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Abstract

In order to apply the maximum margin method in arbitrary metric spaces, we sug-
gest to embed the metric space into a Banach or Hilbert space and to perform
linear classification in this space. We propose several embeddings and recall that
an isometric embedding in a Banach space is always possible while an isometric
embedding in a Hilbert space is only possible for certain metric spaces. As a result,
we obtain a general maximum margin classification algorithm for arbitrary metric
spaces (whose solution is approximated by an algorithm of Graepel et al. [7]). In-
terestingly enough, the embedding approach, when applied to a metric which can
be embedded into a Hilbert space, yields the SVM algorithm, which emphasizes the
fact that its solution depends on the metric and not on the kernel. Furthermore
we give upper bounds of the capacity of the function classes corresponding to both
embeddings in terms of Rademacher averages. Finally we compare the capacities of
these function classes directly.
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1 Introduction

Often, the data in real-world problems cannot be expressed naturally as vec-
tors in a Euclidean space. However, it is common to have a more or less natural
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notion of distance between data points. This distance can often be quantified
by a semi-metric (i.e. a symmetric non-negative function which satisfies the
triangle inequality) or, even better, a metric (a semi-metric which is zero only
when the two points are the same).
If the only knowledge available to the statistician is that the data comes from
a semi-metric space (X , d), where X is the input space and d is the corre-
sponding semi-metric, it is reasonable to assume, for a classification task, that
the class labels are somewhat related to the semi-metric. More precisely, since
one has to make assumptions about the structure of the data (otherwise no
generalization is possible), it is natural to assume that two points that are
close (as measured by d) are likely to belong to the same class, while points
that are far away may belong to different classes. Another way to express this
assumed relationship between class membership and distances is to say that
intra-class distances are on average smaller than inter-class distances.
Most classical classification algorithms rely, implicitly or explicitly, on such
an assumption. On the other hand, it is not always possible to work directly
in the space X where the data lies. In particular, some algorithms require a
vector space structure (e.g. linear algorithms) or at least a feature represen-
tation (e.g. decision trees). So, if X does not have such a structure (e.g. if the
elements of X are DNA sequences of variable length, or descriptions of the
structure of proteins), it is typical to construct a new representation (usually
as vectors) of the data. In this process, the distance between the data, that
is the (semi)-metric, is usually altered. But with the above assumptions on
the classification task this change means that information is lost or at least
distorted.
It is thus desirable to avoid any distortion of the (semi)-metric in the pro-
cess of constructing a new representation of the data. Or at least, the distor-
tion should be consistent with the assumptions. For example a transformation
which leaves the small distances unchanged and alters the large distances, is
likely to preserve the relationship between distances and class membership.
We later propose a precise formulation of this type of transformation.
Once the data is mapped into a vector space, there are several possible al-
gorithms that can be used. However, there is one heuristic which has proven
valuable both in terms of computational expense and in terms of generaliza-
tion performance, it is the maximum margin heuristic. The idea of maximum
margin algorithms is to look for a linear hyperplane as the decision function
which separates the data with maximum margin, i.e. such that the hyperplane
is as far as possible from the data of the two classes. This is sometimes called
the hard margin case. It assumes that the classes are well separated. In gen-
eral one can one always deal with the inseparable case by introducing slack
variables, which corresponds to the soft margin case.
Our goal is to apply this heuristic to (X , d), the (semi)-metric input space
directly. To do so, we proceed in two steps: we first embed X into a Banach
space (i.e. a normed vector space which is complete with respect to its norm)
and look for a maximum margin hyperplane in this space. The important part
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being that the embedding we apply is isometric, that is, all distances are pre-
served.
We explain how to construct such an embedding and show that the resulting
algorithm can be approximated by the Linear Programming Machine pro-
posed by Graepel et al. [7]. We also propose to use as a ”pre-processing” step,
a transformation of the metric which has the properties mentioned above (i.e.
leaving the small distances unaltered and affecting the large ones) which may
remove the unnecessary information contained in large distances and hence
give a better result when combined with the above mentioned algorithm.
Embedding the data isometrically into a Banach space is convenient since it is
possible for any metric space. But as we will show it has also the disadvantage
that the obtained maximum margin algorithm cannot be directly implemented
and has to be approximated. It may thus be desirable that the space into which
the data is embedded has more structure. A natural choice is to use a Hilbert
space (i.e. a Banach space where the norm is derived from an inner product).
However, we recall a result of Schoenberg which states that only a certain
class of metric spaces can be isometrically embedded into a Hilbert space.
Hence, we gain structure at the price of loosing generality. Moreover, we give
a characterization of metric spaces that can be embedded into a Hilbert space
with some distortion of the large distances. If the metric has the appropriate
properties, we thus also derive an embedding into a Hilbert space and the
corresponding maximal margin algorithm.
It turns out that the obtained algorithm is equivalent to the well-known Sup-
port Vector Machine (e.g. [15]). We thus obtain a new point of view on this
algorithm which is based on an isometric embedding of the input space as
a metric space, where the metric is induced by a kernel. However, the main
distinction between our point of view and the more classical one, is that we
show that the solution only depends on the metric induced by the kernel and
not on the kernel itself. And given this metric, the effect of the algorithm is
to perform maximal margin separation after an isometric embedding into a
Hilbert space.

Finally we investigate the properties of the class of functions that are associ-
ated with these embeddings. In particular we want to measure their capacity.
For that we use a (by now) standard measure of the size in learning theory,
the Rademacher averages. These can be directly related to the generalization
error of the algorithm. Our computations show that in the case of the Banach
space embedding of an arbitrary metric space, the size of the obtained class
of hypotheses is the same as the size of (X , d) itself as a metric space, where
the size is measured by the covering numbers. For the second embedding into
a Hilbert space, we get results similar to the previously known ones for SVM,
but we express them in terms of the induced (semi)-metric. Finally, in the case
where X can be embedded isometrically both in a Banach and a Hilbert space,
we compare the capacities of both obtained hypotheses classes and show that
the SVM algorithm corresponds to a more ”parsimonious” space of functions.
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The paper is organized as follows. Section 2 introduces the general approach
of embedding into a Banach space and performing maximum margin classi-
fication in this space. In particular, several possible embeddings with their
effects on the metric are discussed. In Section 3 this approach is applied to
an arbitrary metric space and we give the resulting general algorithm. Then,
section 4 deals with the special case of metric spaces that can be isometrically
embedded into a Hilbert space. These metrics are characterized and we derive,
with our general approach, an algorithm which turns out to be equivalent to
the SVM algorithm. Finally in section 5, we compute Rademacher averages
corresponding to the previously mentioned algorithms and compare them.

2 The general approach

We are working in the following setting. We are given a set X , together with a
(semi-)metric defined on it, which makes it a (semi-)metric space (X , d). Recall
that a semi-metric is a non-negative symmetric function, d : X×X → R, which
satisfies the triangle inequality and d(x, x) = 0 for all x ∈ X (it is a metric if
d(x, y) = 0 implies x = y).

Remark 1 In the following we will consider only metric spaces. But all the
results remain true for semi-metric spaces. The reason why we restrict our-
selves to metric spaces is on the one hand simplicity but on the other hand the
in general undesired implications of a semi-metric, see Appendix A for this
issue.

Our basic assumption is that this metric is consistent with the classification
problem to be solved in the sense that when two points are close, they are likely
to belong to the same class. Of course, there are many algorithms that can take
into account such an assumption to build a classifier (e.g. nearest neighbors
classifiers). Moreover if one has more structure than the pure metric space e.g.
when X is a differentiable manifold, then this knowledge should be used in the
classifier. In the sense that one should build functions which satisfy stronger
smoothness requirements. One could argue that then the approach presented
here is too general since at first sight we only use the metric structure of the
input space. However as we will show later the functions generated used by
the general maximal margin algorithm are always Lipschitz functions which
can be regarded as the lowest level of smoothness. Moreover if the metric has
stronger smoothness properties e.g. in the case of a Riemannian manifold then
these smoothness properties are also transferred to the associated function
space used by the maximal margin classifier. This will become obvious from
the form of embedding we use. In that sense the maximal margin algorithm
adapts to the smoothness of X .
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One of the cornerstones of the algorithm we use is the large margin heuristic.
Thus we work with hyperplanes in a linear space. Since X need not be a linear
space, we have to transform it into one, which can be done by embedding it
into a linear space (with a norm defined on it). Since the metric information
is the only information available to us to perform classification and we assume
that the local structure is correlated to the class affiliations, we should not
distort it too much in the embedding process. Or in other words the minimal
requirement for our embedding is that it preserves neighborhoods, so it should
at least be a homeomorphism of (X , d) onto a subset of a linear space.
The following diagram summarizes this procedure:

(X , d)
embedding−−−−−−→ (B, ‖·‖) → maximal margin classification

2.1 First step: embedding into a normed space

Maximal margin hyperplane classification requires that we work in a linear
normed space. We thus have to map X to a subset of a normed space B
(chosen to be complete, hence a Banach space).

