞≤1 in the first
step is the componentwise projection onto the interval [−1, 1]. For the sake of readability, we de-
fine the linear operator B : RV → RE by Bu = (wij(ui − uj))ni,j=1 and its transpose is then

BTβ =
(∑n

j=1 wij(βi,j − βj,i)
)n
i=1

.

Algorithm PDHG – Solution of the inner problem of RatioDCA for (3) and S convex

1: Initialization: u0, ū0, β0 = 0, γ, σ0, τ0 > 0 with σ0τ0 ≤ 1/‖B‖22
2: repeat
3: βl+1 = P‖·‖∞≤1(βl + σlBū

l)

4: ul+1 = 1
1+τl

(
ul − τl(BTβl+1 − 2λks1(fk))

)
5: θl = 1/

√
1 + 2γτl, τl+1 = θlτl, σl+1 = σl/θl

6: ūl+1 = ul+1 + θl(u
l+1 − ul)

7: until duality gap < ε
8: Output: fk+1 ≈ ul+1/‖ul+1‖2

Although PDHG and FISTA have the same guaranteed converges rates ofO(1/l2), our experiments
show that for clustering applications, PDHG can outperform FISTA substantially. In Fig.1, we
illustrate this difference on a toy problem. Note that a single step takes about the same computation
time for both algorithms so that the number of iterations is a valid criterion for comparison. Let us
now turn to the inner problem of RatioDCA for the case where S2 6= 0. As an example, we consider
our tight relaxation of the hard balanced cut. According to Table 1, S now has the form

S(f) = gmax, K|V |
(f)− gmin, K|V |

(f)︸ ︷︷ ︸
=S1

−
(
gmax,K−1

|V |
(f)− gmin,K−1

|V |
(f)
)

︸ ︷︷ ︸
=S2

.

Let us introduce the shorter notation g := gmax,K−1
|V |

for the function that yields the sum of theK−1

largest components of the input vector. Observe that in this notation,

S2(f) = g(f) + g(−f).
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Since both g and g(−·) are convex and thus S2 is convex. So, the convex inner problem we have to
solve in RatioDCA is given by

fk+1 = arg min
‖u‖2≤1

{1

2

n∑
i,j=1

wij |fi − fj |+ λk
(
g(u) + g(−u)−

〈
u, s1(fk)

〉 )
}. (5)

In the algorithm given below, the following versions of the continuous knapsack problem arise as
subproblems

ũ = arg min
u∈Rn

1

2
‖u− v‖22 subject to 0 ≤ u ≤ 1, 1Tu = K − 1,

where v ∈ Rn is some given vector. Clearly, ũ can be written as the orthogonal projection onto the
set C := {u : 0 ≤ u ≤ 1, 1Tu = K − 1}, i.e.,

ũ = PC(v).

Although there is no closed-form solution, PC can be computed in linear time. In our implementa-
tion, we use the algorithm proposed in [19]. We obtain the following PDHG algorithm:

Algorithm PDHG – Solution of the inner problem of RatioDCA for the tight relaxation of the hard
balanced cut

1: Input: accuracy ε
2: Initialization: u0, ū0, β0 = 0, γ, σ0, τ0 > 0 with σ0τ0 ≤ 1/‖(I,BT)T‖22
3: repeat
4: βl+1

1 = −2λkPC(−(βl1 + σlū
l)/(2λk))

5: βl+1
2 = P‖·‖∞≤1(βl2 + σlBū

l)

6: y = 1
1+τl

(ul − τl(βl+1
1 +BTβl+1

2 ) + 2τlλ
ks1(fk))

7: ul+1 = y − 2τlλ
k

1+τl
PC( 1+τl

2τlλk
y)

8: θl = 1/
√

1 + 2γτl, τl+1 = θlτl, σl+1 = σl/θl
9: ūl+1 = ul+1 + θl(u

l+1 − ul)
10: until duality gap < ε
11: Output: fk+1 ≈ ul+1/‖ul+1‖2

General structure of PDHG. We have described PDHG algorithms for two different inner prob-
lems which arise in RatioDCA. The aim of this paragraph is to show the general form of the PDHG
algorithm and to explain how the preceding two important examples can be derived. Let us consider
a general problem of the form

minu∈Rn{G(u) +

L∑
i=1

Φi(Aiu)}, (6)

where G : Rn → R ∪ {+∞} and Φi : Rmi → R ∪ {+∞}, for i = 1, . . . , L are proper, convex
and lower-semicontinuous functions and Ai ∈ Rmi×n, i = 1, . . . , L are linear mappings. The dual
problem can be written in terms of the corresponding conjugate functions as

