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Program of today - Unconstrained Minimization

Descent Methods:

• strongly convex functions,

• descent methods,

• stopping criteria,

• the condition number and its influence,

• convergence analysis of gradient descent.

Steepest Descent:
• steepest with respect to what ?

• convergence analysis

Newton method:

• Newton’s method

• convergence analysis of Newton

• self-concordant functions
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Unconstrained Minimization

Unconstrained Minimization:

• minimization: f : R
n → R,

• f convex and f ∈ C2(Ω) =⇒ where dom f = Ω open,

• for global convergence analysis: strongly convex function.

What about non-convex functions ?

• convergence to global optimum not guaranteed,

• convergence to local optimum can be proven,

• analysis is basically the same !

Important note:

local/global minima could be at the boundary of dom f ! We will not treat

this case here (usually dom f = R
d).
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Unconstrained Minimization

What do we do ?

• let x∗ be global optimum of f ,

• find iterative sequence xk such that

f(xk)
k→∞
−−−→ f(x∗) = p∗.

• for convex functions a necessary and sufficient condition for a global

minimum x∗ is given by

∇f(x∗) = 0.

⇒ iterative method for solving the equation ∇f = 0.
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Convergence Rates

Sequence f(xk) |f(xk) − p∗| ≤ rk

• rk = 1
k
, sub-linear, ε-solution in 1

ε
-steps

Example: ε = 10−15, 1015 steps

• rk = 1
k2 , sub-linear, ε-solution in 1√

ε
-steps

Example: ε = 10−15, ≈ 107 steps

• rk = βk for β ∈ (0, 1), linear, ε-solution in log ε
log β

steps

Example: ε = 10−15, β = 0.95, 674 steps

• rk = β2k

for β ∈ (0, 1), quadratic, ε-solution in log

(

log ε
log β

)

steps

Example: ε = 10−15, β = 0.95, 7 steps
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Initial starting point and initial level set

Assumptions:

1. the starting point x0 lies in dom f ,

2. the sublevel set S = {x ∈ dom f | f(x) ≤ f(x0)} is closed.

Reminder:

• S is closed when f is closed.

• if dom f = R
n it is sufficient for f being closed, that f is continuous.
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Descent Method

Requirement: f continuously differentiable.

Steps:

• find direction dk at current point xk, so that
〈

d,∇f(xk)
〉

< 0, descent direction.

• find a suitable step size.

Require: an initial starting point x0.

1: repeat

2: find a descent direction dk.

3: Line Search: choose a step size αk.

4: UPDATE: xk+1 = xk + αkdk.

5: until stopping criterion is satisfied.
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Descent Method II

Motivation:

Lemma 1. Let Ω ⊆ R
n and suppose that f is C2(Ω). Then let

xk+1 = xk + αkdk, where
〈

dk,∇f(xk)
〉

< 0.

Then for sufficiently small α > 0 one has

f(xk+1) < f(xk).

Proof. A first-order Taylor expansion of f at xk yields,

f(xk+1) = f(xk) + α
〈

∇f(xk), dk
〉

+ α2
〈

dk,Hf |zd
k
〉

.

Now, let C = supz∈[xk,xk+1]

〈

dk,Hf |zd
k
〉

/
∥

∥dk
∥

∥

2
. By assumption

〈

∇f(xk), dk
〉

< 0. Then for 0 < α < |
〈

∇f(xk), dk
〉

|/(C
∥

∥dk
∥

∥

2
) we get

〈

∇f(xk), dk
〉

+ α
〈

dk,Hf |zd
k
〉

≤
〈

∇f(xk), dk
〉

+ αC
∥

∥

∥
dk

∥

∥

∥

2
< 0.

2
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Which descent direction ?

Different choices for the descent direction:

Most descent directions are defined as

dk = −Dk∇f(xk),

where Dk is a positive definite matrix. Then
〈

∇f(xk), dk
〉

= −
〈

∇f(xk),Dk∇f(xk)
〉

< 0.