Formally, we define a feature map Φ : X → B, x → Φ(x), and denote by dB
the induced metric on X .

dB(x, y) = ‖Φ(x)− Φ(y)‖B .

We require that d and dB are not too different since we want to preserve
the metric information, which we assume to be relevant for classification. In
other words we want that the map Φ seen as the identity map id between the
metric spaces (X , d) and (X , dB) to have one of the properties in the following
list. We give the embeddings in the order of increasing requirements and each
embedding is a special case of the previous one.

(1) Φ is an embedding if and only if Φ is a homeomorphism, that is

∀x, y ∈ X ,∀ ε > 0, ∃ δ1, δ2 such that:

d(x, y) < δ1 ⇒ dB(x, y) < ε, dB(x, y) < δ2 ⇒ d(x, y) < ε.

(2) Φ is a uniform embedding if and only if id : (X , d) → (X , dB) is a uniform
homeomorphism, that is

∀ ε > 0, ∃ δ1, δ2 such that ∀x, y ∈ X :

d(x, y) < δ1 ⇒ dB(x, y) < ε, dB(x, y) < δ2 ⇒ d(x, y) < ε.

(3) Φ is a Bi-Lipschitz embedding, that is

∃λ > 0, ∀x, y ∈ X ,
1

λ
d(x, y) ≤ dB(x, y) ≤ λ d(x, y) .
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(4) Φ is an isometric embedding,

∀x, y ∈ X , dB(x, y) = ‖Φ(x)− Φ(y)‖ = d(x, y) .

In this paper we will consider two cases.

• In the first case we assume that the metric d(x, y) is meaningful and helpful
for the classification task on all scales. That means we should preserve the
metric in the embedding process, that is Φ should be an isometric embed-
ding.

• In the second case we assume that the metric d(x, y) is only locally mean-
ingful. What do we mean by that? In the construction of a metric on a set
X for a real-world problem one has some intuition about what it means for
two elements x, y ∈ X to be ’close’ and can encode this information in the
metric d(x, y). However larger distances are sometimes not very meaningful
or even completely arbitrary. Consider for example the edit-distance for se-
quences. It is fairly clear, what it means to have an edit-distance of one or
two, namely the word sequence is roughly the same. However for two com-
pletely different sequences the distance will be large without any meaning
and will probably have a great influence on the construction of the classifier
with the danger of fitting an irrelevant feature.
Therefore in cases where we trust our metric only locally it makes no dif-
ference if we change the global structure as long as we preserve the local
structure. Additionally this change of the global structure should fulfill two
requirements. First it should be uniform over X , since without further in-
formation we have no reason to change it differently in some regions. Second
it should eliminate the influence of high distance values.
In mathematical terms:
Definition 1 The local distortion of a map φ : (X , d) → (X , dB) is given
by

µ(x) = D+(x)/D−(x)

where the functions D+(x) and D−(x) are defined as

D+(x) = lim
y→x

sup
dB(x, y)

d(x, y)
, D−(x) = lim

y→x
inf

dB(x, y)

d(x, y)
.

Definition 2 A uniform local isometry is a uniform homeomorphism φ :
(X , d) → (X , dB) with local distortion µ(x) ≡ 1.
A uniform local isometry preserves the local structure up to a global rescal-
ing, which does not matter for the maximal margin classification. Finally
our embedding should be a uniform local isometry such that the transformed
metric is bounded, i.e. supx,y∈X dB(x, y) exists.

It is interesting to note here that for all embeddings Φ : (X , d) → (B, ‖·‖) one
can adopt two points of view:
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• Direct embedding: Φ : (X , d) → (B, ‖·‖B)
• Indirect embedding: identity id : (X , d) → (X , dB) and isometric embedding

φ : (X , dB) → (B, ‖·‖B) with Φ = φ ◦ id

The above two points of view are completely equivalent (i.e. any embedding
Φ can be written as φ ◦ id where id is the identity and φ an isometric embed-
ding and conversely) but the second point of view emphasizes the importance
of isometric embeddings. Namely any embedding can be decomposed into a
transformation of the initial metric followed by an isometric embedding. This
equivalence allows us to treat isometric and uniform locally isometric embed-
dings in the same framework.

The first question is how to construct such a uniform local isometry. One
general way to do this are the so called metric transforms introduced by Blu-
menthal. (We use here and in the following R+ = {x ∈ R |x ≥ 0}.)

Definition 3 Let (X , d) be a metric space and let F : R+ → R+ be a function
with F (0) = 0. Then (X , F (d)) is called a metric transform of (X , d).

The following lemma gives sufficient conditions for a metric transform F (d)
to be a metric.

Lemma 1 Let F : R+ → R+ be a monotone increasing concave function,
such that F (0) = 0 and F (x) > 0 for all x > 0. If d is a metric on X , then
F (d) is also a metric on X .

The proof of this lemma can be found e.g. in [5]. We denote the functions
which fulfill the assumptions of the above lemma as true metric transforms.
Note that the map id : (X , d) → (X , F (d)) is a uniform homeomorphism for
every true metric transform. The next lemma characterizes all true metric
transforms which are in addition uniform local isometries.

Lemma 2 Let F be a true metric transform. If limt→0
F (t)

t
exists and is pos-

itive, then identity id : (X , d) → (X , F (d)) is a uniform local isometry. More-
over the resulting metric space (X , F (d)) is bounded if F is bounded.

Proof With the assumptions the functions D+(x) and D−(x) defined in
Definition 1 exist and ∀x ∈ X , D+(x) = D−(x) > 0 , so that µ ≡ 1. 2

In order to illustrate this lemma, we give two examples of metric transforms
F which result in uniform local isometries, where (X , F (d)) is bounded.

F (t) =
t

1 + t
, F (t) = 1− exp(−λt), ∀λ > 0 (1)

Furthermore an important question is whether there exists for any given metric
space (X , d) a Banach space B and a map Φ which embeds (X , d) isometrically
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into B. In the following we will answer this positively, namely any metric
space (X , d) can be embedded isometrically via the Kuratowski embedding
into (Cb(X ), ‖·‖∞), where Cb(X ) denotes the continuous, bounded functions
on X . However in the later analysis of the maximal margin algorithm it turns
out that an embedding into a Hilbert space provides a simpler structure of
the space of solutions. Therefore we will consider after the general case of
an isometric embedding into a Banach space the special case of an isometric
embedding into a Hilbert space.
Moreover all isometric embeddings we consider have the following minimal
property:

Definition 4 (Total isometric embedding) Given a metric space (X , d)
and an isometric embedding Φ : X → B where B is a Banach space, we say
that Φ is a total isometric embedding if Φ(X ) is total, that is B is the norm-
closure of span{Φ(x)|x ∈ X}.

This definition is in a sense trivial, since if we have an isometric embedding
Φ into a Banach space C, then the norm closure of span Φ(X ) is again a
Banach space B with the same norm. But this ’minimal’ isometric embedding
allows then to associate to the dual space B′ (the space of continuous linear
functionals on B endowed with the norm ‖w′‖ = supb∈B, ‖b‖≤1 |w′(b)|) 1 an
isometrically isomorphic Banach space of functions on X as we will see now.

