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Kernels, Associated Structures and Generalizations

Matthias Hein and Olivier Bousquet

Abstract. This paper gives a survey of results in the mathematical literature on positive definite kernels and
their associated structures. We concentrate on properties which seem potentially relevant for Machine Learning
and try to clarify some results that have been misused in the literature. Moreover we consider different lines of
generalizations of positive definite kernels. Namely we deal with operator-valued kernels and present the general
framework of Hilbertian subspaces of Schwartz which we use to introduce kernels which are distributions. Finally
indefinite kernels and their associated reproducing kernel spaces are considered.

1 Introduction

Positive definite kernels are extremely powerful and versatile tools. They allow to construct spaces of functions
on an arbitrary set with the convenient structure of a Hilbert space. Methods based on such kernels are usually
very tractable because of the particular structure (reproducing property) of the space of functions. This has a
large number of applications, in particular for statistical learning, approximation or interpolation where one has to
manipulate functions defined on various types of data, see e.g. [1, 2, 3].
Our goal is to survey some of the results relevant for machine learning. Since the literature is scattered among
various fields of mathematics we believe that the learning community would benefit from a unified exposition of
the results and relationships between them. This work is a first attempt to go into that direction. Although the
theory can be quite technical, we want to shed light on its essence and convey several important messages that
anyone working with kernels and associated spaces should have in mind.
A first message is that there is an equivalence (in a strong) sense between several objects: positive definite kernels
(which are specific functions of two variables), Hilbert spaces of functions with a certain topological property,
Gaussian processes and a class of positive operators. A second message is that the mysterious ”feature maps”
associated to kernels are not related to the Mercer property and they exist and can be defined in many different
ways as soon as the kernel is positive definite. A third message is that the integral operator associated to a kernel
has nice properties even if the kernel is not continuous. In particular it is tightly related to the covariance operator
(i.e. the population limit of a covariance matrix) as they have the same spectrum. A fourth message is that most
attempts to generalize kernels (e.g. to operator-valued or generalized functions) end up being special cases. This
may seem surprising but it easily seen by changing the point of view one adopts, going from sets to functions on
these sets. Finally, we recall that there exists a well-developed theory of indefinite kernels (i.e. kernels that are not
positive definite) and their associated structures, based on the notion of reproducing kernel Krein spaces.

2 Positive Definite Kernels and Associated Structures

We restrict ourselves to the real-valued case and denote byRX the vector space of functions fromX to R where
X is an arbitraryindexset1 and byR[X ] the vector space of finite linear combinations of evaluation functionals
(i.e. of the form

∑n
i=1 aiδxi

). We define a bilinear map fromR[X ] × RX to R as 〈
∑n

i=1 αiδxi
, f〉R[X ],RX :=∑n

i=1 αif(xi) wherex1, . . . , xn ∈ X .
In this first section we shortly review the notion of positive definite (PD) kernels and its associated structures.
Indeed such a kernel can be associated to a space of functions, called reproducing kernel Hilbert space (RKHS), to
a linear operator called positive symmetric kernel (PSK) operator and to a Gaussian process in a natural way. The
following diagram illustrates the fact that all these notions are tightly related.

PD kernel ←→ RKHS
l l

PSK operator ←→ Gaussian Process

1or also calledinput space.
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2.1 Definitions

We now give the definitions of the four objects in the preceding diagram.

Definition 1 A real-valued symmetric functionk : X ×X → R is called apositive definite (PD) kernelif for all
n ≥ 1, x1, . . . , xn ∈ X , c1, . . . , cn ∈ R

n∑
i,j=1

cicjk(xi, xj) ≥ 0 (1)

The set of all real-valued positive definite kernels onX is denotedRX×X+ .

Definition 2 A positive symmetric kernel (PSK) operatorK is a linear operatorK : R[X ] → RX which is
symmetric

∀v′, w′ ∈ R[X ], 〈v′,Kw′〉R[X ],RX = 〈w′,Kv′〉R[X ],RX ,

and positive:∀v′ ∈ R[X ], , 〈v′,Kv′〉R[X ],RX ≥ 0.

The set of all such operators is denotedL+(RX ).

Definition 3 A reproducing kernel Hilbert space (RKHS)H onX is a Hilbert space of functions fromX to R
where all evaluation functionalsδx : H → R, δx(f) = f(x) are continuous2, equivalently for allx ∈ X , there
exists aMx <∞ such that

∀ f ∈ H, |f(x)| ≤Mx ‖f‖H .

The set of all such spaces is denotedHilb(RX ).

This definition stresses the fact, that an RKHS is a Hilbert space of pointwise defined functions, where norm
convergence implies pointwise convergence.

Definition 4 A centered Gaussian processindexed byX is a family Xx, x ∈ X , of jointly normal random
variables, that is for each finite setx1, . . . , xn ∈ X , the vector(Xx1 , . . . , Xxn

) is centered Gaussian3.
The set of all such processes is denotedG(X ).

Note that we restrict ourselves to centered Gaussian random variables. In principle the results can be transferred
to the non-centered case.

2.2 Properties and Connections

The fundamental and most important property of PD kernels is the relationship with inner product spaces. Often
the use of kernel methods is justified by the implicit mapping of the input spaceX into a ’high-dimensional’ feature
space. As the next proposition shows, such a mapping exists as soon as the kernel is positive definite and actually
characterizes such kernels.

