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Program of today

Modeling:

• What is Modeling ?

• Loss/Penalty Functions for Approximation/Regression

• Properties
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Modeling

Theory is done =⇒ All tools available

How to formulate optimization problems ?

⇓

Modeling
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Modeling

What is Modeling ? Transition of the practical problem into the

mathematical formulation

• differential equation,

• optimization problem,

• . . .

Central question: How to enforce certain desired properties of the

solution ?

• sparsity of the solution,

• robustness against small changes,

• . . .
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Modeling II

Properties of the mathematical formulation:

• Integration of all prior knowledge about the problem into the

mathematical formulation. Examples:

– desired solution is periodic,

– desired solution is non-negative.

• The objective function corresponds to the criterion we are interested to

minimize.

But: for some problems true objective is unknown or difficult to grasp

into mathematical formulation.

Example: visual appealing reconstruction of noisy images.

• Is the problem of statistical nature:

– Robustness against noise,

– Worst-case versus average case.

Criterion are quite fuzzy - Modeling is more art than science.
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Approximation/Regression problem

Approximation/Regression: The norm approximation problem,

min
x∈Rn

‖Ax − b‖ .

General: min
x∈Rn

m
∑

i=1

φ((Ax − b)i) = min
x

m
∑

i=1

φ
(

n
∑

j=1

Aijxj − bi

)

,

where A ∈ R
m×n and b ∈ R

m and φ : R+ → R+ is a loss/penalty function.

• Projection of b onto the subspace S spanned by the columns of A,

S =
{

n
∑

i=1

aixi | ai ∈ R
m, A = (a1, . . . , an)

}

.

• find linear function fw(x) = 〈w, x〉 which fits m data points (xi, yi)

Regression problem: min
x

m
∑

i=1

φ
(

〈w, xi〉 − yi

)

.
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Examples of loss/penalty functions

Loss functions:

φ(|x|)

squared loss |x|2 ,

Lp - loss |x|p ,

σ-insensitive (|x| − σ)1|x|>σ ,

Huber’s robust loss

{

1
2σ |x|

2 if |x| ≤ σ

|x| − σ
2 if |x| > σ,

,

log-barrier

{

−a2 log
(

1 −
(

|x|
a

)2)

if |x| ≤ a

∞ if |x| > a.
.

Table 1: Loss functions for regression. The σ-insensitive loss is called

deadzone-linear penalty function in BV.
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Examples of loss/penalty functions II
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Figure 1: The log-barrier loss plotted for a = 1 =⇒ unbounded for |x| ≥ 1.

Huber and σ-insensitive loss are both plotted for σ = 1.
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Influence of loss/penalty functions

What is the influence of the loss function on the solution ?: The

loss function quantifies how much we “dislike” the individual errors of each

component,

ri =

n
∑

j=1

Aijxj − bi.

Given: solution x∗ = arg min
x

∑m
i=1 φ(ri).

How does the residual r = Ax∗ − b change when we use different loss

functions ?
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Influence of loss/penalty functions II

Histogram of the components of the residual, ri = (Ax∗)i − bi.
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Problem: minx φ(Ax − b), A ∈ R400×100, b ∈ R400
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Influence of loss/penalty functions II

Properties of loss functions:

• The L2-loss avoids large residuals - error is more evenly distributed,

• The L1-loss penalizes proportional to the size of the residuals, large

residuals can counter small residuals

• The ε-insensitive loss ignores small residuals and behaves for large

residuals as the L1-loss =⇒ huge fraction of residuals is in [−ε, ε],

• The Huber loss grows as the L2-loss for small residuals and as the

L1-loss for large residuals =⇒ histogram of residuals is a mixture of the

histograms of L2-loss and L1-loss,

• The log-barrier loss behaves as the L2-loss for small residuals,

Taylor-approximation at u = 0 : φ(u) ≈ 2
u2

a2
,

and no residuals larger than a are allowed.
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Influence of loss/penalty functions III

L1-loss /Rel. L2-loss/Rel. ε-ins./Rel. Huber-loss/Rel.

