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Solution of Exercise Sheet 7 - 26.05.2010

Exercise 17 - Relaxations of integer programming problems

There are two ways to get a lower bound for the optimal value of a combinatorial optimization
problem. First, the dual problem is always convex and provides a lower bound for p∗ by weak
duality. Second, one relaxes the constraints e.g. instead of x ∈ {0, 1} one allows x ∈ [0, 1] and
derives a continuous optimization problem which is often convex and thus can be solved efficiently.

a. (4 Points) Exercise 5.13

b. (4 Points) Exercise 5.39

Hints:

• 5.13.a) note that the resulting Lagrangian is non-convex and thus ∇xL is not sufficient for a
global optimum.

• 5.13.b) optimize over the dual variables for the equality constraints in order to see equivalence
of both dual problems.

• 5.39: Any rank-one matrix X can be written as X = uvT for some vectors u, v.

Solution:

a. • The Lagrange function of the Lagrangian relaxation is given as

L(x, λ, µ) = 〈c, x〉+ 〈λ,Ax− b〉+
∑
i

µixi(1− xi).

We have,
∂xrL = cr + (ATλ)r + µr − 2µrxr.

Note, that ∂2

∂xs∂xr
L = −2δrsµs and thus µs < 0 together with ∂xr

L = 0 is a sufficient
condition for a minimum. If µr > 0 one observes that q(λ, µ) = −∞ as the Lagrange
function is unbounded from below. If µr = 0, q(λ, µ) = −∞ if cr+(ATλ) 6= 0, otherwise
q(λ, µ) = −〈λ, b〉.
Thus we have in total the dual Lagrange function

q(λ, µ) =
{
−〈λ, b〉+ 1

4

∑
r

1
µr

(cr + (ATλ)r + µr)2, if µ � 0,
−∞, else.

,

where we use the convention that a/0 = −∞ and 0/0 = 0. In the resulting dual problem
we optimize over µ and obtain,

max
µr≤0

1
µr

(
cr + (ATλ)r + µr

)2 =
{

0, if cr + (ATλ)r ≥ 0,
4(cr + (ATλ)r), else.

Thus we get in total the dual problem,

max
λ
− 〈λ, b〉+

∑
r

min{0, cr + (ATλ)r}

λr � 0.
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• The dual problem of the LP can be derived as,

max
λ,µ1,µ2

− 〈λ, b〉 − 〈µ2,1〉

c+ATλ− µ1 + µ2 = 0,
λ � 0, µ1 � 0, µ2 � 0.

which can be further simplified by replacing µ1,

max
λ,µ1

− 〈λ, b〉 −
〈
c+ATλ− µ1,1

〉
c+ATλ− µ1 � 0,
λ � 0, µ1 � 0.

which can be further reduced to,

max
λ
− 〈λ, b〉 −

∑
r

min{0, cr + (ATλr)}

λ � 0.

We have strong duality for LPs, so that the optimal value of the dual problem of the LP
relaxation is the same as the primal LP relaxation. As the dual of the LP and the dual
of the Lagrangian relaxation are the same we deduce that the obtained lower bounds are
the same. Thus for this problem we observe that the lower bound obtained by solving
the problem with relaxed constraints is the same as going for the convex dual problem
of the hard initial optimization problem.

b. • Any rank-one matrix X can be written as X = uvT for some vectors u, v. In order that
X is positive semi-definite, for all w ∈ Rn it has to hold that,

〈w, u〉 〈w, v〉 ≥ 0,

Wlog we can assume that u and v have unit-norm. Use w = u−v
2 , then we obtain,

(1− 〈v, u〉)(〈u, v〉 − 1) ≥ 0.

As the first expression is non-negative and the second one non-positive, the only pos-
sibility this inequality can be fulfilled is u = v. Thus X = xxT for x ∈ Rn describes
all rank-one matrices X which are positive semi-definite. Xij = xixj and thus Xii = 1
implies x2

i = 1. Moreover,

〈x,Wx〉 = tr(xxTW ) = tr(XW ),

as there are no other restrictions on the vector x we thus have shown equivalence.

• As the feasible set of the relaxed problem includes the feasible set of the original problem,
the optimal value has to be a lower bound for the original optimal value. If the solution
of the relaxed problem has rank one, it is optimal for the original problem (if the best
of the larger set lies in the smaller set, it is also the best of the smaller set).