Proposition 1 A functionk : X × X → R is a PD kernel if and only if there exists a Hilbert spaceH and a map
φ : X → H such that∀x, y ∈ X , k(x, y) = 〈φ(x), φ(y)〉H.

Note that this result has nothing to do with Mercer’s theorem (we will come back to this issue in section 3.1).
There exist many proofs of the above proposition and we will give one later.
We will now establish the connections between the four objects we have introduced in the previous section. It is
well known (see e.g. [4]) thatRX×X+ is invariant under addition, multiplication by a non-negative number and
point-wise limits and has an order relationship (k1 � k2 if k1 − k2 is PD). It is less known that all the other
sets introduced above (L+(RX ), Hilb(RX ) andG(X )) have a similar structure. Actually, the following strong
equivalence between these spaces and their structures holds.

Theorem 1 [5] There exist bijections which preserve the structure of ordered, closed convex cones between each
two of the following sets

RX×X+ , L+(RX ) , Hilb(RX ) , G(X ) .

An example how the order is transferred fromRX×X+ to Hilb(RX ) is the following.

Theorem 2 [4] Let k1, k2 ∈ RX×X+ and H1,H2 their associated RKHS. ThenH1 ⊂ H2, and ‖f1‖H1
≥

‖f1‖H2
, ∀ f1 ∈ H1 if and only ifk1 � k2.

2with respect to the topology induced by the norm ofH
3equivalently, all linear combinations

∑
αiXxi are real Gaussian random variables with zero mean.
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The remaining part of this section will show several of these bijections, but due to space limitations we are not able
to show all of them explicitly. Additionally we introduce in the appendix several objects associated to a Gaussian
Process. These objects become interesting if one is interested for example in sample path properties of a Gaussian
Process.

2.2.1 PD Kernels and PSK Operators
The bijection between kernels and kernel operators is made explicit in the following lemma.

Lemma 1 [6] Let k ∈ RX×X+ . The linear operatorK : R[X ] → RX defined byK(δx) = k(x, ·), is a PSK
operator. Conversely, givenK ∈ L+(X ), the functionk defined ask(x, y) = 〈δx,Kδy〉R[X ],RX is a PD kernel.

The above lemma indicates the close correspondence between the kernel function and its associated operator. In
particular, symmetry of one corresponds to symmetry of the other, while positive definiteness of the former one
corresponds to positivity of the latter.

2.2.2 PD Kernels and RKHS
The following fundamental theorems illustrate the link between RKHS and PD kernels.

Theorem 3 [4] Let H be a Hilbert space of functions fromX to R,H is a RKHS if and only if there exists a map
k : X × X → R such that

∀x ∈ X , k(x, ·) ∈ H,

∀ f ∈ H, 〈f(·), k(x, ·)〉H = f(x) .

If such ak exists, it is unique and it is a PD kernel.

The second property is called thereproducing propertyof the RKHS andk is called the (reproducing) kernel ofH.

Theorem 4 (Moore) If k is a positive definite kernel then there exists a unique reproducing kernel Hilbert space
H whose kernel isk.

Proof: We give a sketch of the proof (of both theorems above) which involves an important construction. The
proof proceeds in three steps. The first step is to consider the set of all finite linear combinations of the kernel:
G = Span{k(x, .) : x ∈ X} and to endow it with the following inner product〈∑

i

aik(xi, .),
∑

j

bjk(xj , .)

〉
G

=
∑
i,j

aibjk(xi, xj) . (2)

It can be shown that this is indeed a well-defined inner product. At this point we already have the reproducing
property onG. The second step is to construct the semi-norm associated to this inner product and to show (thanks
to the Cauchy-Schwarz inequality) that it is actually a norm. Hence, and this is the third step,G is a pre-Hilbert
space which can be completed4 into a Hilbert spaceH of functions. Finally, one has to check that the reproducing
property carries over to the completion. It is then easy to show that any other Hilbert space with the same repro-
ducing kernel has to be isometric isomorphic. Namely letK be another RKHS with reproducing kernelk. It is
obvious thatH has to be a closed subspace ofK. ThenK can be decomposed intoK = H⊕H⊥. Now letf ∈ K,
butf /∈ H. Then for allx ∈ X

f(x) = 〈f, k(x, ·)〉K =
〈
f‖ + f⊥, k(x, ·)

〉
K

= f‖(x)

Thereforef ≡ f‖, which is a contradiction and we getK = H. �

HenceH is simply the completion of the linear span (i.e. finite linear combinations) of the functionsk(x, ·)
endowed with the inner product (2).

2.2.3 PD Kernels and Gaussian Processes
It is well-known that a centered Gaussian process(Xx)x∈X is uniquely determined by its covariance function

E [XsXt], which is a positive definite kernel. Conversely any positive definite kernel defines a covariance function
and therefore a unique Gaussian process by Theorem 14.

4i.e. we add toG the pointwise limits of all Cauchy sequences of elements ofG
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3 Useful Properties

A quit useful relationship betweenk ∈ RX×X+ and the setX is thatk induces a semi-metric onX by dk(x, y) =
‖k(x, ·)− k(y, ·)‖H . Many properties of the RKHS can be stated in terms of this (semi)-metric space(X , dk) as
we will later see in the study of the separability of the RKHS.