Solution x∗
L1

239.7 /1.00 323.7 /1.18 123.0 /1.19 263.5 /1.09

Solution x∗
L2

262.0 /1.09 274.6 /1.00 111.3 /1.08 247.9 /1.02

Solution x∗
ε−ins. 266.6 /1.11 294.5 /1.07 103.3 /1.00 250.7 /1.03

Solution x∗
Huber 253.0 /1.06 282.9 /1.03 108.1 /1.05 242.5 /1.00

Table 2: The loss of the optimal solution x∗ with respect to the other loss

function. The left column gives the absolute loss and the second column gives

the relative difference to the best.
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Sparsity

Sparsity:

• compression setting - fit the data with less coefficients,

• regression setting - non-zero weights correspond to important features.

The L1-norm is the best convex approximation of the cardinality function

card(x) = lim
p→0

‖x‖p
p =

n
∑

i=1

1|xi|>0,

among all Lp-norms,

‖x‖p
p =

n
∑

i=1

|xi|
p.
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Sensitivity to outliers

Sensitivity to outliers in a regression problem:

Model for data generation: output yi is equal to true underlying function

f(xi) plus an additive noise term εi (measurement noise),

yi = f(xi) + εi.
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eps−insensitive
Huber loss
Training data, f(x)=x + noise

A regression problem in R,

where the true function is lin-

ear. The outputs are disturbed

by small Gaussian noise and

two outliers have been added.

The L1-loss is insensitive to the

outliers whereas the L2-loss is

very much affected.
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Sensitivity to outliers II

Sensitivity to outliers in a regression problem:

• the L2-loss is very much affected by outliers since large residuals are

heavily penalized,

• the L1-loss is much less affected by outliers than the L2-loss,

• the ε-insensitive loss forces the fitted linear function away from the

“regular” training data towards the outliers. Basically, so that at all

residuals of the “regular” training data are at the ε-boundary,,

• the Huber loss is between L1-loss and L2-loss

• the log-barrier loss produces in this case no feasible solution
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Regularized approximation

Regularization:

Not always a good idea just to minimize the loss =⇒ bicriterion problem

min{‖Ax − b‖ , ‖x‖},

Justification of the new criterion:

• limits the influence of a single dimension/feature xi,

• sparse solution x e.g. by using ‖x‖1 as regularizer.

Pareto-optimal solutions of multi-criterion problems via scalarization,

min
x

λ1 ‖Ax − b‖ + λ2 ‖x‖ ,

Since λ1, λ2 > 0 we can eliminate λ1 and get

min
x

‖Ax − b‖ + λ ‖x‖ ,

where λ = λ2

λ1
=⇒ λ is called regularization parameter.
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Regularized approximation II

Trade-off curve for different regularizers: L2-loss for the term Ax − b

and L1- or L2-regularizer,

min
x

‖Ax − b‖2 + λ ‖x‖ ,
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Figure 3: The optimization problem is solved for different values of λ, basically

λ ∈ {2k | k = −12, . . . , 12}, which gives the red markers. The whole trade-off

curves is obtained by linear interpolation. x ∈ R
50 and A ∈ R

50×50 has full

rank ⇒ x∗ = A−1b minimizes ‖Ax − b‖.
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Regression

How to represent functions: f : R
d → R

Problem: All functions are an infinite-dimensional space !

• Parameterized function class: f(x) =
∑d

i=1 wiφi(x), where φi is a set of

basis functions (usually linearly independent),

1. linear functions φi(x) = xi,

2. polynomials (second order φij(x) = xixj),

3. trigonometric basis on [0, 2π], φ = {1, sin(x), cos(x), sin(2x), . . .},

In RBF networks one has for each training point Xi, i = 1, . . . , N ,

φi(x) = e−‖x−Xi‖
2/(2σ2), i = 1, . . . , N.

• Discretize space (e.g. grid) =⇒ function is defined by values on the grid.

[0, 1]d discretized with spacing h yields
(

1
h

)d
points

⇒ only possible in low dimension d.
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Regression II

Parameterized function classes:

More degrees of freedom =⇒ data can be fitted much better !
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Left: Polynomials up to 7th order, Right: RBF network.