• Note, that tr(XY ) ≥ 0 if and only if Y � 0. Thu we get the following Lagrangian,

L(X,Λ, µ) = tr
(
WX

)
−tr

(
XΛ

)
+tr

(
diag(µ)(X−1)

)
= tr

(
(W−Λ+diag(µ))X

)
−tr

(
diag(µ)1

)
,

where we use,

tr
(
diag(µ)(X − 1)

)
=

n∑
i,j=1

µiδij(Xij − δij) =
∑
i

µi(Xii − 1).
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Thus the dual problem becomes using tr
(
diag(µ)1

)
= tr

(
diag(µ)

)
=
∑n
i=1 µi = 〈µ,1〉,

max
Λ,µ

− 〈µ,1〉

Λ � 0,
W − Λ + diag(µ) = 0.

which can be simplified to,

max
µ
− 〈µ,1〉

W + diag(µ) � 0,

As Slater’s condition holds we have strong duality and thus both problems are equiva-
lent.

Exercise 18 - Differentiable approximation of l1-norm mini-
mization

This exercise discusses a common technique where one replaces a non-smooth objective function
with a smoothed version. The critical question is how good the solution of the smoothed version
is with respect to the original objective function.

a. (4 Points) Exercise 6.4

Hint:

• For 6.4a) you can use the following steps

– Derive the (necessary and sufficient) condition for a minimum of

min
x∈Rn

m∑
i=1

φ
(
〈ai, x〉 − bi

)
,

where φ(u) =
√
u2 + ε.

– Derive the dual problem of

min
x∈Rn, y∈Rm

‖y‖1

subject to: Ax− b = y,

where A ∈ Rm×n and b ∈ Rm. You need Hölders inequality with p = 1 and q =∞.

– Derive from the first step a dual feasible point and use that to derive a lower bound on
p∗.

Solution:

a. Let x̂ be the solution of

min
x∈Rn

m∑
i=1

φ
(
〈ai, x〉 − bi

)
, (1)
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and introduce r̂ = Ax̂− b. We have to show that

p∗ ≥
m∑
i=1

r̂2
i√

r̂2
i + ε

,

where p∗ is the optimal value of the problem minx ‖Ax− b‖1.
At the optimum x̂ of (1) we have

m∑
i=1

〈ai, x̂〉 − bi√
(〈ai, x̂〉 − bi)2 + ε

ai = 0,

which can be rewritten using the residuals r̂ as
m∑
i=1

r̂i√
r̂2
i + ε

ai = 0.

We derive the dual problem of

min
x∈Rn, y∈Rm

‖y‖1

subject to: Ax− b = y,

by establishing the Lagrange function

L(x, y, λ) = ‖y‖1 + 〈λ,Ax− b− y〉 .

Minimizing with respect to x yields the constraint
∑m
i=1 λiai = 0 and we have seen in the

lecture that

‖y‖1 −
m∑
i=1

λiyi ≥ ‖y‖1 − ‖y‖1 ‖λ‖∞ = ‖y‖1 (1− ‖λ‖∞),

where we have used Hölders inequality with p = 1 and q = ∞. This yields the constraint
‖λ‖∞ ≤ 1. Thus in total we get the dual problem,

max
λ∈Rm

−
m∑
i=1

λibi

subject to
m∑
i=1

λiai = 0, and |λi| ≤ 1, i = 1, . . . ,m.

Now, we define λ′i = r̂i√
r̂2i +ε

. We know from the extremal condition for the other loss that

m∑
i=1

λ′iai = 0.

Moreover, it is easy to see that |λ′i| ≤ 1. Therefore λ′ is dual feasible and we get

−
m∑
i=1

λ′ibi =
m∑
i=1

λ′i 〈ai, x̂〉 − λ′ibi =
m∑
i=1

λ′ir̂i =
r̂2
i√

r̂2
i + ε

≤ p∗,

where we have used in the second step that
∑m
i=1 λ

′
iai = 0.

b. This follows by,

r̂2
i√

r̂2
i + ε

=
r̂2
i√

r̂2
i + ε

− |r̂i|+ |r̂i| = |r̂i|+ |r̂i|
(
|r̂i|√
r̂2
i + ε

− 1
)
.

Noting that ‖Ax̂− b‖1 =
∑
i |r̂i| we are done. In total we get,

‖Ax̂− b‖1 −
m∑
i=1

|r̂i|
(

1− |r̂i|√
r̂2
i + ε

)
≤ p∗ ≤ ‖Ax̂− b‖1 .

Once we have solved the approximate differentiable problem, we can check using this inequal-
ity how far away we are from the optimal solution of the original problem.
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