3.1 Feature Maps

Often Mercer’s theorem is mentioned as a necessary condition to have a feature map. The goal of this section
is to show, that it is a sufficient condition but it requires additional assumptions onX andk. As we have seen
in Proposition 1 a necessary and sufficient condition that such a feature map into a Hilbert space exists is that the
kernel is positive definite. Two questions can then be raised: Can such a map be constructed explicitly ? What is the
induced representation for the kernel ? Both questions have an affirmative answer without any further assumptions
onk as the following feature mapsΦ : X → H show.

1. Aronszajn map
φ : x 7→ k(x, ·),H is the associated RKHS,k(x, y) = 〈k(x, ·), k(y, ·)〉

2. Kolmogorov map
φ : x 7→ Xx,H = L2(RX , µ) whereµ is a Gaussian measure5, k(x, y) = E [XxXy]

3. Integral map
There exists a setT and a measureµ onT such that one hasφ : x 7→ (Γx(t))t∈T ,H = L2(T, µ)6, k(x, y) =∫

Γ(x, t)Γ(y, t)dµ(t)

4. Basis map
given any orthornormal basis7 (fα)α∈I of the RKHS associated toH, one hasφ : x 7→ (fα(x))α∈I , H =
`2(I)8 andk(x, y) =

∑
α∈I fα(x)fα(y).

When infinite sums are involved like in the last case, it is important to specify in which sense the sum converges.
In general the convergence occurs for each pair(x, y). However, [7] shows one has stronger convergence, namely
uniform on every setA×B ⊂ X × X , with A bounded andB compact (w.r.t. the topology induced bydk).
Given additional structure of the kernel resp. the corresponding RKHS there exist other feature space interpreta-
tions. Mercer’s theorem is a special case of the basis map. It gives stronger convergence properties of the kernel
representation but needs additional assumption, namelyX has to be compact and the kernelk continuous.

3.2 Boundedness and Continuity

Because of the PD property and Cauchy-Schwarz inequality, there are relationships between the functionx 7→
k(x, x) and(x, y) 7→ k(x, y) when one considers boundedness or continuity properties of the kernel.

Lemma 2 For a PD kernelk the following two statements are equivalent

(i) x 7→ k(x, x) is bounded;

(ii) (x, y) 7→ k(x, y) is bounded.

Lemma 3 [8] A PD kernelk is continuous onX × X if and only if the following two conditions are fulfilled

(i) x 7→ k(x, x) is continuous;

(ii) for any fixedx the functiony 7→ k(x, y) is continuous aty = x.

These conditions are equivalent to the continuity of the function(x, y) 7→ k(x, y) at every point of the diagonal
{(x, y) : x = y}.
Corollary 1 If k is continuous onX × X then the identity map(X , d)→ (X , dk) is continuous.

5see Appendix A for details.
6The Kolmogorov map shows that such a setT and a measureµ always exist.
7such a basis always exists but may be uncountable, in which case, only a countable subset of the coordinates of any vector

are non-zero.
8space of square summable functions onI with countable support
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Proof: Follows directly fromd2
k(x, xn) = k(x, x)− 2k(xn, x) + k(xn, xn). �

A related question is: when does the RKHS consist of continuous functions ? Sincek(x, ·) belongs to the associated
RKHS, this means thatk has to be at least separately continuous. The following theorem provides necessary and
sufficient conditions in a rather general setting.

Theorem 5 [6] Let X be a locally compact space andC(X ) the space of continuous functions onX with the
topology of uniform convergence on compact subsets. The canonical injectioni : Hk → C(X ) is continuous if
and only ifk(x, y) is separately continuous onX × X and locally bounded.

3.3 When is a Function in a RKHS ?

Let us suppose we are given a functionf and want to know if it is contained in the RKHS associated to a PD kernel
k. Some mistakes have been made concerning this question in the Machine Learning literature. We give a general
result.

Lemma 4 [8] The functionf belongs to the RKHSH associated tok if and only if there existsε > 0 such that

Rε(x, y) = k(x, y)− εf(x)f(y) ,

is a positive definite kernel. Equivalently this corresponds to the condition

sup
|I|<∞, (ai)i∈I∈R, (xi)i∈I∈X

∑
i∈I aif(xi)(∑

i,j∈I aiajk(xi, xj)
)1/2

<∞.

If this is satisfied, one can compute the norm off as the value of the above supremum, or as‖f‖H =
inf{1/

√
ε | ε > 0, Rε � 0}.

A simple consequence of this lemma is that the RKHS associated to any bounded kernel cannot contain unbounded
functions.

3.4 Separability of the RKHS

Some convergence proofs of iterative algorithms require the separability of the RKHS. However, this is seldom
made explicit in the Machine Learning literature. The first result gives a necessary and sufficient condition for
separability.

Theorem 6 [9] Hk is separable if and only if(X , dk) is separable.