• Dk = 1: gradient or steepest descent dk = −∇f(xk),

• Dk = (Hf(xk))−1: gives Newton’s method,

• Dk = diag(γ), where γi > 0, diagonal approx. of Newton’s method.

• Dk = (H̃f(xk))−1, where H̃f is a discretized (finite difference)

approximation of the true Hessian at xk. This is used if either the

Hessian can not be computed analytically or if it is too expensive.
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How to choose the stepsize ?

Different choices for the stepsize selection:

• exact selection: choose αk = arg min
γ≥0

f(xk + γdk),

• limited exact selection: αk = arg min
γ∈[0,s]

f(xk + γdk), for some s > 0.

• Armijo rule or backtracking line search: One chooses β ∈ (0, 1)

and σ ∈ (0, 1) and s > 0. Then the stepsize αk is defined as αk = βms,

where m is the first non-negative integer such that

f(xk+1) − f(xk) = f(xk + βmsdk) − f(xk) ≤ σβms
〈

∇f(xk), dk
〉

.

Note, that
〈

∇f(xk), dk
〉

< 0 so that the stepsize is chosen such that

f(xk+1) − f(xk) < −K for K > 0 =⇒ sufficiently large descent per

iteration.
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Motivation for Armijo rule

first order approximation at xk: f(xk) +
〈

∇f(xk), dk
〉

. The Armijo rule:

f(xk) +
〈

∇f(xk), dk
〉

< f(xk) + αt
〈

∇f(xk), dk
〉

.

Since α < 1 there will exist a stepsize t which fulfills the condition.
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Convergence Analysis I

Strongly convex functions: needed for convergence analysis,

Definition 1. A twice differentiable convex function f is said to be strongly

convex if there exists m > 0 such that

Hf(x) � m1, ∀x ∈ dom f.

=⇒ ensures that the global optimum of f is unique.

Lemma 1. Let f be a strongly convex function. Then for all x, y ∈ dom f ,

f(y) ≥ f(x) + 〈∇f(x), y − x〉 +
m

2
‖y − x‖2 .

Proof. A second-order Taylor expansion of f yields that for all y, x ∈ dom f ,

f(y) = f(x) + 〈∇f(x), y − x〉 +
1

2
〈y − x,Hf(z)y − x〉 ,

for some z = θx + (1 − θ)y with θ ∈ [0, 1]. Using the property of a strongly

convex function 〈w,Hf(z)w〉 ≥ m ‖w‖2 we get directly the result. 2
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Stopping criteria for strongly convex functions

Proposition 1. Let f be a strongly convex function. Denote by p∗ the global

minimum of f attained at x∗. Then we have

‖∇f‖2
2 ≤ 2mε =⇒ f(x) − p∗ ≤ ε,

and it holds ‖x − x∗‖ ≤ 2
m
‖∇f‖2 .

Proof. We have: f(y) ≥ f(x) + 〈∇f(x), y − x〉 + m
2 ‖y − x‖2 .

Minimizing over y on the rhs yields: ∇f + m(y − x) =⇒ y = x − 1
m
∇f(x).

Minimizing over both sides of the above inequality yields

p∗ ≥ f(x) −
1

2m
‖∇f‖2 =⇒ f(x) − p∗ ≤

1

2m
‖∇f‖2 ,

For the second result plug the optimal point y = x∗ into the above inequality

p∗ = f(x∗) ≥ f(x) + 〈∇f(x), x∗ − x〉 +
m

2
‖x∗ − x‖2

≥ f(x) − ‖∇f‖ ‖x∗ − x‖ +
m

2
‖x∗ − x‖2 .
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Bayesian interpretation of loss functions

Stopping criterion: ‖∇f‖2
2 ≤ 2mε.

⇒ similar bound for a C2-function for all x ∈ B(x∗, r), where Hf(x) � m1
for all x ∈ B(x∗, r).

Lemma 1. Let S = {x ∈ dom f | f(x) ≤ f(x0)} and f a strongly convex

function, then

• the sublevel sets of f contained in S are bounded,

• S itself is bounded,

• there exists a constant M such that Hf � M1.