Proposition 1 Let Φ : X → B be a total isometric embedding. Then there
exists a Banach space FB′ of real-valued Lipschitz functions on X and a map
Γ : B′ → FB′ such that Γ is an isometric isomorphism. The map Γ is given by

Γ(w′)(·) = 〈w′, Φ(·)〉B′,B

and we define ‖Γ(w′)‖FB′ = ‖w′‖B′. The Lipschitz constant of Γ(w′) is upper

bounded by ‖w′‖B′.

We need for the proof of the proposition and in the rest of the article the
following notions and a theorem relating them.

Definition 5 Let M, N be subspaces of B resp. B′. Then the annihilators M⊥

and ⊥N are defined as

M⊥ = {w′ ∈ B′ : 〈w′, m〉 = 0, ∀m ∈ M},
⊥N = {b ∈ B : 〈n, b〉 = 0, ∀n ∈ N}.

Theorem 1 [11]

1 Given an element b of a Banach space B and an element w′ of its dual B′, we
write w′(b) = 〈w′, b〉B′,B. This should not be confused with the inner product 〈·, ·〉H
in a Hilbert space.
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• ⊥(M⊥) is the norm closure of M in B.
• (⊥N)⊥ is the weak*-closure of N in B′

Now we can prove Proposition 1.

Proof The only thing we have to prove is that Γ is injective. Let f, g ∈ FB′ ,
then

f ≡ g ⇔ 〈wf − wg, Φ(x)〉B′,B = 0, ∀x ∈ X .

Since Φ is a total isometric embedding, B = span{Φ(X )} = ⊥(span {Φ(X )}⊥).
In particular, we have span{Φ(X )}⊥ = {0}. Therefore wf −wg = 0, that is, Γ
is injective. The Lipschitz constant of Γ(w′) can be computed as follows. For
all x, y ∈ X ,

|Γ(w′)(x)− Γ(w′)(y)| = | 〈w′, Φ(x)− Φ(y)〉B′,B | ≤ ‖w′‖B′ ‖Φ(x)− Φ(y)‖B
= ‖w′‖B′ d(x, y).

2

The fact that one always obtains Lipschitz functions has been pointed out in
[16] where it is shown that any isometric embedding can be obtained via an
embedding into the predual of Lipschitz functions.

2.2 Second step: maximal margin classification

2.2.1 Maximal margin and its dual problem

What does maximal margin classification mean? The classifier is a hyperplane
in B, which can be identified with an element in the dual of B′ plus an offset,
such that the distance, the margin, to the two classes is maximized. This
problem is equivalent to the problem of determining the distance between the
convex hulls of the two classes of our training data. This duality was proven
in the generality of an arbitrary Banach space by Zhou et al. [17]. We define
the convex hull of a finite set T ⊂ B as

co(T ) =

{∑
i∈I

αixi |
∑
i∈I

αi = 1, xi ∈ T, αi ≥ 0, |I| < ∞
}

.

Theorem 2 [17] Let T1 and T2 be two finite sets in a Banach space B. Then
if co(T1) ∩ co(T2) = ∅

d(co(T1), co(T2)) = inf
y∈co(T1),z∈co(T2)

‖y − z‖

= sup
w′∈B′

infy∈T1,z∈T2 〈w′, y − z〉B′,B
‖w′‖

. (2)
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The condition co(T1)∩co(T2) = ∅ is equivalent to the condition of separability.

Corollary 1 The maximal margin problem is translation invariant in the Ba-
nach space B.

Proof This is a trival statement, since we are only interested in distances. 2

Later we will use the above dual formulation in order to derive properties of
the solution w′ ∈ B′.

2.2.2 Maximal margin formulations

In this section we derive from the dual problem the usual maximal mar-
gin formulation. We consider an input sample x1, . . . , xn ∈ X with labels
y1, . . . , yn ∈ {−1, 1}. These samples can be embedded via Φ into a Banach
space B. We denote by Φx the embedded point Φ(x) and by T1 the set
{Φxi

: yi = +1} of positive examples and by T2 = {Φxi
: yi = −1} the

set of negative examples.

First we rewrite the second line of (2) by using the definition of the infimum:

sup
x′∈B′, c,d∈R

c− d

‖x′‖
subject to: 〈x′, y〉B′,B ≥ c, ∀ y ∈ T1, 〈x′, z〉B′,B ≤ d, ∀ z ∈ T2.

Now subtract − c+d
2

from both inequalities, and define the following new quan-
tities: b = c+d

d−c
, w′ = 2

c−d
x′, T = T1 ∪ T2. Then taking the inverse we arrive at

the standard hard margin formulation:

min
w′∈B′,b

‖w′‖ (3)

subject to: yi(〈w′, Φxi
〉B′,B + b) ≥ 1, ∀i = 1, . . . , n.

Another equivalent formulation where we use the space of functions FB′ which
we defined in Proposition 1 takes more the point of view of regularization.

min
fw′∈FB′ ,b

‖fw′‖FB′ +
n∑

i=1

` (yi(fw′(xi) + b)) (4)

where the loss function ` is given by `(x) = 0, ∀x ≥ 1, `(x) = ∞, ∀x < 1.

In principle we have two points of view on the hard margin problem. One is
based on the geometric interpretation (2), (3) of finding a separating hyper-
plane with maximal distance to the two classes. The other is based on (4) and
regards the problem as the search for a function which classifies correctly and
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has minimal norm, where we assume that the norm is some measure of smooth-
ness. In this paper we will switch between these two viewpoints depending on
which is better suited to illustrate a certain property.

2.2.3 Form of the solution

Let us now come back to the initial formulation (2). Our goal is to obtain a
characterization of the solutions w′ ∈ B′. We consider the following subspace
A = span{Φx1 − Φx2 |x1 ∈ T1, x2 ∈ T2} ⊂ span{Φxi

|xi ∈ T} which can be
equivalently written as

A =

{
n∑

i=1

αiΦxi
:

n∑
i=1

αi = 0

}
.

The following lemma characterizes the space of solution w′ ∈ B′.

Lemma 3 The quotient space B′/A⊥, endowed with the quotient norm, is
a Banach space. It is isometrically isomorphic to the dual A′ of A and has
dimension n − 1. Moreover the problem of maximal margin separation in B′,
(3), is equivalent to the following problem in B′/A⊥:

min
w′∈B′/A⊥,b

‖w′‖B′/A⊥ (5)

subject to: yi

(
〈w′, Φxi

〉B′,B + b
)
≥ 1, ∀i = 1, . . . , n.

Proof A is finite dimensional hence closed in B. It is thus a Banach space
with the induced norm. It is well known (see e.g. [11]) that then B′/A⊥ with
the quotient norm ‖b′‖B′/A⊥ = inf{‖b′ − a′‖ : a′ ∈ A⊥} is a Banach space
isometric isomorphic to A′, the dual of A. Since A is a normed space of finite
dimension n− 1, its dual has the same dimension.
Since addition of elements of A⊥ does not change the numerator of (2), but
will change the norm in the denominator, the problem can be equivalently
formulated in the quotient space B′/A⊥.
In the constraint of (5), w′ is an arbitrary representative of its equivalence
class w′ + A⊥. This is well defined, since if u′ is another representative of the
equivalence class we have m′ = u′ − w′ ∈ A⊥ and ∀m′ ∈ A⊥, φxi

, φxj
∈ T ,

〈
m′, φxi

− φxj

〉
B′,B

= 0.

That is, m′ is constant on the data. Therefore if w′ satisfies the constraint with
constant b, u′ will satisfy the constraint with the constant c = b−〈m,φxi

〉B′,B.
2

Remarkably, this lemma tells us that the solution of the maximum margin
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problem is effectively in a finite dimensional subspace of B′ which is deter-
mined by the data. However, it gives no explicit description how this subspace
depends on the data, which makes it hard to be effectively used in general.

Moreover, in order to solve the initial problem using the above lemma, one
has to first solve the finite dimensional problem in B′/A⊥ and then to solve
the minimum norm interpolation problem in B′. Indeed, if a is a solution in
B′/A⊥, one has to find an element b′ in the equivalence class a. For this one
has to solve

inf
b′∈B′:b′|A=a|A

‖b′‖B′ ,

which corresponds to minimizing the norm provided the values on a finite
dimensional subspace are known.