Proof: LetHk be separable, thenHk and every subset ofHk is second countable. Particularly the setk(X , ·) :=
{k(x, ·) |x ∈ X} is second countable and therefore separable. Since(X , dk) is isometric to the setk(X , ·), (X , dk)
is separable.
We sketch the proof of the other direction. Since(X , dk) is separable,k(X , ·) is separable. Then it is easy to show
that the span ofk(X , ·) with rational numbers is dense in Spank(X , ·) and sinceHk = Spank(X , ·) we are done.
�

In the case of continuous kernels we get the following consequence

Theorem 7 [8] Let X be a topological space,k a PD kernel which is continuous onX ×X , andH its associated
RKHS. IfX is separable, thenH is separable.

As a result any continuous kernel onRn induces a separable RKHS e.g. the RKHS associated to the RBF kernel
k(x, y) = exp(−‖x− y‖ /σ2) is separable. In the case, whereHk is separable, the basis feature map can be
written with a countable sum. Again, this does not require anything like Mercer’s theorem.

4 Integral and Covariance Operators

In general we assume in statistical learning theory that the spaceX is endowed with a probability measureP .
Then samplesXi are drawn according to this probability measureP . These define then the empirical measure
Pn = 1

n

∑n
i=1 δXi

.
In kernel-algorithms one uses the so-calledkernel matrixKn : L2(X , Pn) → L2(X , Pn) defined asKn =
1
n (k(Xi, Xj))i,j=1,...,n and theempirical covariance operatorCn : Hk → Hk defined asCn = 1

n

∑n
k=1 Φ(Xk)⊗

Φ(Xk). These are under some conditions finite sample approximations of operatorsK : L2(X , P ) → L2(X , P )
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resp.C : Hk → Hk defined for the whole probability measureP .
We will study the properties of the operatorsK andC and the convergence of the empirical counterparts to the
true operators under the following assumptions on the kernel.

• k(x, y) is measurable,

• k(x, y) is a positive definite kernel,

•
∫
X k(x, x)dP (x) <∞.

Note that the second assumption impliesk ∈ L2(X × X , P ⊗ P ) by the Cauchy-Schwarz inequality. Also note
that in our setting we have no assumptions on the separability ofH or L2(X , P ).

Theorem 8 Let i : H → L2(X , P ) be the canonical injection. Then under the stated assumptionsi is continuous.
Moreoveri is a Hilbert-Schmidt operator with‖i‖2HS ≤

∫
X k(x, x)dP (x).

Proof: Let i be the canonical injectioni : H → L2(X , P ). Then for allf ∈ H,

‖if‖2L2(X ,P ) =
∫
|f(x)|2dP (x) =

∫
〈f, k(x, ·)〉2H dP (x) ≤ ‖f‖2H

∫
k(x, x)dP (x) .

Thereforei is a bounded operator.
Denote by{eα, α ∈ A} an orthonormal basis (possibly uncountable) ofL2(X , P ). i is Hilbert-Schmidt if and
only if

∑
α∈A ‖i eα‖2L2(X ,P ) <∞. For all finite setsF ⊂ A we have∑

α∈F

‖ieα‖2L2(X ,P ) =
∫
X

∑
α∈F

|eα(x)|2dP (x) =
∫
X

∑
α∈F

|〈eα, k(x, ·)〉H|
2
dP (x)

≤
∫
X
‖k(x, ·)‖2H dP (x) =

∫
X

k(x, x)dP (x)

where we have used Bessel’s inequality. Let nowSfin(A) = {P ⊂ A |P finite} be the directed set of finite
subsets ofA with the set inclusion as partial order. Since all summands are positive, the limit of the net of partial
sums can be computed as follows∑

α∈A

‖i eα‖2L2(X ,P ) = sup{
∑
α∈F

‖i eα‖2L2(X ,P ) , F ∈ Sfin(A)} ≤
∫
X

k(x, x)dP (x).

�

The next proposition connects the canonical injectioni with the integral and the covariance operator:

Proposition 2 The integral operatorK

K : L2(X , P )→ L2(X , P ), (Kf)(x) =
∫
X

k(x, y)f(y)dP (y) . (3)

and the covariance operatorC

C : H → H, 〈f, Cg〉 =
∫
X

f(x)g(x)dP (x) . (4)

are both positive, self-adjoint, Hilbert-Schmidt and trace-class. Moreover they can be decomposed asK = ii∗

and C = i∗i and have the same spectrum, which implies thattrK = trC and ‖C‖HS = ‖K‖HS =
‖k‖L2(X×X ,P⊗P ).

Proof: We showed in theorem 8 thati is continuous. Therefore the adjointi∗ : L2(X , P ) → H exists and is
defined forg ∈ L2(X , P ) andf ∈ H as〈i∗g, f〉H = 〈g, if〉L2(X ,P ) . In particular, choosingf = k(x, ·) ∈ H we
see that(i∗g)(x) = 〈k(x, ·), i∗g〉H = 〈ik(x, ·), g〉 =

∫
X k(x, y)g(y)dP (y), so thatK = ii∗. As a consequence,

K is positive and self-adjoint. Moreover it is trace-class since

trK =
∑
α∈A

〈eα,K eα〉L2(X ,P ) =
∑
α∈A

‖i∗eα‖H = ‖i∗‖2HS ≤
∫
X

k(x, x)dP (x),
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where we use the fact‖i‖HS = ‖i∗‖HS .
Moreover, forf, g ∈ H, 〈f, i∗ig〉H = 〈if, ig〉L2(X ,P ) = E [f(X)g(X)] so thatC is positive, self-adjoint and
C = i∗i. It follows easily thatC is trace-class with

trC =
∑
α∈A

〈eα, C eα〉H =
∑
α∈A

‖i eα‖2L2(X ,P ) = ‖i‖2HS .

