Übungen: Martin Slawski

Musterlösungen zum Hausübungsblatt 3

Aufgabe 1

Betrachten Sie die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{x^2 + y^2}\right) & (x,y) \neq (0,0)^\top, \\ 0 & \text{sonst.} \end{cases}$$

- i) Zeigen Sie: f ist in $(0,0)^{\top}$ total differenzierbar. (3 Punkte)
- ii) Zeigen Sie: f ist in $(0,0)^{\top}$ nicht stetig partiell differenzierbar. (4 Punkte)

Hinweise: i) Berechnen Sie das Differential (Gradient) im Ursprung und überprüfen Sie durch Einsetzen, ob die Definition für totale Differenzierbarkeit erfüllt ist. ii) Betrachten Sie $\lim_{x\to 0} \frac{\partial f}{\partial x}(x,0)$.

Lösung: i) Für eine Konstante $c \ge 1$ ist

$$\lim_{u \to 0} u \sin\left(\frac{1}{u^c}\right) = 0. \tag{1}$$

Es folgt, dass beide partiellen Ableitungen existieren, denn mit $\mathbf{0} = (0,0)^{\top}$, $e_1 = (1,0)^{\top}$ und $e_2 = (0,1)^{\top}$

$$\lim_{h \to 0} \frac{f(\mathbf{0} + he_i) - f(\mathbf{0})}{h} = \lim_{h \to 0} \frac{h^2 \sin\left(\frac{1}{h^2}\right)}{h} = \lim_{h \to 0} h \sin\left(\frac{1}{h^2}\right) = 0, \ i = 1, 2,$$

so dass $\nabla f(\mathbf{0}) = (0,0)^{\top}$. Die Funktion f ist total differenzierbar in $\mathbf{0}$ nach Definition genau dann, wenn für alle Vektoren $v = (v_x, v_y)^{\top}$

$$\lim_{v \to \mathbf{0}} \frac{f(v_x, v_y) - f(\mathbf{0}) - \langle \nabla f(\mathbf{0}), v \rangle}{\|v\|} = 0.$$

Nun ist

$$\lim_{v \to \mathbf{0}} \frac{f(v_x, v_y) - f(\mathbf{0}) - \langle \nabla f(\mathbf{0}), v \rangle}{\|v\|} = \lim_{v \to \mathbf{0}} \frac{(v_x^2 + v_y^2) \sin\left(\frac{1}{v_x^2 + v_y^2}\right) - 0}{\|v\|} = 0$$

wg. (1).

ii) Jedoch ist f nicht stetig partiell differenzierbar: für $(x,y) \neq (0,0)^{\top}$ ist die partielle Ableitung bzgl. x gegeben durch

$$\frac{\partial f}{\partial x}(x,y) = 2x \sin\left(\frac{1}{x^2 + y^2}\right) - 2\frac{\cos\left(\frac{1}{x^2 + y^2}\right)x}{x^2 + y^2}$$

Betrachte nun

$$\lim_{x\to 0}\frac{\partial f}{\partial x}(x,0)=\lim_{x\to 0}\left(2x\sin\left(\frac{1}{x^2}\right)-\frac{2}{x}\cos\left(\frac{1}{x^2}\right)\right).$$

Dieser Grenzwert existiert nicht.

Aufgabe 2

Betrachten Sie die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^4} & \quad (x,y) \neq (0,0)^\top, \\ 0 & \text{sonst.} \end{cases}$$

- i) Zeigen Sie: f ist in $(0,0)^{\top}$ stetig. (3 Punkte)
- ii) Zeigen Sie: f ist in $(0,0)^{\top}$ nicht total differenzierbar. (4 Punkte)

Hinweise: i) Benutzen Sie das Folgenkriterium. ii) Gehen Sie wie in Aufgabe 1, i) vor.

Lösung: i) Im folgenden benutzen wir die Landau-Symbole $o(\cdot)$, $O(\cdot)$ bzgl. $(x,y) \to (0,0)$. So schreiben wir z.B.

$$y = o(x) \Leftrightarrow \lim_{(x,y) \to (0,0)} \frac{y}{x} = 0, \quad y = O(x) \Leftrightarrow \lim_{(x,y) \to (0,0)} \left| \frac{y}{x} \right| = C,$$

wobei $C \geq 0$ eine Konstante ist. Wir zeigen die Stetigkeit von f im Ursprung durch Betrachten der folgenden zwei Fälle:

1)
$$y = O(x)$$
, 2) $x = o(y)$.

Für Fall 1) ist

$$\lim_{(x,y)\to(0,0)} \frac{xy^3}{x^2+y^4} \le \frac{O(x^4)}{O(x^2)} = O(x^2) = o(1).$$

Für Fall 2) ist

$$\lim_{(x,y)\to(0,0)}\frac{xy^3}{x^2+y^4}=\frac{O(xy^3)}{O(y^4)}=\frac{O(x)}{O(y)}=o(1).$$

Wir haben also gezeigt, dass

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0).$$

Nach dem Folgenkriterium ist also f im Ursprung stetig.

ii) Jedoch ist f im Ursprung nicht total differenzierbar. Da $xy^3=0$, falls x=0 oder y=0, folgt durch Betrachten der Grenzwerte

$$\lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \frac{f(h,0) - f(0,0)}{h} = 0,$$

dass $\nabla f(\mathbf{0}) = \mathbf{0}$. Sei $v = (v_x, v_y)^{\top}$. Wir überprüfen nun gemäss der Definition totaler Differenzierbarkeit, ob

$$\lim_{v \to \mathbf{0}} \frac{f(\mathbf{0} + v) - f(\mathbf{0}) - \langle \nabla f(\mathbf{0}), v \rangle}{\|v\|} = 0.$$