We give an interpretation of this lemma from the point of view of functions
which we developed in the previous section. The closed subspace A⊥ of B′
defines a closed subspace of functions FA⊥ of FB′ on (X , d) which are constant
on all data points, namely ∀w′ ∈ A⊥, x1 ∈ T1, x2 ∈ T2

fw′(x1)− fw′(x2) = 〈w′, Φ(x1)− Φ(x2)〉B′,B = 0

The proposition then states that the solution is only defined up to a constant
function on the data or in other words we are looking for a solution f in
FB′/FA⊥ with the usual quotient norm ‖f‖FB′/FA⊥

= infg∈F
A⊥
‖f − g‖. In

particular, if there are constant functions (constant functions are constant on
the data) in our function class FB′ , they will not be penalized in the norm.
This reflects the fact that constant functions are useless for classification and
should therefore not be considered in the norm of our solution space. Since we
use the threshold 0 for classification we have to compensate for the constant
functions on the data with the bias term b in the final solution.

fw′(x) = sgn(〈w′, Φ(x)〉B′,B + b).

Later we will consider also isometric embeddings into a Hilbert spaceH. There
we have (A⊥)⊥ = A and we can actually decompose H into H = A⊥⊕A. Then
the solution of the maximal margin problem is an element of A, which is itself
a Hilbert space and consists of all functions f ∈ H, orthogonal to the functions
which are constant on the data. This is a stronger statement than the usual
representer theorem, which says that the solution lies in the space spanned by
the data.
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3 Metric based maximal margin classifier in a Banach space

In this section we treat the general case, where we embed isometrically a given
metric space (X , d) into a Banach space B followed by a maximal margin
classification in B. In general there exist for each metric space several Banach
spaces, into which it can be embedded isometrically. In this section we use the
very simple Kuratowski embedding. After the definition of the Kuratowski
embedding Φ and the corresponding Banach space B we finally formulate
the algorithm of maximal margin classification in B. Unfortunately the full
problem cannot be solved exactly. We provide a reasonable approximation to
the full problem, which is exact if one considers the training set and a possible
test point as a finite metric space.
The following diagram illustrates the employed procedure

(X , d)
isometric−−−−−→ (D, ‖.‖∞) ⊂ (Cb(X ), ‖.‖∞) → maximal margin separation

where D is a Banach space of (continuous and bounded) functions defined on
X (see definitions below).

3.1 Isometric embedding into a Banach space

Let (X , d) be a metric space and denote by Cb(X ) the Banach space of con-
tinuous and bounded functions on X endowed with the supremum norm. If
X is compact the topological dual of Cb(X ) is the space of finite signed Borel
measures M(X ) with the measure norm ‖µ‖ =

∫
X dµ+ −

∫
X dµ− (where µ+

and µ− are respectively the positive and negative parts of µ).
Consider an arbitrary x0 ∈ X and define the following map

Φ : X → RX , x 7→ Φx := d(x, ·)− d(x0, ·)

Let D = span{Φx : x ∈ X}, where the closure is taken in (Cb(X ), ‖·‖∞).
We will show that Φ defines an isometric embedding of the metric space X
into D.

Lemma 4 Φ is a total isometric embedding from (X , d) into the Banach space
(D, ‖·‖∞) ⊂ (Cb(X ), ‖·‖∞).

Proof We have ‖Φx‖∞ ≤ d(x, x0) < ∞ and |Φx(y) − Φx(y
′)| ≤ |d(x, y) −

d(x, y′)| + |d(x0, y) − d(x0, y
′)| ≤ 2d(y, y′), so that Φx ∈ Cb(X ). In addition

‖Φx − Φy‖∞ = ‖d(x, ·)− d(y, ·)‖∞ = d(x, y) and the supremum is attained
at x and y. Hence, Φ is an isometry from (X , d) into (D, ‖·‖∞) which is a
closed subspace of Cb(X ). Therefore (D, ‖·‖) is also Banach space and Φ a
total isometric embedding, since by definition D = span Φ(X ). 2
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Note that, as an isometry, Φ is continuous, and x0 is mapped to the origin
of D. The choice of this origin Φx0 has no influence on the classifier since the
maximal margin problem is translation invariant.

3.2 The algorithm

The maximal margin formulation (3) can be directly stated as:

min
w′ ∈D′,b∈R

‖w′‖

subject to: yj

(〈
w′, Φxj

〉
D′,D

+ b
)
≥ 1, ∀ j = 1, . . . , n. (6)

Note that since we have no explicit description of the dual space D′ we cannot
solve this directly. If X is compact it is well-known that the dual of Cb(X ) is
isometrically isomorphic to the Banach space of finite signed Borel measures
M(X ) on X with the measure norm. Thus we can state the problem explicitly.
Note that even though we work in a bigger space than D′, we will get the
same solution lying in A′ isometrically isomorphic to M(X)/A⊥ 2 since we are
minimizing the norm:

min
w′ ∈M(X ),b∈R

‖µ‖M(X )

subject to: yj

(∫
X
(d(xj, x)− d(x, x0))dµ(x) + b

)
≥ 1, ∀ j = 1, . . . , n.

This problem also cannot be solved directly, since we have no parametrization
of M(X ).
Let us now consider again the general problem (6). Since we have neither
a description of the dual A′ ' D′/A⊥ nor of D′, we develop a reasonable
approximation in the bigger space Cb(X)′. We introduce the space E defined
as the span of evaluation functionals:

E := span{δx : x ∈ X} .

First we have the following lemma:

Lemma 5 The space E defined above is weak*-dense in the dual of Cb(X )
and the norm is given by ‖∑n

i=1 αiδxi
‖Cb(X )′ =

∑n
i=1 |αi| .

Proof The evaluation functionals are in the dual of Cb(X ) since

|δx(f)− δx(g)| = |f(x)− g(x)| ≤ ‖f − g‖∞
2 Let A⊥M(X), A

⊥
D′ denote the annihilator of A in M(X) resp. D′. Then we have

A′ 'M(X)/A⊥M(X) ' D′/A⊥D′ .
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Consider now the span of evaluation functionals span{δx : x ∈ X}. The norm
induced by Cb(X ) is given as∥∥∥∥∥

n∑
i=1

αiδxi

∥∥∥∥∥
Cb(X )′

= sup
f∈Cb(X )′

| 〈∑n
i=1 αiδxi

, f〉 |
‖f‖∞

= sup
f∈Cb(X )′

|∑n
i=1 αif(xi)|
‖f‖∞

=
n∑

i=1

|αi|

Further on we have that ⊥{δx : x ∈ X} = 0 since 〈δx, f〉 = 0, ∀x ∈ X ⇔ f ≡
0. That implies

(⊥{δx : x ∈ X})⊥ = Cb(X )′

Therefore by Theorem 1 the weak*-closure of span{δx : x ∈ X} is Cb(X )′. 2

Let us explain shortly what this result means. The weak*-topology is the topol-
ogy of pointwise convergence on Cb(X ). Therefore the weak*-denseness of E in
Cb(X )′ can be equivalently formulated as follows: ∀µ ∈ Cb(X )′, ∃ {eα}α∈I ∈ E
such that eα → µ in the weak*-topology, that is

∀ f ∈ Cb(X ), 〈eα, f〉Cb(X )′,Cb(X ) −→ 〈µ, f〉Cb(X )′,Cb(X ) .

In other words one can approximate in the above sense any element of Cb(X )′

arbitrarily well with elements from E. On the other hand weak*-dense does
not imply norm-dense.

Our first step is that we formulate the problem in Cb(X )′ which seems at first
to be an approximation. But according to the same argument as before we
have A′ ' Cb(X)′/A⊥ ' D′/A⊥. Since we are minimizing the norm under the
given constraints this implies that the solution will lie in Cb(X )′/A⊥ which
is isometrically isomorphic to A′. Then as an first approximation we restrict
Cb(X )′ to E. Since the span of evaluation functionals is not norm dense in
Cb(X )′, this implies that even in the limit of an infinite number of evaluation
functionals we might not get the optimal solution.
This approximation can be formulated as the following optimization problem:

inf
e∈E,b

‖e‖ = inf
m∈N, z1,...,zm∈Xm, b

m∑
i=1

|βi|

s.t. yj

(
m∑

i=1

βi

〈
δzi

, Φxj

〉
+ b

)
= yj

(
m∑

i=1

βi(d(xj, zi)− d(x0, zi)) + b

)
≥ 1

∀j = 1, . . . , n.