Both C and K are trace-class and therefore compact, which implies that they only have a discrete spectrum.
Moreover they have the same spectrum and all non-zero eigenvalues have the same multiplicity. Letλn be an
eigenvalue ofK and denote byΛn the corresponding finite-dimensional eigenspace. Then

ii∗Λn = λnΛn ⇒ (i∗i)i∗Λn = λni∗Λn (5)

that isi∗Λn is an eigenspace ofC to the corresponding eigenvalueλn and the same argumentation holds in the
other direction. Alsodim Λn = dim i∗(Λn) since it follows from (5) thatΛn * Ker(i∗) andi∗(Λn) * Ker(i).
It is a classical result thatk ∈ L2(X × X , P ⊗ P ) implies that K is Hilbert-Schmidt and‖K‖HS =
‖k‖L2(X×X ,P⊗P ), see [10] ( note that this is true, even ifL2(X , P ) is not separable). Since a compact self-adjoint
operator is Hilbert-Schmidt if and only if

∑
i λ2

i <∞ it follows directly from the equality of the spectra thatC is
Hilbert-Schmidt with‖C‖HS = ‖K‖HS = ‖k‖L2(X×X ,P⊗P ). �

Corollary 2 If Ker(i) = 0 thenH = i∗(L2(X, P )) andH is separable.

Proof: If Ker(i) = 0 thenRan(i∗) = Ker(i)⊥ = H. Sincei∗ is compact,Ran(i∗) is separable and therefore
H is separable. �

In other words if the zero function is the only function in the RKHSH which is zeroP -almost everywhere then
the image of the integral operatorK is dense in the RKHS and the RKHS is automatically separable.

Corollary 3 If H is separable then‖i‖2HS = tr C = tr K =
∫
X k(x, x)dP (x).

Proof: Let {en}∞n=1 be a complete orthonormal basis ofH. Then

‖i‖2HS = lim
N→∞

N∑
n=1

‖i en‖2L2(X ,P ) = lim
N→∞

N∑
n=1

∫
X
|en(x)|2dP (x) = lim

N→∞

N∑
n=1

∫
X
| 〈k(x, ·), en〉H |

2dP (x)

=
∫
X

lim
N→∞

N∑
n=1

| 〈k(x, ·), en〉H |
2dP (x) =

∫
X
‖k(x, ·)‖2H dP (x) =

∫
X

k(x, x)dP (x) <∞

where the fourth step follows from the monotone convergence theorem and fifth step is Parseval’s identity.�

The next corollary establishes a feature map inL2(X , P ).
Corollary 4 If k ∈ L2(X × X , P ⊗ P ), then there exists an orthonormal system(φn) in L2(P ) such that

k(x, y) =
∑
n∈N

λnφn(x)φn(y) , (6)

whereλn ≥ 0 and the convergence of the sum occurs inL2(X × X , P ⊗ P ). The associated feature map is thus

Φ(x) = (
√

λnφn(x))n∈N .

Proof: That is a classical result in functional analysis, see e.g. [11]. �

The remaining question is how the empirical counterpartsKn andCn are related to the operatorsK andC.

Proposition 3 Let K be the integral operator defined in(3) andXi an i.i.d. set of random variables drawn from
P . For all f ∈ L2(X , P ) we have:

lim
n→∞

〈f,Kf〉L2(X ,Pn) = lim
n→∞

n−2
n∑

i,j=1

f(Xi)f(Xj)k(Xi, Xj) =
∫
X 2

f(x)f(y)k(x, y)dP (x)dP (y)

= 〈f,Kf〉L2(X ,P ) a.s.
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Proof: The proof is essentially an application of a result in [12]. Given an i.i.d. set of random vari-
ablesXi ∈ X drawn fromP and a measurable symmetric functiong(x, y) : X × X → R it states that
limn→∞ n−2

∑n
i,j=1 g(Xi, Xj) = Eg(X, Y ) almost surely ifE|g(X, Y )| < ∞ andE

√
|g(X, X)| < ∞. Let

now g(x, y) = f(x)f(y)k(x, y), then the conditions require that
∫
X 2 f(x)f(y)k(x, y)dP (x)dP (y) < ∞ and∫

X |f(x)|
√

k(x, x)dP (x) <∞. The second condition implies the first one and we have∫
X
|f(x)|

√
k(x, x)dP (x) ≤

∫
X
|f(x)|2dP (x)

∫
X

k(x, x)dP (x) <∞,

since‖f‖L2(X ,P ) ≤ ‖f‖H
∫
X k(x, x)dP (x). �

The next statement relatesCn andC:

Proposition 4

〈f, Cng〉Hk

a.s.−−→ 〈f, Cg〉Hk
, ∀ f, g ∈ Hk.

Proof: The proof is a simple application of the strong law of large numbers. �

As a final remark we would like to note that ifk is bounded then all the assumptions are fulfilled and the theorems
of this section apply for any probability measureP .