Single data points affect largely the solution - Why ?

=⇒ use regularization to limit influence of one single parameter.
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Regression III

Parameterized function classes:

Regularization with ‖x‖2 =⇒ solution less influenced by outliers !
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Left: Polynomials up to 7th order, Right: RBF network. The regularizer

limits the influence of single outliers on the solution.
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Smoothing Regularization

Problems with regularization of the weights:

• Regularization just on the parameters is unintuitive,

• requires that weights are comparable (scale-problem),

Solution:

• we want basically a smooth solution !

• enforce smoothness using regularization,

• use ‖Df‖ as regularizer, where D is a differential operator.
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Smoothness assumption

Why do we want a smooth solution ?

The observed outputs/measurements Y are contaminated by noise εi

Y = f(Xi) + εi,

where

• f is the “true” underlying function,

• εi is a noise distribution e.g. Gaussian, shot-noise,...

Exact fit of the data means that we fit the noise but not the true

function !

Overfitting !!!

A smooth function will not fit the noise !

The level of smoothness depends on the noise level.
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Discretized function class

Functions on a grid:

• discretization of [−1, 1] x = −1,−1 + h,−1 + 2h, . . . , 1 − 2h, 1 − h, 1,

• function values are determined on the grid (apart from that no

restrictions !)

• for simplicity: linear interpolation of f between grid points

How can we incorporate smoothness ?

• approximate derivatives using finite differences,

• different regularizers lead to different behavior,

22



Short reminder about finite differences

Finite differences:

• ∂f
∂x

∣

∣

∣

i
= 1

h

(

f(i) − f(i − 1)
)

or ∂f
∂x

∣

∣

∣

i
= 1

2h

(

f(i + 1) − f(i − 1)
)

,

• ∂2f
∂x2

∣

∣

∣

i
= 1

h2

(

f(i + 1) − 2f(i) + f(i − 1)
)

=⇒ approximated derivatives are just matrix multiplications with the

discretized f

D =















-1 1 0 0 0

0 -1 1 0 0

0 0 -1 1 0

0 0 0 -1 1















Df =















f(2)-f(1)

f(3)-f(2)

f(4)-f(3)

f(5)-f(4)















.

⇒ Regularize with: ‖Df‖2
2 (linear splines), ‖Df‖1 (total variation).
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Total Variation versus Linear Splines

What is the effect of the different norms ?

min
f

‖If − Y ‖2
2 + λφ(Df).

Note that the training data (Xi, Yi) need not lie on grid points.

=⇒ Interpolate f linearly at training data points.

f(Xi) =
1

h

(

(xk+1 − Xi)f(xk) + (Xi − xk)f(xk+1)
)

,

where xk is largest grid point smaller than Xi.
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Total Variation versus Linear Splines

What is the effect of the different norms ?

min
f

‖If − Y ‖2
2 + λφ(Df).
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Setting: 200 samples of true function x2 sin(x) with Gaussian noise σ = 0.2

Left: Linear Splines ‖Df‖2
2, Right: Total Variation ‖Df‖1.
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Total Variation versus Linear Splines II

What is the effect of the different norms ?

min
f

‖If − Y ‖2
2 + λφ(Df).
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fitted function
Training data
True function

Setting: 200 samples of true function 1x>0 with Gaussian noise σ = 0.2

Left: Linear Splines ‖Df‖2
2, Right: Total Variation ‖Df‖1.
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Effect of the order of the differential operator

Higher order derivatives: Penalization of second-order derivatives leads

to thin-plate splines.
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Setting: 200 samples of true function x2 sin(x) with Gaussian noise σ = 0.2

Thin-Plate-Regularizer penalizes second derivative (change of the first one) !
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Effect of the order of the differential operator II

The null space of a differential operator D:

{f | Df = 0},

is the set of functions not penalized by the regularizer.

It does not cost anything to fit the data with functions from the null space !

Any deviation from the null space is penalized !

Null space of:

• first-order derivative: constant functions,

• second-order derivative: linear functions,

• k-th order derivative: k − 1-order polynomials.
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