−minβi∈Rmi{G∗(−
L∑
i=1

AT
iβi) +

L∑
i=1

Φ∗i (βi)}. (7)

For a proper, convex and lower-semicontinuous function h : Rn → R ∪ {+∞} and a vector v ∈ R,
the problem

proxh(v) = arg min
u∈Rn

{1

2
‖u− v‖22 + h(u)}.

is called a proximal problem. Moreover, we refer to proxh(v) as the proximum of h at v. The
general PDHG algorithm has the following form, cf., [7].
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Algorithm PDHG
1: Input: accuracy ε
2: Initialization: u0, ū0, β0 = 0, γ, σ0, τ0 > 0 with σ0τ0 ≤ 1/‖(AT

1, . . . , A
T
L)T‖22

3: repeat
4: βl+1

i = proxσlΦ∗i (βli + σlAiū
l) for i = 1, . . . , L

5: ul+1 = proxτlG(ul − τl
∑L
i=1A

T
iβ
l+1
i )

6: θl = 1/
√

1 + 2γτl, τl+1 = θlτl, σl+1 = σl/θl
7: ūl+1 = ul+1 + θl(u

l+1 − ul)
8: until duality gap < ε
9: Output: ul+1

Notice that this algorithm exploits the additive structure of the objective function. It decouples G,
Φ1, . . . ,ΦL in the sense that in the subproblems of lines 4 and 5 we have to solve proximal problems
with respect to only one of these functions at a time. Consequently, the PDHG algorithm performs
very well for many applications and is relatively simple to implement. The following convergence
result was shown in [7].

Theorem 4.3 Assume that the primal problem (6) and the dual problem (7) have a solution and that
the duality gap is zero. Then, the sequences (ul)l∈N and (βl)l∈N generated by PDHG converge to a
solution of the primal and dual problem, respectively.

We now illustrate how to derive the PDHG algorithms for the two inner problems considered above
from the general form of the algorithm. We start with problem (4). It turned out in our experiments
that PDHG is slightly faster if applied to the primal problem

minu∈Rn{
n∑

i,j=1

wij |fi − fj |+
1

2
‖u− 2λks1(fk)‖22}. (8)

It is straightforward to see that (8) and (4) are equivalent, i.e., we simply have to normalize the
solution of (8) to obtain a solution of (4). The PDHG algorithm then follows from the general
version by setting L = 1 and

G :=
1

2
‖ · −2λks1(fk)‖22,

A1 := B,

Φ1 := ‖ · ‖1.

Since (‖ · ‖1)∗ is equal to the indicator function ι‖·‖∞≤1, we get proxσlΦ∗1 = P‖·‖∞≤1, i.e., the
componentwise projection onto the interval [−1, 1].

Let us now consider the inner problem (5) which appears in RatioDCA for the tight relaxation
of the hard balanced cut. Clearly, the objective function is the sum of proper, convex and lower-
semicontinuous terms and we can apply PDHG. Instead of (5), we again consider a slightly different
but equivalent problem

minu∈Rn{
1

2

n∑
i,j=1

wij |fi − fj |+ 2λk
(
g(u) + g(−u)

)
+

1

2
‖u− λks1(fk)‖22}. (9)

The PDHG algorithm presented above can be obtained by setting in the general version L = 2 and

G :=
1

2
‖ · −2λks1(fk)‖22 + 2λkg,

A1 := I, A2 = B,

Φ1 := 2λkg(−·), Φ2 := ‖ · ‖1.

The subproblem in line 5 of the resulting PDHG algorithm consists in computing the proximum of
the conjugate function (‖ · ‖1)∗, i.e., the orthogonal projection P‖·‖∞≤1. Moreover, we now have
to deal with proximal problems with respect to scaled versions of g and g∗. Observe that g∗ = ιC
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where ιC is the indicator function of C := {u ∈ Rn : 0 ≤ u ≤ 1, 1Tu = K − 1}. Consequently,
the proximum of g∗ is the orthogonal projection onto C. Concerning the proximum of g note that
for any constant ξ > 0 we have

proxξg(u) = u− ξproxg∗/ξ(u/ξ) = u− ξPC(u/ξ).