5 Generalizations

Now that we have the general picture in mind, we investigate possible generalizations of the presented notions.
We consider the generalization of kernel functions to operator-valued functions and of the RKHS to Hilbertian
subspaces. We will show that they are both special cases of the general theory above.

5.1 Operator-Valued Kernels

Recently there was interest in the machine learning community to extend real-valued kernels to operator-valued
kernels in order to learn vector-valued functions [13]. This concept is not new in the mathematics literature. It can
at least traced back to the paper of [14].
LetX be a set andG a Hilbert space9. The goal is to generate a (generalized) RKHS whose functions are fromX
to G (instead ofX → R). We define a (generalized) notion of positive definite kernel:

Definition 5 A functionk : X ×X → L(G)10 such thatk(x, y) = k(y, x)∗ is called a positive definite operator-
valued kernel function if for all n ≥ 1, x1, . . . , xn ∈ X , c1, . . . , cn ∈ G,

∑n
i,j=1 〈ci k(xi, xj), cj〉 ≥ 0

This seems to generalize the PD kernels we introduced before, and indeed, several papers deal with the notion of
operator-valued kernels. However, a slight change of point of view allows to recast operator-valued kernels in the
standard setting of real-valued ones, showing their great generality. We have the following result.

Proposition 5 Let k be a PD operator-valued kernelX × X → L(G). Define` as the function on(X × G) such
that `((x, f), (y, g)) = 〈f, k(x, y)g〉G . The mapk 7→ ` thus defined, is a bijection between PD operator-valued
kernelsX × X → L(G) and real-valued PD kernels(X ,G) × (X ,G) → R which are bilinear onG × G11. If
G is finite dimensional, dimG = d, one can also define,(ei) being an orthonormal basis ofG, `((x, i), (y, j)) =
〈ei, k(x, y)ej〉, such thatk 7→ ` is a bijection to real-valued PD kernels on(X , {1, . . . , d}).

Proof: We prove the above proposition in the finite dimensional case (the general case has a similar proof). Let
`((x, i), (y, j) be a PD kernel on(X , {1, . . . , d}). Define a bilinear form onRd by defining the matrixk(x, y) :
Rd → Rd as

kij(x, y) = 〈ei, k(x, y)ej〉Rd = `((x, i), (y, j))

9the same theory can be developed for Banach spaces or locally convex spaces.
10set of bounded linear operators onG
11i.e. k((x, g1), (y, g2)) is bilinear ing1, g2.
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whereei denotes a basis inRd. Conversely given the PD operator valued kernelk(x, y), define by the above
expression the kernel functioǹ((x, i), (y, j)). Then we have withvm ∈ {1, . . . , d}

n∑
i,j=1

d∑
m,n=1

αimαjn`((xi, vm), (xj , vn)) =
n∑

i,j=1

d∑
m,n=1

αimαjnkvmvn(xi, xj)

=
n∑

i,j=1

〈
d∑

m=1

αimevm
, k(xi, xj)

d∑
n=1

αjnevn

〉

=
n∑

i,j=1

〈ci, k(xi, xj)cj〉

with ci =
∑d

m=1 αimevm
. Now if ` is positive definite then consider the index set of sizend given byzim =

(xi, vm) which gives the above expression and implies thatk(x, y) is a PD operator-valued kernel, since we can
express any vectorc ∈ Rd in the form

∑d
m=1 αmevm

. Conversely letk(x, y) be a PD operator-valued kernel and
take as vectorsci = αievi

, then`((x, i), (y, j)) is a PD kernel function since we can express all index sets in the
form zi = (xi, vi). �

The meaning of the above proposition is that at the price of changing the index set, one can simply work with real-
valued kernels, and the positive definiteness of these kernels implies the positivity of the corresponding operator
valued kernels. Moreover one can use the properties of the real-valued kernels to derive the properties of the
operator-valued one.

5.2 Hilbertian Subspaces

Instead of trying to generalize the PD kernels, one may, as in the work of Schwartz [6] generalize the notion of
RKHS and kernel operator. The idea is to consider instead of Hilbert spaces of real-valued functions, that is a
Hilbertian subspace ofRX , subspaces of quit general spaces equipped with the structure of a Hilbert space that
may not even contain functions. The framework of Schwartz is formulated in the very general setting of locally
convex topological vector spaces (l.c.s.), see [11, 15] for an introduction. Note thatRX with the topology of
pointwise convergence is a complete l.c.s.. This topology is equivalent to the weak topology induced by the duality
map〈·, ·〉R[X ],RX defined above. In the followingE denotes a complete l.c.s.

Definition 6 A linear subspaceH ⊂ E is called aHilbertian subspaceif

(i) it is provided with〈·, ·〉H andH is a Hilbert space.

(ii) The injection ofH into E is continuous; that is convergence inH implies convergence inE.

Definition 7 A kernel operator K is a linear, symmetric map12 from E′13 into E. K is said to bepositive if for
all e′ ∈ E′, 〈e′,Ke′〉E′,E ≥ 0.

The following theorem gives the analogue of the bijection between positive definite kernels and RKHS.