Unfortunately it is not possible to prove that the solution can be expressed in
terms of the data points only (which would be a form of a representer theo-
rem for this algorithm). We could actually construct explicit counterexamples.
Note however that in [16] a representer theorem was derived for a similar but
different setting. Namely they showed that if one considers all Lipschitz func-
tions together with the Lipschitz constant as a norm, the solution lies in the
vector lattice spanned by the data. However it is also shown there that this
setting is not equivalent to the setting presented here. Moreover as we will
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show later the capacity of all Lipschitz functions measured by Rademacher
averages is higher than of our approach.
In order to make the problem computationally tractable, we have to restrict
the problem to a finite dimensional subspace of E. A simple way to do this is to
consider only the subspace of E generated by a finite subset Z ∈ X , |Z| = m,
which includes the training set T ⊂ Z. We are free to choose the point x0 in
the embedding, so we choose it as x0 = z1, z1 ∈ Z. Since the problem stated in
Theorem 2 is translation invariant, this choice has no influence on the solution.
This leads to the following optimization problem:

min
βi,b

m∑
i=1

|βi|

subject to: yj

(
m∑

i=1

βi(d(xj, zi)− d(z1, zi)) + b

)
≥ 1, ∀xj ∈ T.

A convenient choice for Z is Z = T . In a transduction setting one can use for
Z the union of labelled and unlabelled data.
As the second term in the constraint,

∑m
i=1 βid(z1, zi), does not depend on j,

we can integrate it in a new constant c and solve the equivalent problem:

min
βi,c

m∑
i=1

|βi|

subject to: yj

(
m∑

i=1

βi d(xj, zi) + c

)
≥ 1, ∀xj ∈ T. (7)

The corresponding decision function is given by

f(x) = sgn

(
m∑

i=1

βi d(x, zi) + c

)
.

The above optimization problem can be transformed into a linear program-
ming problem, and is easily solvable with standard methods. Note that if we
take Z = T we recover the algorithm proposed by Graepel et al. [7]. We also
note that it is easily possible to obtain a soft-margin version of this algorithm.
In this case there still exists the equivalent problem of finding the distance be-
tween the reduced convex hulls [2,17]. This algorithm was compared to other
distance based classifiers by Pekalska et al. in [10] and showed good perfor-
mance.

The approximation with a finite subset Z, |Z| = m, such that T ⊂ Z can also
be seen from another point of view. Namely consider the finite metric space
(Z, d). Since the isometric embedding Φ is possible for any metric space, we can
use it also in this special case and the Banach space of continuous, bounded
functions (Cb(Z), ‖·‖∞) is actually equal to lm∞ = (Rm, ‖·‖∞). We note that in
the case of finite dimension m the dual of lm∞ is given by lm1 . Formulating the
maximal margin problem in the Banach space lm∞ leads then exactly to the
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optimization problem (7). Therefore the approximation to the maximal margin
problem for (X , d) using a finite subset of evaluation functionals indexed by
Z is equivalent to the maximal margin problem for the finite metric space
(Z, d) without any approximation. Moreover one can embed m + 1 points
isometrically into lm∞ with the embedding Φ (z1 is mapped to the origin of
lm∞). Thus the resulting classifier is not only defined on Z but by embedding
Z plus a possible test point x ∈ X isometrically into lm∞ we can classify all
points x ∈ X respecting all the distance relationships of x to Z.

4 Metric based maximal margin classifier in a Hilbert space

In the previous section we constructed a maximal margin classifier in the Ba-
nach space D ⊂ (Cb(X ), ‖·‖∞) which works for any metric space (X , d), since
any metric space can be embedded isometrically into (Cb(X ), ‖·‖∞). The prob-
lem of the resulting maximal margin classifier is that the space of solutions
D′/A⊥ is not easily accessible. However in a Hilbert space the dual space H′ is
isometrically isomorphic to H. Therefore we have H/A⊥ = (A⊥)⊥ = A, that
is given n data points we have an explicit description of the at most (n− 1)-
dimensional space of solutions.
Regarding these properties of the space of solutions in H it seems desirable
to rather embed isometrically into a Hilbert space than into a Banach space.
It turns out that isometric embeddings into Hilbert spaces are only possible
for a subclass of metric spaces. Following the general framework we first treat
isometric and uniform locally isometric embeddings. Then the resulting max-
imal margin classifier is determined. Finally we show the equivalence to the
SVM and provide an alternative point of view on kernels regarding SVM.

4.1 Isometric embedding into a Hilbert space

We have seen in the previous part that all metric spaces can be embedded
isometrically into a Banach space. Is this true also for isometric embeddings
into Hilbert spaces? The answer was given by Schoenberg in 1938 in terms of
the following class of functions, by now well-known as positive definite resp.
conditionally positive definite kernels.

Definition 6 A real valued function k on X × X is positive definite (resp.
conditionally positive definite) if and only if k is symmetric and

n∑
i,j

cicjk(xi, xj) ≥ 0, (8)
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for all n ∈ N, xi ∈ X , i = 1, ..., n, and for all ci ∈ R, i = 1, ..., n, (resp. for all
ci ∈ R, i = 1, ..., n, with

∑n
i ci = 0).

The metric spaces which can be isometrically embedded into a Hilbert space
can be characterized as follows:

Theorem 3 (Schoenberg [12]) A metric space (X , d) can be embedded iso-
metrically into a Hilbert space if and only if −d2(x, y) is conditionally positive
definite.

Based on this characterization, one can introduce the following definition.

Definition 7 A metric d defined on a space X is called a Hilbertian metric
if (X , d) can be isometrically embedded into a Hilbert space, or equivalently if
−d2 is conditionally positive definite.

We notice that isometric embeddings into a Hilbert space are only possible for
a restricted subclass of metric spaces. So we achieve the advantage of having
a small and easily accessible space of solutions by losing the ability to handle
the whole class of metric spaces in this framework.
Let us now construct explicitly the corresponding isometric embedding.

Proposition 2 Let d(x, y) be a Hilbertian metric. Then for every point x0 ∈
X there exists a reproducing kernel Hilbert space Hk and a map Ψ : X → Hk

given by

x → Ψx(·) =
1

2

(
−d2(x, ·) + d2(x, x0) + d2(·, x0)

)
such that

• {Ψx|x ∈ X} is total in Hk

• ‖Ψx −Ψy‖Hk
= d(x, y) .

• Ψx0 = 0

We need the following two lemmata to prove this proposition.

Lemma 6 [3] Let X be a nonempty set, x0 ∈ X , and let k : X × X → R be
a symmetric function. Let k̃(x, y) be given by

k̃(x, y) = k(x, y)− k(x, x0)− k(x0, y) + k(x0, x0).

Then k̃ is positive definite if and only if k is conditionally positive definite.

Lemma 7 [15] Given a positive definite kernel k(x, y) : X × X → R there
exists a unique reproducing kernel Hilbert space (RKHS) of functions on X ,
where H = span{k(x, ·)|x ∈ X}.
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Proof [Proposition 2] Define the symmetric kernel function k(x, y) : X ×X →
R by

k(x, y) =
1

2

(
−d2(x, y) + d2(x, x0) + d2(y, x0)

)
.