• for all x, y ∈ S, f(y) ≤ f(x) + 〈∇f(x), y − x〉 + M
2 ‖y − x‖2

,

• p∗ ≤ f(x) − 1
2M

‖∇f‖2
2.
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Condition Number

Definition 2. The condition number κ(A) of a matrix A ∈ R
m×n is

defined as

κ(A) =
sup‖x‖=1 ‖Ax‖

inf‖x‖=1 ‖Ax‖
.

For a matrix A of full rank and the Euclidean norm ‖·‖2, we have

κ(A) =
σmax(A)

σmin(A)
,

where σmin, σmax are the smallest and largest singular values of A. If A has

full rank and is symmetric, positive definite we get

κ(A) =
λmax(A)

λmin(A)
,

where λmin, λmax are the smallest and largest eigenvalues of A.
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Condition Number II

Interpretation: condition number characterizes distortion of the

unit-sphere under the matrix A.
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−1
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1

1.5

Image of the unit−sphere − Condition number 5

The condition number can be seens as measuring the distortion of the unit

sphere under the mapping of A. The higher the condition number the more

elongated become the level sets of the second-order approximation.
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Convergence speed

Definition 3. Let xk, k ∈ N with xk ∈ R be a convergent sequence with limit

x∗. Then xk converges with order p if there exists a µ ∈ (0, 1) such that

lim
k→∞

|xk+1 − x∗|
|xk − x∗|p

= µ.

Remarks:

• If p = 1 we have linear convergence. If µ = 0 for p = 1 we say that xk

converges superlinearly, whereas if the limit does not hold for any

µ < 1 then we say that xk converges sublinearly.

• If p = 2 we have quadratic convergence.
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Proof idea for the convergence analysis

Proof idea for the convergence analysis:

convergence analysis for the gradient descent method with exact line search.

The basic steps in the proof are,

• we derive a lower bound on the stepsize taken by the exact line search,

• this yields an upper bound on the difference f(xk+1) − p∗ in term of

f(xk) − p∗.
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Linear convergence of gradient descent

Proposition 2. Let f be strongly convex with

m1 � Hf(x) � M1, ∀x ∈ dom f.

The gradient descent method with exact line search fulfills,

f(xk+1) − p∗ ≤
(

1 −
m

M

)

(f(xk) − p∗),

so that with c = 1 − m
M

the number of steps required for f(xk) − p∗ ≤ ε is

k ≤
log

(f(x0)−p∗

ε

)

log
(

1
c

) .
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Linear convergence of gradient descent II

Proof: Gradient descent, that is xk+1 = xk − t∇f(xk) or dk = −∇f(xk).

The stepsize t is found by exact line search. We have,

f(xk − t∇f) ≤ f(xk) − t
∥

∥

∥
∇f(xk)

∥

∥

∥

2

2
+ t2

M

2

∥

∥

∥
∇f(xk)

∥

∥

∥

2

2
.

The exact line search minimizes the left-hand side with respect to t and gives

f(xk+1). The right hand side is minimized for t∗ = 1
M

and we get,

f(xk+1) ≤ f(xk − t∗∇f) = f(xk) +
1

2M

∥

∥

∥
∇f(xk)

∥

∥

∥

2

2
.

Subtraction of p∗ from both sides yields

f(xk+1) − p∗ ≤ f(xk) − p∗ −
1

2M

∥

∥

∥
∇f(xk)

∥

∥

∥

2

2
.

From a previous bound: −‖∇f‖2
2 ≥ 2m(p∗ − f(x)) for all x ∈ S and thus,

f(xk+1) − p∗ ≤ f(xk) − p∗ +
m

M
(p∗ − f(xk)) =

(

1 −
m

M

)

(f(xk) − p∗).
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Linear convergence for the Armijo rule

Convergence analysis for gradient descent with Armijo rule:

Proposition 3. Let f be strongly convex with

m1 � Hf(x) � M1, ∀x ∈ dom f.