These results are used in the subproblems of line 4 and 7 of the PDHG algorithm.

5 Experiments

In a first experiment, we study the influence of the different balancing criteria on the obtained clus-
tering. The data is a Gaussian mixture in R20 where the projection onto the first two dimensions
is shown in Figure 2 - the remaining 18 dimensions are just noise. The distribution of the 2000
points is [1200,600,200]. A symmetric k-NN-graph with k = 20 is built with Gaussian weights

e
− 2‖x−y‖2

max{σ2
x,k

,σ2
y,k
} where σx,k is the k-NN distance of point x. For better interpretation, we report

Figure 2: From left to right: Cheeger 1-cut, Normalized 1-cut, truncated Cheeger cut (TCC), hard
balanced cut (HBC), hard Cheeger cut (HCC). The criteria are the normalized ones, i.e., the vertex
weights are ei = di.

all resulting partitions with respect to all balanced graph cut criteria, cut and the size of the largest
component in the following table. The parameter for truncated, hard Cheeger cut and hard balanced
cut is set to K = 200. One observes that the normalized 1-cut results in a less balanced partition but
with a much smaller cut than the Cheeger 1-cut, which is itself less balanced than the hard Cheeger
cut. The latter is fully balanced but has an even higher cut. The truncated Cheeger cut has a smaller
cut than the hard balanced cut but its partition is not feasible. Note that the hard balanced cut is
similar to the normalized 1-cut but achieves smaller cut at the prize of a larger maximal component.
Thus, the example nicely shows how the different balance criterion influence the final partition.

Criterion \ Obj. Cut max{|A|, |A|} Ch. 1-cut N. 1-cut TCC200 HBC200 HCC200

Cheeger 1-cut 408.4 1301 0.099 0.079 2.042 408.4 0.817
Norm. 1-cut 178.3 1775 0.132 0.075 0.892 178.3 6.858

Trunc. Ch. cut 153.6 1945 0.513 0.263 0.768 ∞ ∞
Hard bal. cut 175.4 1785 0.134 0.076 0.877 175.4 10.96
Hard Ch. cut 639.2 1000 0.119 0.115 3.196 639.2 0.798

Next we perform unnormalized 1-spectral clustering on the full USPS, normal and extended2

MNIST-datasets (resp. 9298, 70000 and 630000 points) in the same setting as in [14] with no
vertex weights, that is ei = 1,∀i ∈ V . As clustering criterion for multi-partitioning we use the
multicut version of the normalized 1-cut, given as RCut(C1, . . . , CM ) =

∑M
i=1

cut(Ci,Ci)
|Ci| . We

successively subdivide clusters until the desired number of clusters (M = 10) is reached. This re-
cursive partitioning scheme is used for all methods. In [14] the Cheeger 1-cut has been used which
is not compatible with the multi-cut criterion. We expect that using the normalized 1-cut for the
bipartitioning steps we should get better results. The results of the other methods for USPS and
MNIST (normal) are taken from [14]. Each bipartitioning step is initialized randomly. Out of 100
obtained multi-partitionings we report the results of the best clustering with respect to the multi-cut
criterion. The next table shows the obtained RCut and errors.

2The extended MNIST dataset is generated by translating each original input image of MNIST by one pixel
(8 directions).
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Vertices/Edges N. 1-cut Ch. 1-cut[14] S.&B.[29] 1.1-SCl [6] Standard spectral
USPS Rcut 0.6629 0.6661 0.6663 0.6676 0.8180

9K/272K Error 0.1301 0.1349 0.1309 0.1308 0.1686
MNIST (Normal) Rcut 0.1499 0.1507 0.1545 0.1529 0.2252

70K/1043K Error 0.1236 0.1244 0.1318 0.1293 0.1883
MNIST (Ext) Rcut 0.0996 0.0997 – – 0.1594
630K/9192K Error 0.1180 0.1223 – – 0.2297

We see for all datasets improvements in the obtained cut. Also a slight decrease in the obtained
error can be observed. The improvements are not so drastic as the clustering is already very good.
The problem is that for both datasets one digit is split (0) and two are merged (4 and 9) resulting in
seemingly large errors. Similar results hold for the extended MNIST dataset. Note that the resulting
error is comparable to recently reported results on semi-supervised learning [20].
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