Using Lemma 6, k(x, y) is a positive definite kernel. Moreover by Lemma 7
there exists a unique reproducing kernel Hilbert space Hk associated to k(x, y)
such that k(x, y) = 〈Ψx, Ψy〉Hk

and {k(x, ·)|x ∈ X} = {Ψx|x ∈ X} is total in
Hk. Moreover we have

‖Ψx −Ψy‖2 = k(x, x) + k(y, y)− 2k(x, y) = d2(x, y)

and Ψx0(·) = 1
2
(−d2(x, ·) + d2(x, ·)) = 0. 2

4.2 Uniform locally isometric embedding into a Hilbert space

In the previous section we constructed an isometric embedding into a Hilbert
space. If one trusts the metric d(x, y) only locally we argued in section 2.1
that one should use a uniform locally isometric embedding.
The following proposition gives necessary and sufficient conditions for a uni-
form embedding of a metric space into a Hilbert space:

Proposition 3 [1] A metric space (X , d) can be uniformly embedded into a
Hilbert space if and only if there exists a positive definite kernel k(x, y) on X
such that

• For every x ∈ X , k(x, x) = 1
• k is uniformly continuous
• For every ε > 0, inf{1− k(x, y) : d(x, y) ≥ ε} > 0
• limε→0 sup{1− k(x, y) : d(x, y) ≤ ε} = 0

The following corollary extends the previous proposition to uniform local
isometries.

Corollary 2 Let (X , d) be a metric space and k a positive definite kernel
which fulfills the conditions of Proposition 3. If the limits

lim
y→x

sup
1− k(x, y)

d2(x, y)
, lim

y→x
inf

1− k(x, y)

d2(x, y)

exist and are non-zero then φx : x → k(x, ·) is a uniform local isometry of
(X , d) onto a subset of the RKHS associated to k.

Proof Simply calculate the metric induced by the positive definite kernel k,
d2

k(x, y) = 2 − 2k(x, y) and use the definition of the functions D+ and D− in
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Definition 1. The explicit embedding φ follows from Lemma 7. 2

In principle the above proposition and the corollary are not very satisfying
since they provide no explicit construction of a positive definite kernel which
fulfills the conditions for a given metric.
In the case where the given metric is a Hilbertian metric we can use a result
of Schoenberg. It characterizes the metric transforms F of a given Hilbertian
metric d, such that F (d) is also a Hilbertian metric. This implies that the the
identity map id : (X , d) → (X , F (d)) is a uniform homeomorphism. Moreover
using Lemma 7 we get a uniform embedding into a Hilbert space.

Theorem 4 [13] Let F : R+ → R+ be a function such that F (0) = 0 and all
derivatives of F exist on R+\{0}. Then the following assertions are equivalent:

• F (d) is a Hilbertian metric, if d is a Hilbertian metric.
•

F (t) =

(∫ ∞

0

1− e−t2u

u
dγ(u)

)1/2

,

where γ(u) is monotone increasing for u ≥ 0 and satisfying
∫∞
1

dγ(u)
u

< ∞ 3 .

• (−1)n−1 dn

dtn
F 2(

√
t) ≥ 0 for all t > 0 and n ≥ 1.

Moreover F is bounded if and only if

lim
ε→0

γ(ε) = γ(0), and lim
ε→0

∫ 1

ε

dγ(u)

u
exists.

For a uniform, local isometric embedding one has to fulfill in addition the
requirements of Lemma 2. Combining Theorem 4 and Lemma 2 we get a
complete description of all metric transforms for a given Hilbertian metric
which induce a uniform local isometry and where the transformed metric is
Hilbertian. The examples given in (1) fulfill both the conditions of Theorem
4 and of Lemma 2. Therefore they provide two examples of metric transforms
which induce uniform local isometries and produce Hilbertian metrics if one
starts with a Hilbertian metric. The drawback of the Theorem 4 is that we have
to start with a Hilbertian metric. A more general theorem which characterizes
metric transforms of an arbitrary metric space such that the transformed
metric is Hilbertian seems not to be available in the literature.

3 The integrals are Lebesgue-Stieltjes integrals.
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4.3 The maximal margin algorithm

In the general considerations we defined the subspace A ⊂ span{Ψx|x ∈ T}
by

A :=

{
n∑

i=1

αiΨxi
:

n∑
i=1

αi = 0

}
.

Since in a Hilbert space the dual is isometrically isomorphic to the Hilbert
space itself we get the following form of the space of solutions:

Lemma 8 The space of solutions H/A⊥ is equal to A.

Proof We have the simple equalities H/A⊥ = (A⊥)⊥ = A. 2

Following Zhou [17] note that if in (2) the infimum on the left is achieved by
y0 ∈ co(T1) and z0 ∈ co(T2) then w′ is aligned with y0 − z0, that is

〈y0 − z0, w
′〉H = ‖y0 − z0‖H ‖w

′‖H

In a Hilbert space it follows from the Cauchy-Schwarz inequality that in this
case w′ = y0−z0. Therefore in a Hilbert space the problem of maximal margin
separation is not only equivalent to the problem of finding the distance of the
convex hulls but it has also the same solution. Therefore we can equivalently
formulate the problem of maximal margin separation as finding the distance
of the convex hulls of the isometrically embedded training data in Hk.
The optimization problem corresponding to the maximum margin hyperplane
can be written as

min
α

∥∥∥∥∥∥
∑

i:yi=+1

αiΨxi
−

∑
i:yi=−1

αiΨxi

∥∥∥∥∥∥
2

Hk

subject to:
∑

i:yi=+1

αi =
∑

i:yi=−1

αi = 1, αi ≥ 0,

The distance
∥∥∥∑i:yi=+1 αiΨxi

−∑
i:yi=−1 αiΨxi

∥∥∥
Hk

can be calculated explicitly

with the expression of the inner product 〈Ψx, Ψy〉Hk
= k(x, y) from the proof

of Proposition 2:

∥∥∥∥∥∑
i

yiαiΦxi

∥∥∥∥∥
2

Hk

=
n∑

i,j=1

yiyjαiαjk(xi, xj)

=
1

2

n∑
i,j=1

yiyjαiαj(−d2(xi, xj) + d2(xi, x0) + d2(x0, xj))

= −1

2

n∑
i,j=1

yiyjαiαjd
2(xi, xj)
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where the other terms vanish because of the constraint
∑n

i=1 yiαi = 0. So the
final optimization problem becomes

min
α

−1

2

n∑
i,j=1

yiyjαiαjd
2(xi, xj)

subject to:
∑

i

yiαi = 0,
∑

i

αi = 2, αi ≥ 0,

and with w =
∑

i=1 yiαiΦxi
the final classifier has the form

f(x) = 〈w, Φx〉Hk
+ b =

n∑
i=1

yiαik(xi, x) + b

= −1

2

n∑
i=1

αiyi(d
2(xi, x)− d2(xi, x0)) + b = −1

2

n∑
i=1

αiyid
2(xi, x) + c

The constant c is determined in such a way that the hyperplane lies exactly
half way between the two closest points of the convex hulls. Following this
consideration the point m = 1

2

∑n
i=1 αiΦxi

lies on the hyperplane. Then c can
be calculated by:

c = −〈w, m〉Hk
=

1

2

n∑
i,j=1

yiαiαj(d
2(xi, xj)− d2(xi, x0))

4.4 Equivalence to the Support Vector Machine

The standard point of view on SVM is that we have an input space X which
describes the data. This input space X is then embedded via Φ into a Hilbert
space H with a positive definite kernel 4 and then maximal margin separation
is done. The following diagram summarizes this procedure:

X kernel k−−−−→ Hk −→ maximal margin separation (9)

where the kernel k is positive definite.
We show now that this is equivalent to the point of view in this paper:

(X , d)
isometric−−−−−→ Hk −→ maximal margin separation

where d is a Hilbertian metric.
The next proposition is the key to this equivalence. It is a characterization of

4 Originally the SVM was only formulated with positive definite kernels. Later it
was shown in [14] that due to the translation invariance of the maximal margin
problem in feature space one can use the class of conditionally positive definite
kernels. In this case the kernel k(x, y) is not equal to an inner product 〈Φx,Φy〉 in
a Hilbert space, but it defines an inner product on a subspace which includes A.
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the class of all conditionally positive definite kernels in terms of the class of
Hilbertian metrics. It can be found in Berg et al. (see Proposition 3.2 of [3]).
We have rewritten it in order to stress the relevant result.