The gradient descent method with Armijo rule with parameters (α, β) fulfills,

f(xk+1) − p∗ ≤ c(f(xk) − p∗),

where c = 1 − αmin{2m, β(1−α)m
M

} < 1.

Discussion:

• convergence determined by condition number m∗

M∗
at optimum x∗

• at least linear convergence (also empirical observation)

• empirically: Armijo rule vs. exact line search for stepsize selection makes

minor difference
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Discussion of gradient descent

Pro:

• very cheap computations

• can easily solve large-scale systems

Contra:

• sensitive to the condition

number

• only linear convergence

=⇒ slow !
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Steepest descent

First order Taylor:

f(x + v) ≈ f(x) + 〈∇f, v〉 .

What is the direction of steepest descent ?
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Steepest descent

First order Taylor:

f(x + v) ≈ f(x) + 〈∇f, v〉 .

What is the direction of steepest descent ?

Answer: depends on how we measure distances !

Definition 5. The normalized steepest descent direction d with respect

to the norm ‖·‖ is defined as

dnorm = arg min{〈∇f, v〉 | ‖v‖ = 1}.

Let ‖·‖∗ be the dual norm of ‖·‖. Then

dunnorm = −‖∇f‖∗ dnorm.
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Steepest descent II

Examples of steepest descent:

• Euclidean norm: dunnorm = −∇f ,

• Modified Euclidean norm: ‖z‖P =
√

〈z, Pz〉 =
∥

∥

∥
P

1

2 z
∥

∥

∥
where P ∈ Sn

++.

dunnorm = −P−1∇f.

• L1-norm: dunnorm = −‖∇f‖∞ ei, where
∣

∣

∣

∂f
∂xi

∣

∣

∣
= ‖∇f‖∞.

Left: descent direction for modified Euclidean norm. Right: for the L1-norm.
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Steepest descent III

Discussion:

• similar convergence proof: linear rate,

• find P such that the condition number becomes smaller

• ideally: P ≈ Hf(x∗) ⇒ condition number ≈ 1 at the optima !

Two examples how the change of the norm/coordinates affects the

convergence of gradient descent.
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Steepest descent IV

Convergence rate:

Differences in convergence rates for two modified Euclidean norms.
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Newton method

Descent direction:

d = −Hf(x)−1 ∇f(x).

Motivation:

Minimization of second-order approximation

d = arg min
v

(

f(x) + 〈∇f(x), v〉 +
1

2
〈v,Hf(x)v〉

)

.

Local coordinate change such that the condition number is minimal

x → x′ = Hf
1

2 x, f(x′ + v) = f(x′) +
〈

Hf(x)−
1

2∇xf, v
〉

+
1

2
〈v, v〉 .

in new coordinates:

d′ = −Hf(x)−
1

2∇xf.

in old coordinates:

d = Hf(x)−
1

2 d = −Hf−1∇f.
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Properties of Newton method

The Newton method is affine invariant:

Let A ∈ R
n×n ,where A has full rank.

Define: f ′(y) = f(Ay), with x = Ay, where y are new coordinates. We have

∇f ′(y) = AT∇f(x), Hf ′(y) = AT Hf(x)A.

and thus
(

Hf ′(y)
)−1

∇f ′(y) = (AT Hf(x)A)−1AT∇f(x) = A−1Hf(x)−1∇f(x).

which gives

d′ = A−1d or y + αd′ = A−1(x + αd).

Is the stepsize α also invariant with respect to affine transformations ?
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Newton decrement

Newton decrement: descent d = −(Hf(x))−1∇f ,

λ(x)2 =
〈

∇f(x), (Hf(x))−1∇f
〉

= 〈d,Hf(x)d〉 .

• f̂ second order approximation of f at x, then

f(x) − inf
y

f̂(y) = f(x) − f̂(x + d) =
1

2
λ(x)2.