Wähle $v_x = h^2, v_y = h$. Dann ist

$$\lim_{v \to \mathbf{0}} \frac{f(\mathbf{0} + v) - f(\mathbf{0}) - \langle \nabla f(\mathbf{0}), v \rangle}{\|v\|}$$

$$= \lim_{v \to \mathbf{0}} \frac{f(v)}{\|v\|}$$

$$= \lim_{(v_x, v_y) \to (0, 0)} \frac{\frac{v_x v_y^3}{v_x^2 + v_y^4}}{\sqrt{v_x^2 + v_y^2}}$$

$$= \lim_{h \to 0} \frac{\frac{h^5}{2h^4}}{\sqrt{h^2 + h^4}}$$

$$= \lim_{h \to 0} \frac{h^5}{2h^5} = \frac{1}{2} \neq 0.$$

Aufgabe 3

Berechnen Sie die Jacobi-Matrix der Abbildung

$$f: \quad \mathbb{R}^3 \quad \to \quad \mathbb{R}^3$$
$$(x, y, z) \quad \mapsto \quad f(x, y, z) := (4y, 3x^2 - 2\sin(yz), 2yz)$$

und bestimmen Sie der Menge der Punkte, an denen die Jacobi-Matrix nicht invertierbar ist. **Hinweis:** Argumentieren Sie mittels der Determinante der Matrix.

Lösung: Wir berechnen die Jacobi-Matrix von f an der Stelle (x, y, z) als

$$D_{f}(x,y,z) = \begin{pmatrix} \frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} & \frac{\partial f_{1}}{\partial z} \\ \frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y} & \frac{\partial f_{2}}{\partial z} \\ \frac{\partial f_{3}}{\partial x} & \frac{\partial f_{3}}{\partial y} & \frac{\partial f_{3}}{\partial z} \end{pmatrix} (x,y,z) = \begin{pmatrix} 0 & 4 & 0 \\ 6x & -2z\cos(yz) & -2y\cos(yz) \\ 0 & 2z & 2y \end{pmatrix}.$$

Die Matrix $D_f(x,y,z)$ ist genau dann invertierbar, wenn ihre Determinante nicht verschwindet. Zur Berechnung der Determinante ist es günstig, eine Laplace-Entwicklung nach der ersten Zeile durchzuführen. Es folgt, dass

$$\det(D_f(x, y, z)) = -48xy,$$

d.h. $D_f(x, y, z)$ ist nicht invertierbar für die Punkte

$$\{(x, y, z) \in \mathbb{R}^3 : x = 0 \text{ oder } y = 0\}.$$

Aufgabe 4

i) Zeigen Sie: Sind $U \subset \mathbb{R}^k$, $V \subset \mathbb{R}^n$ offen, $f: U \to \mathbb{R}$, $g: V \to U$ total differenzierbar, so gilt für alle $i=1,\ldots,n$ und alle $x\in V$:

$$\frac{\partial (f \circ g)}{\partial x_i}(x) = \sum_{i=1}^k \frac{\partial f}{\partial y_j}(g(x)) \frac{\partial g_j}{\partial x_i}(x), \quad y_j := g_j(x).$$

(2 Punkte)

ii) Sei $f: \mathbb{R} \to \mathbb{R}$ differenzierbar. Berechnen Sie den Gradienten der Funktion $g(x) = f(a^{\top}x + b)$, wobei $a \in \mathbb{R}^n$, $b \in \mathbb{R}$ Konstanten sind. (2 Punkte).

Lösung: i) Wir wenden die Kettenregel aus der Vorlesung an. Das Differential der Abbildung $f \circ g$ ist gegeben durch

$$D_{f \circ g}(x) = D_f(g(x)) \cdot D_g(x),$$

wobei '·' Matrizenmultiplikation meint. Das Differential $D_g(x)$ wird repräsentiert durch die $k \times n$ -Matrix mit Einträgen

$$\frac{\partial g_j}{\partial x_i}(x), \ 1 \le j \le k, \ 1 \le i \le n.$$

Das Differential $D_f(g(x))$ wird repräsentiert durch den $1 \times k$ -Zeilenvektor mit Einträgen

$$\frac{\partial f}{\partial y_i}(g(x)), \ 1 \le j \le k, \ y_j = g_j(x).$$

Durchführen der Matrizenmultiplikation liefert für den i-ten Eintrag des $1 \times n$ Zeilenvektors, der $D_{f \circ g}(x)$ repräsentiert, das Resultat.

ii) Wir wenden die allgemeine Regel aus i) für die Abbildung $x \mapsto g(x) := a^{\top}x + b$ an. Da

 $g:\mathbb{R}^n o \mathbb{R}$ und $f:\mathbb{R} o \mathbb{R}$, erhalten wir einen Skalar $f'(a^{\top}x+b)$ für $D_f(g(x))$ und den Zeilenvektor a^{\top} für $D_g(x)$. Zusammen erhalten wir

$$\frac{\partial f(a^{\top}x+b)}{\partial x_i}(x) = a_i f'(a^{\top}x+b), \ i = 1, \dots, n.$$