Proposition 4 All conditionally positive definite kernels k : X × X → R
are generated by a Hilbertian metric d(x, y) in the sense that there exists a
function g : X → R such that

k(x, y) = −1

2
d2(x, y) + g(x) + g(y) , (10)

and any kernel of this form induces the Hilbertian metric d via

d2(x, y) = k(x, x) + k(y, y)− 2k(x, y). (11)

This proposition establishes a many-to-one correspondence between the set of
conditionally positive definite kernels and Hilbertian metrics. This is rather
obvious since already any change of the origin in the RKHS corresponds to a
new kernel function on X but the induced metric (11) is invariant. Moreover
the following theorem shows that only the Hilbertian metric d matters for
classification with the SVM.

Theorem 5 The SVM is equivalent to the metric based maximal margin clas-
sifier in a Hilbert space. The solution of the SVM does not depend on the spe-
cific isometric embedding Φ, nor on the corresponding choice of the kernel in
a given family determined by a Hilbertian metric, see (10). The optimization
problem and the solution can be completely expressed in terms of the (semi)-
metric d of the input space,

min
α

∥∥∥∥∥∑
i

yiαiΦxi

∥∥∥∥∥
2

Hk

= −1

2

∑
i,j

yiyjαiαjd
2(xi, xj)

subject to :
∑

i

yiαi = 0,
∑

i

αi = 2, αi ≥ 0.

The solution can be written as

f(x) = −1

2

∑
i

yiαid
2(xi, x) + c.

Proof By Proposition 4 all conditionally positive definite kernels are gen-
erated by a Hilbertian metric d(x, y). Using (10) one can show now that for
each kernel associated to a Hilbertian metric the corresponding optimization
problem for maximal margin separation and the corresponding solution are
equivalent to the metric maximal margin classification problem in a Hilbert
space for the associated Hilbertian metric.
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The expression of the optimization problem of the SVM in terms of the (semi)-
metric follows from (10);

∥∥∥∥∥∑
i

yiαiΦxi

∥∥∥∥∥
2

Hk

=
∑
i,j

yiyjαiαjk(xi, xj)

=
∑
i,j

yiyjαiαj[−
1

2
d2(xi, xj) + g(xi) + g(xj)]

= −1

2

∑
i,j

yiyjαiαjd
2(xi, xj),

where the terms with g vanish due to the constraint
∑

i yiαi = 0.
The solution expressed in terms of a CPD kernel k can also be expressed in
terms of the (semi)-metric by using (10):

f(x) =
∑

i

yiαik(xi, x) + b =
∑

i

yiαi[−
1

2
d(xi, x)2 + g(xi) + g(x)]

= −1

2

∑
i

yiαid
2(xi, x) + c,

where again
∑

i yiαig(x) vanishes and c = b +
∑

i yiαig(xi), but c can also
be directly calculated with the average value of b = yj + 1

2

∑
i yiαid

2(xi, xj),
where j runs over all indices with αj > 0. Since neither the specific isometric
embedding Φ nor a corresponding kernel k enter the optimization problem or
the solution, the SVM only depends on the (semi)-metric. 2

The kernel is sometimes seen as a similarity measure. The last theorem, how-
ever, shows that this property of the kernel does not matter for support vector
classifiers. On the contrary the (semi)-metric as a dissimilarity measure of the
input space only matters for the maximal margin problem. Nevertheless it
seems to be easier to construct a conditionally positive definite kernel than a
Hilbertian metric, but one should have in mind that only the induced metric
has an influence on the solution, and therefore compare two different kernels
through their induced metrics. This should also be considered if one uses eigen-
values of the kernel matrix. They depend on the underlying Hilbertian metric
and as well on the function g(x) in (10) whereas the solution of the SVM only
depends on the Hilbertian metric. In other words properties which are not
uniform over the class of kernels induced by a semi-metric are not relevant for
the solution of the SVM.
One could use the ambiguity in the kernel to chose from the whole class of
kernels which induce the same (semi)-metric (10) the one which is computa-
tionally the cheapest, because the solution does not change as is obvious from
the last theorem. Furthermore note that Lemma 8 provides a slight refinement
of the usual representer theorem of the SVM which states that the solution
lies in an at most n dimensional space spanned by the data (see e.g. [15]).
This refinement seems to be a marginal effect for large training sets. However
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the crucial point here is that the constraint on the subspace implies that the
SVM is actually equivalent to the metric based maximal margin classifier in
a Hilbert space.
As a final note we would like to add that the whole argumentation on the
isometric embedding of the (semi)-metric space into a Hilbert space also ap-
plies to the soft-margin-formulation of the SVM. The reformulation in terms
of reduced convex hulls is a little bit tricky, and we refer to [4,2,17] for this
issue.

5 Measuring the capacity via Rademacher averages

In this section we compute the Rademacher averages corresponding to the
function classes induced by our embeddings. The Rademacher average is a
measure of capacity of a function class with respect to classification, and
can be used to derive upper bounds on the error of misclassification (see e.g.
Theorems 7 and 11 from [9]).

5.1 General case

Given a sample of input points x1, . . . , xn, we define the empirical Rademacher
average R̂n of the function class F as

R̂n(F) := Eσ sup
f∈F

1

n

n∑
i=1

σif(xi) , (12)

where σ are Rademacher variables, that are independent uniform random vari-
ables with values {−1, +1}, and Eσ denotes the expectation conditional to the
sample (i.e. with respect to the σi only). The function classes we are inter-
ested in are hyperplanes with a given margin. Now hyperplanes correspond
to elements of the dual of the Banach space into which the data is embedded
and the margin corresponds to the norm in that space. Therefore we have to
consider the Rademacher averages of balls in the dual space.
For a function fw′ in FB′ , fw′(x) = 〈w′, Φx〉B′,B with ‖fw′‖FB′ = ‖w′‖B′ so that

Eσ sup
‖w′‖B′≤B

1

n

n∑
i=1

σif(xi) =
B

n
Eσ

∥∥∥∥∥
n∑

i=1

σiΦxi

∥∥∥∥∥
B

.

Notice that even if the embedding Φ is isometric, the above quantity depends
on how the Φ(xi) are located in the embedded linear space. So, a priori, the
above quantity depends on the embedding and not only on the geometry of
the input space.
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More precisely, we consider the following two classes. For a given positive def-
inite kernel k, let k̃ be defined as k̃(x, y) = k(x, y) − k(x, x0) − k(x0, y) +
k(x0, x0)

5 and H be the associated RKHS for k̃. We define F1 = {g ∈
H, ‖g‖ ≤ B}. Also, with the notations of the previous section, we define
F2 = {e ∈ D, ‖e‖ ≤ B}.

Theorem 6 With the above notation, we have

R̂n(F1) ≤
B

n

√√√√ n∑
i=1

d(xi, x0)2 .

where d(xi, x0) = ‖k(xi, ·)−k(x0, ·)‖H is the distance induced by the kernel on
X . Also, there exists a universal constant C such that

R̂n(F2) ≤
CB√

n

∫ ∞

0

√
log N(

ε

2
,X , d) dε.

Proof We first compute the Rademacher average of F2:

R̂n(F2) =
B

n
Eσ

∥∥∥∥∥
n∑

i=1

σiΦxi

∥∥∥∥∥
∞

=
B

n
Eσ sup

x∈X

∣∣∣∣∣
n∑

i=1

σiΦxi
(x)

∣∣∣∣∣ (13)

We will use Dudley’s upper bound on the empirical Rademacher average [6]
which states that there exists an absolute constant C for which the following
holds: for any integer n, any sample {xi}n

i=1 and every class F2,

R̂n(F2) ≤
C√
n

∫ ∞

0

√
log N(ε,F2, `n

2 ) dε, (14)

where N(ε,F2, `
n
2 ) are the covering numbers of the function class F2 with

respect to the `2 distance on the data, i.e. ‖f −g‖2
`n
2

:= 1
n

∑n
i=1(f(xi)−g(xi))

2.
In order to apply this result of Dudley, we notice that the elements of X can be
considered as functions defined on X . Indeed, for each y ∈ X , one can define
the function fy : x 7→ Φx(y). We denote by G the class of all such functions,
i.e. G = {fy : y ∈ X}. Then using (13), we get

R̂n(F2) = B Eσ sup
x∈X

∣∣∣∣∣ 1n
n∑

i=1

σiΦxi
(x)

∣∣∣∣∣ = B R̂n(G). (15)

5 where k(x0, ·) corresponds to the origin in H and is introduced to make the
comparison with the space D easier
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We now upper bound the empirical L2-norm of G:

‖fy1 − fy2‖`n
2
≤ max

xi∈T
|Φxi

(y1)− Φxi
(y2)|

= max
xi∈T

|d(xi, y1)− d(xi, y2) + d(x0, y2)− d(x0, y1)|

≤ 2d(y1, y2). (16)

Combining (14) and (16) we arrive at

R̂n(G) ≤ C√
n

∫ ∞

0

√
log N(

ε

2
,X , d) dε

This gives the first result. Similarly, we have

R̂n(F1) =
B

n
Eσ

∥∥∥∥∥
n∑

i=1

σi(k(xi, .)− k(x0, .))