Theorem 9 [6] There is a one-to-one correspondence between the closed convex cone of Hilbertian subspacesH
and the positive kernel operatorsK. ToH corresponds the kernel operatorK = j ◦ θ ◦ j′, wherej : H → E is
the natural injection,j′ : E′ → H′ its adjoint andθ : H′ → H the canonical isomorphism. Moreover given a
positive kernel operatorK, the Hilbert space is given byH = KE′ with the inner product onKE′ defined as

〈Ke′,Kf ′〉H = 〈e′,Kf ′〉E′,E .

The inner product inH defined in the above way ’reproduces’ the value ofe′ on any element ofE contained inH.
Example: [Hilbertian subspaces ofRX ] We have defined in a previous section a positive symmetric kernel operator
K : R[X ] → RX . SinceRX is a complete l.c.s., it is also a positive kernel operator in the sense of Schwartz.
Additionally by Theorem 4, the associated reproducing kernel Hilbert spaces are Hilbertian subspaces ofRX . So
we do recover the standard RKHS as a special case of Schwartz’s theory. The setting of Schwartz seems at first

12Note that a linear, symmetric map is weakly continuous.
13E′ denotes the topological dual spaceE.
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much to general for machine learning tasks. However as we will see soon it provides us with the right setting
to deal with distribution valued kernels, which is a generalization of the usual kernel function. One could ask at
this point why it is a good idea to consider kernels on functions instead of kernels on points. One can argue that
because of the limited precision of the measurement device measurements of real-valued physical quantities can
never be made with arbitrary precision. This measurement error can be modelled by considering, instead of points,
functions with compact support which are concentrated on the measured points. The width of the function then
models the uncertainty in the measurement. This means we smear the points before we compare them with the
kernel function. The following famous theorem characterizes the form of the kernel operator when one considers
Hilbertian subspace of distributions.

Theorem 10 (Schwartz kernel theorem)The topological vector space of continuous linear mapsD(Rn) →
D′(Rn)14, with the strong topology, is canonically isomorphic to the topological vector spaceD′(Rn × Rn).

This theorem guarantees that we have again a unique correspondence between the kernel operator and a generalized
kernel function as in the case of usual positive definite kernels. Indeed, in the abstract framework of Hilbertian
subspaces, it is not clear that a function of two variables is naturally associated to a subspace. However, thanks
to this result, it is true in the case of Hilbertian subspaces of distributions: they are naturally associated to a
(generalized) kernel function which is actually a distribution onRn × Rn. We give a simple yet illustrative
example of this phenomenon.
Example: [L2(Rn) as a Hilbertian subspace ofD′(Rn)] Let K = δ(x − y) ∈ D′(Rn × Rn). Then we have for
all f ∈ D(Rn), (Kf)(x) =

∫
Rn δ(x− y)f(y) = f(x) and the inner product onKD(Rn) is defined as:

〈Kf, Kg〉 := 〈Kf, g〉D′(Rn),D(Rn) =
∫

Rn

f(x)g(x)dx.

SinceD(Rn) is dense inL2(Rn) and the above inner product induces an isometry betweenKD(Rn) andL2(Rn)
restricted toD(Rn) we get the desired result thatL2(Rn) is isometrically isomorphic to the Hilbertian subspace
KD(Rn) ⊂ D′(Rn).
Remark: The example on Hilbertian subspaces ofRX suggests that the framework of Hilbertian subspaces is
a generalization of the Aronszajn framework of RKHS. But one can always see the elements of the Hilbertian
subspaceH ⊂ E as linear functions on the dualE′ acting viah(e′) = 〈e′, h〉E′,E . SoH can be considered as

a Hilbertian subspace ofRE′
. SinceE′ must have a special structure, whereas the Aronszajn approach works for

any setX , from this point of view Hilbertian subspaces are actually less general. For example the framework of
distributions can be seen as a RKHS onRX . The problem of the Aronszajn approach is that the special properties
of the underlying setX play no role and are ’forgotten’. In general it seems that from the structural point of view
the framework of Schwartz is better, from the practical point of view the framework of Aronszajn is maybe easier
to handle.

5.3 The General Indefinite Case

In general it is not easy to check if a given symmetric function is a positive definite kernel. In some cases like
k(x, y) = tanh(α 〈x, y〉 + β) it is even known that the associated kernel matrix can have negative eigenvalues.
Nevertheless it is sometimes used in support vector machines. Naturally the question arises if there still exists
something like reproducing kernel spaces, such that we can interpret this non-positive definite kernel as an indef-
inite inner product in these space. The theory of reproducing kernel spaces with indefinite inner products was to
our knowledge first explored by Schwartz [6] in the framework of hermitian subspaces. A more explicit treatment
following Aronszajn was done by Sorjonen [16].

5.3.1 Reproducing Kernel Pontryagin Spaces

Definition 8 A symmetric kernel functionK(s, t) : X ×X → R is said to haveκ negative squares, κ a nonnega-
tive integer, if∀n ≥ 1, and allx1, . . . , xn ∈ X the matrix(k(xi, xj)i,j=1,...,n) has at mostκ negative eigenvalues
and at least one such matrix has exactlyκ negative eigenvalues.

Now we define a generalization of Hilbert spaces.

14D′(Rn) denotes the distributions onRn andD(Rn) the space of smooth functions onRn with compact support with the
strict inductive limit topology.
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Definition 9 A Krein spaceis an inner product spaceH, which can be written as the orthogonal sumH =
H+ ⊕ H− of a Hilbert spaceH+ and the antispace15 H− of a Hilbert space. If the antispaceH− is finite
dimensional thenH is calledPontryagin space.