• λ(x) is affine invariant,

• λ(x) is the norm of d in the modified Euclidean norm with P = Hf(x)

⇒ λ(x) can be used as an affine invariant stopping criterion.

• note that 〈∇f(x), d〉 = −λ(x)2 ⇒ stepsize selection is affine

invariant !
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Newton’s method

Newton’s method:

Require: an initial starting point x0.

1: repeat

2: compute the Newton step and decrement

dk = −(Hf(xk))−1∇f(xk), λ(xk)2 = −
〈

dk,∇f(xk)
〉

.

3: Line Search: choose a step size αk with the Armijo rule.

4: UPDATE: xk+1 = xk + αkdk.

5: until λ(xk)2 ≤ 2ε.

The stopping criterion is sometimes put directly after the computation of the

Newton decrement.
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Sketch of convergence analysis of Newton’s method

Assumption: Lipschitz condition on Hf ,

‖Hf(x) − Hf(y)‖ ≤ L ‖x − y‖ .

Two phases: 0 < η < m2

L

• damped Newton phase:
∥

∥∇f(xk)
∥

∥

2
≥ η

γ > 0, f(xk+1) − f(xk) ≤ −γ.

• pure Newton phase:
∥

∥∇f(xl)
∥

∥

2
≤ η

∥

∥

∥
∇f(xl+1)

∥

∥

∥

2
≤

L

2m2

∥

∥

∥
∇f(xl)

∥

∥

∥

2

2
.

stepsize αk = 1 ⇒ pure Newton step for l ≥ k

f(xl) − p∗ ≤
1

2m

∥

∥

∥
∇f(xl)

∥

∥

∥

2

2
≤

2m3

L2

(1

2

)2l−k+1

.
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Convergence analysis

Two phases:

• damped Newton phase: linear convergence,

• pure Newton phase: quadratic convergence.

Required number of steps: for f(x) − p∗ ≤ ε,

k ≤
f(x(0)) − p∗

γ
+ log2 log2

2m3

L2ε
.

second term grows extremely slow ⇒ can be seen as constant !
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Newton’s method

Pro:

• fast convergence of Newton’s method,

• Newton’s method is affine invariant,

• much less dependent on the choice of the parameters than gradient

descent.

Contra:

• requires second derivative,

• does not scale easily to large problems if Hessian has no special structure

(e.g. sparse, banded etc.) =⇒ one needs a fast way of solving

Hf(x)d = ∇f.
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Self-concordance

Problems of classical convergence analysis

• depends on unknown constants (m,L, · · · ),

• Newtons method is affine invariant but not the bound.

Convergence analysis via self-concordance (Nesterov and

Nemirovski)

• does not depend on any unknown constants

• gives affine-invariant bound

• applies to special class of convex functions (self-concordant functions)

• developed to analyze polynomial-time interior-point methods for convex

optimization
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Self-concordance II

Self-concordant functions:

Definition 6. A function f : R → R is self-concordant if

|f ′′′(x)| ≤ 2f ′′(x)
3

2 .

A function f : R
n → R is self-concordant if t 7→ f(x + tv) is

self-concordant for every x, v ∈ R
n.

Examples:

• linear and quadratic functions,

• negative logarithm f(x) = − log x.

Properties:

• If f self-concordant, then also γ f where γ > 0.

• If f is self-concordant then f(Ax + b) is also self-concordant.
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Convergence analysis for self-concordant functions

Convergence analysis for a strictly convex self-concordant function:

Two phases: 0 < η < 1
4 , γ > 0,

• damped Newton phase: λ(xk) > η,

γ > 0, f(xk+1) − f(xk) ≤ −γ.

• pure Newton phase: λ(xk) ≤ η,

2λ(xk+1) ≤
(

2λ(xk)
)2

.

stepsize αk = 1 ⇒ pure Newton step for l ≥ k

f(xl) − p∗ ≤ λ(xl)2 ≤
(1

2

)2l−k+1

.

=⇒ complexity bound only depends on known constants !

=⇒ does not imply that Newton’s method works better for

self-concordant functions !
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