∥∥∥∥∥
H
≤ B

n

√√√√ n∑
i=1

d(xi, x0)2 ,

where the second step follows from Jensen’s inequality (applied to the concave
function

√
·). 2

If we can assume that the data is inside a subset of X with finite diameter R,
then this simplifies to

R̂n(F2) ≤
CB√

n

∫ R

0

√
log N(

ε

2
,X , d) dε.

The above theorem gives an upper bound on the Rademacher average directly
in terms of the covering numbers of the metric space (X , d).
In particular, this shows that the Rademacher average corresponding to the
Kuratowski embedding are much smaller than those corresponding to the Lip-
schitz embedding of [16]. Indeed, for a bounded subset of the metric space Rd,
the covering numbers behave like ε−d so that the Rademacher average in our

case is of order
√

d/n while in the Lipschitz case it is of order (1/n)1/d.

Notice that a trivial bound on R̂n(F2) can be found from (13) and∣∣∣∣∣
n∑

i=1

σi(d(xi, x)− d(x0, x))

∣∣∣∣∣ ≤
n∑

i=1

d(xi, x0),

which gives the upper bound

R̂n(F2) ≤
B

n

n∑
i=1

d(xi, x0) ,

which is also an upper bound on R̂n(F1). However, this upper bound is loose
since if all the data is at approximately the same distance from x0 (e.g. on a
sphere), then this quantity does not decrease with n. This is undesirable as it
would mean that the bound on the error does not decrease when the sample
size is increased.
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5.2 Comparing the approaches

More interesting than upper bounds on the Rademacher averages of the in-
dividual algorithms is to compare them directly in the cases where both al-
gorithms can be applied (i.e. when −d2 is conditionally positive definite). In
this case, one can choose to embed isometrically the input space either into a
Hilbert space or into a Banach space. The question is then how different balls
of same radius in the dual spaces are.

Theorem 7 If d is a Hilbertian metric, then

R̂n(F1) ≤
B

n

√√√√ n∑
i=1

d(xi, x0)2 ≤
√

2R̂n(F2) .

Proof We have

R̂n(F2) =
B

n
Eσ sup

x∈X

∣∣∣∣∣
n∑

i=1

σiΦxi
(x)

∣∣∣∣∣ ≥ B

n
Eσ

∣∣∣∣∣
n∑

i=1

σiΦxi
(x0)

∣∣∣∣∣
≥ B√

2n

√√√√Eσ

n∑
i,j=1

σiσjΦxj
(x0)Φxi

(x0)

=
1√
2

B

n

√√√√ n∑
i=1

d(xi, x0)2 ≥ 1√
2
R̂n(F1)

The second step follows from the Khintchine-Kahane inequality. The constant
1/
√

2 is optimal, see e.g. [8]. 2

This result can be seen as an indication that the SVM is as good as the general
algorithm for arbitrary metric spaces in terms of complexity of the unit ball.
However, this does not directly allow to compare the generalization abilities
of both algorithms. Indeed, the obtained margin in each case could be quite
different.

6 Conclusion and perspectives

In this article we have built a general framework for the generation of maximal
margin algorithms for metric spaces. We considered two general cases. In the
first one we trust the metric globally, in the second one we believe only in
the local structure of the metric which seems to be often the case for metrics
defined on real-world data. In the first case we embed directly isometrically
into a Banach space, in the second one we first perform a uniform transforma-
tion of the metric such that the local structure is preserved and then embed
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isometrically the transformed space into a Banach space.
For each metric space we presented a Banach space into which it can be
embedded isometrically. It turned out that the optimization problem of the
maximal margin algorithm in this Banach space cannot be solved exactly. We
provided an approximation which is exact if one considers the training data
plus one test point as a finite metric space. One special approximation is the
LP-machine for distances of [7].
Since the space of classifiers has a considerably nicer structure if one embeds in
a Hilbert space, we considered in the second part isometric embeddings into
a Hilbert space. These are no longer possible for all metric spaces, but are
restricted to the subclass of Hilbertian metrics. We showed that the resulting
algorithm is equivalent to the SVM classifier, but since the relationship be-
tween kernels and Hilbertian metrics is many-to-one, the metric based point
of view provides a better insight into the structural properties of the SVM.
For the class of Hilbertian metrics we can compare the two isometric embed-
dings. They both preserve the metric structure, that is, all available infor-
mation on the data. Therefore the question arises which norm on the linear
extension provides the better results in the sense of generalization error. We
provided a first answer to this question by comparing the Rademacher aver-
ages of both algorithms. It turned out that the Rademacher average of the
SVM are upper bounded by a constant times the Rademacher average of the
metric based classifier in the Banach space. This result suggests that the SVM
has a better generalization performance. But further work has to be done in
that direction.
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A Semi-metric spaces compared to metric spaces for classification

In this article all results were stated for metric spaces. As the following obser-
vations show they can be formulated equivalently for semi-metric spaces. In
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fact there is a connection between both of them which we want to clarify in
this appendix.

Theorem 8 Let (X , d) be a (semi)-metric space and ∼ be the equivalence
relation defined by x ∼ y ⇔ d(x, y) = 0. Then (X/ ∼, d) is a metric space,
and if −d2(x, y) is a conditionally positive definite kernel and k a positive
definite kernel on X which induces d on X , then −d2 is also a conditionally
positive definite kernel and k a positive definite kernel on (X/ ∼, d).

Proof The property d(x, y) = 0 defines an equivalence relation on X , x ∼
y ⇐⇒ d(x, y) = 0. Symmetry follows from the symmetry of d, and transitivity
x ∼ y, y ∼ z ⇒ x ∼ z follows from the triangle inequality d(x, z) ≤ d(x, y) +
d(y, z) = 0. Then d(x, y) is a metric on the quotient space X/ ∼ because all
points with zero distance are identified, so

d(x, y) = 0 ⇐⇒ x = y,

and obviously symmetry and the triangle inequality are not affected by this
operation. d is well-defined because if x ∼ z then |d(x, .)−d(z, .)| ≤ d(x, z) = 0.
The fact that −d2 is conditionally positive definite on X/ ∼ follows from the
fact that all possible representations of equivalence classes are points in X and
−d2 is conditionally positive definite on X . It is also well defined because if
x ∼ z then

|d2(x, .)− d2(z, .)| ≤ d(x, z)|(d(x, .) + d(z., )| = 0.

The argumentation that k is also positive definite on X/ ∼ is the same as
above. It is well defined because if x ∼ x′ then ‖Φx − Φx′‖ = 0, so that actually
k(x, ·) = k(x′, ·) (since for all y ∈ X , |k(x, y) − k(x′, y)| ≤ ‖Φx − Φx′‖ ‖Φy‖).
2

The equivalence relation defined in Theorem 8 can be seen as defining a kind
of global invariance on X . For example in the SVM setting when we have
the kernel k(x, y) = 〈x, y〉2, the equivalence relation identifies all points which
are the same up to a reflection. This can be understood as one realization of
an action of the discrete group D = {−e, +e} on Rn, so this kernel can be
understood as a kernel on Rn/D.
Assume now that there are no invariances in the data and two different points
x 6= y with different labels are such that d(x, y) = 0. Then they cannot be
separated by any hyperplane. This means that using semi-metrics implicitly
assumes invariances in the data, which may not hold.
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