This decomposition is not unique, but the resulting spaces are all isomorphic. The dimensions ofH± are indepen-
dent of the choice of the decomposition and are called positive and negative indices ofH.

Definition 10 A reproducing kernel Pontryagin space (RKPS)H onX is a Pontryagin space of functions from
X to R with a reproducing kernelk(x, y) onX × X such that

∀x ∈ X , k(x, ·) ∈ H
∀ f ∈ H, 〈f(·), k(x, ·)〉H = f(x).

The RKPS are very similar in their structure as the following two theorems show.

Theorem 11 [16] A Pontryagin spaceH of real-valued functions onΩ admits a reproducing kernelK(s, t) if and
only if all evaluation functionals are continuous. In this case,K(s, t) is unique, and it is a hermitian kernel having
κ negative squares, wherek is the negative index ofH.

Theorem 12 [16] If K(s, t) is a hermitian kernel onX × X havingκ negative squares, then there is a unique
Pontryagin spaceH of functions onX with dimH− = κ havingK(s, t) as reproducing kernel.

5.3.2 Reproducing Kernel Krein Spaces
The following theorem gives necessary and sufficient conditions for a symmetric function to be a reproducing

kernel of a Krein space.

Theorem 13 [6] If k(x, y), x, y ∈ X , is a symmetric function with values inR, the following assertions are
equivalent

(i) k is the reproducing kernel of a Krein spaceHk of functions onX .

(ii) There exists aǹ ∈ RX×X+ such that−` � k � `.

(iii) k = k+ − k− for somek+, k− ∈ RX×X+ .

Unfortunately there exist counterexamples of symmetric functions which do not fulfill these conditions, but when
the above conditions are satisfied, the reproducing kernel Krein space (RKKS) is characterized in the following
way.

Proposition 6 [6] If k = k+−k− with k+, k− ∈ RX×X+ , then one can choosek+ andk− such that the associated
RKHS ofk+ andk−,H+ respectivelyH−, fulfill H+

⋂
H− = {0}. In this case the RKKS associated tok consists

of the functionsf = f+ + f−, f+ ∈ H+, f− ∈ H− with the indefinite inner product[f, g] = 〈f+, g+〉H+
−

〈f−, g−〉H−
.

6 Conclusion

We have tried to extract, from the huge and scattered mathematical literature on kernels, the basic facts that are
relevant to the researchers in Machine Learning working with kernel methods. The motivation for such a work
came from noticing that these concepts were sometimes misused or ignored by the community. In particular, if
one wants to develop generalizations of these concepts, it should be clear that there already exist several points of
view for such generalizations and that, changing the point of view they can be cast in the same framework.
Finally, we have to say that this work is far from being complete and there exist many other notions to be explored
(and made accessible to the community). We hope to be able to provide an extended and more comprehensive ac-
count (covering for example Gaussian measures, generalized stochastic processes, group representations in RKHS,
spectral decompositions of kernels, regularization theory and various results of applications in approximation, in-
terpolation etc.) in the near future.
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A Structures Associated to a Gaussian Process

In this section we introduce extra objects that are naturally associated to a Gaussian process (hence to a PD kernel).
We refer to [17] for additional details.
We denote byE an arbitrary locally convex space.

Definition 11 A Borel probability measureµ onE is aGaussian measureif eache′ ∈ E′, regarded as a random
variable defined on the probability space(E,µ) is Gaussian.

Definition 12 A random variableX with values inE is a Gaussian vectorif the real-valued random variable
〈e′, X〉E′,E is Gaussian for everye′ ∈ E′, or equivalently, if the distribution ofX is a Gaussian measure onE.

Theorem 14 (Kolmogorov extension theorem)Let Ω = RX , whereX is an arbitrary index set, and letF be
the productσ-fieldBX on Ω. Suppose that for every finite subsetY ⊆ X , we are given a (consistent) probability
measurePY on RY ; then there exists a unique probability measure onRX such that the projection ontoRY
inducesPY for every finiteY.

It follows from this theorem that all the objects introduced before are tightly related.

Proposition 7 Every Gaussian process(Xx)x∈X defines a unique Gaussian measure onRX and a unique random
vectorX with values inRX .

We now give the construction of a feature map via the Kolmogorov theorem [18]. Given a PD kernelk onX define
for any finite subsetY = x1, . . . , xn a probability measure which is centered Gaussian and has covariance matrix
(k(xi, xj))i,j . By Theorem 14 there exists a measureµ onRX and it is Gaussian. If we consider the Hilbert space
L2(RX , µ) and defineXx := f(x), f ∈ RX (wheref has the distributionµ), thenXx is an element ofL2(RX , µ)
andE [XxXy] =

∫
f(x)f(y)dµ(f) = k(x, y). Moreover one can check that the completion of the subspace of

Gaussian random variablesXx in L2(RX , µ) still consists only of Gaussian random variables. Therefore it is
calledGaussian Hilbert space. It is shown in Janson [17] that the Gaussian Hilbert space is isometric isomorphic
to the RKHS associated to the PD kernelk.
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