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Modeling:
e What is Modeling 7
e Loss/Penalty Functions for Approximation/Regression

e Properties
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Theory is done — All tools available

How to formulate optimization problems ?

$
Modeling



AT UNIVERSTTAT Modeling

> SAARLANDES

What is Modeling 7 Transition of the practical problem into the

mathematical formulation
e differential equation,
e optimization problem,

o ...

Central question: How to enforce certain desired properties of the

solution 7
e sparsity of the solution,

e robustness against small changes,

o ...
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Properties of the mathematical formulation:
e Integration of all prior knowledge about the problem into the
mathematical formulation. Examples:
— desired solution is periodic,

— desired solution is non-negative.

e The objective function corresponds to the criterion we are interested to
minimize.
But: for some problems true objective is unknown or difficult to grasp
into mathematical formulation.

Example: visual appealing reconstruction of noisy images.

e Is the problem of statistical nature:
— Robustness against noise,

— Worst-case versus average case.



o UNIVERSH’AT

Approximation/Regression problem

DES
> SAARLANDES

Approximation/Regression: The norm approximation problem,

min ||Ax — b|| .

rERM
General: mﬁ%n Z d((Ax — b); mm Z gb( Z Aijx; — b7;>,
relR™
i=1  j=1

where A € R™*"™ and b € R™ and ¢ : Ry — R is a loss/penalty function.

e Projection of b onto the subspace S spanned by the columns of A,

n

S = {Zaixi\ai cR™, A= (al,...,an)}.

1=1

e find linear function f,(z) = (w, x) which fits m data points (z;,y;)

Regression problem: min Z gb( (w, x;) — yz) :
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Loss functions:

o-1nsensitive

Huber’s robust loss

log-barrier

¢(|z)
squared loss z|?
L, - loss z|P

(l] = 0)Ljz)>0
( x> if |z| <o
\ ‘:C‘ o % if ‘ZE‘ > 0,

[ —a?log (1 — (%)2) if |z|<a

\ 00 if |x| > a.

Table 1: Loss functions for regression. The o-insensitive loss

deadzone-linear penalty function in BV.

1s called
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Examples of loss/penalty functions I1
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Loss functions for Regression

6r . ,
—squared loss
—L1 loss
5 : —eps-insensitive loss
: —Hubers robust loss
: ---Log barrier
a- : :
g3 . :
— H '
2 : ;
1‘\\\\\\\\\\\\\\\ \ ; M///////////////
L : I ]
9 -2 -1 1 2 3

0
Residual

Figure 1: The log-barrier loss plotted for a« = 1 = unbounded for |z| > 1.

Huber and o-insensitive loss are both plotted for o = 1.
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What is the influence of the loss function on the solution ?: The

loss function quantifies how much we “dislike” the individual errors of each

component,

n
r; — E Aijxj — bz'.
g=1

Given: solution z* = argmin ) .., ¢(r;).
T

How does the residual » = Ax* — b change when we use different loss

functions ?
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Histogram of the components of the residual, r; = (Ax*); — b;.

Problem: min, ¢(Azx —b), A € R*0*100 p ¢ R0

Histogram of the residual components for the L1 loss
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Influence of loss/penalty functions II

Properties of loss functions:

The Lo-loss avoids large residuals - error is more evenly distributed,

The Li-loss penalizes proportional to the size of the residuals, large

residuals can counter small residuals

The e-insensitive loss ignores small residuals and behaves for large

residuals as the Li-loss = huge fraction of residuals is in |—¢, g,

The Huber loss grows as the Lo-loss for small residuals and as the
L1-loss for large residuals = histogram of residuals is a mixture of the

histograms of Lo-loss and Lq-loss,

The log-barrier loss behaves as the Lo-loss for small residuals,

Taylor-approximation at u =0 : d(u) = 2—

and no residuals larger than a are allowed.
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Influence of loss/penalty functions IIT

Li-loss /Rel. | Lo-loss/Rel. | e-ins./Rel. | Huber-loss/Rel.
Solution z, 230.7 /1.00 | 323.7 /1.18 | 123.0 /1.19 | 263.5 /1.09
Solution 262.0 /1.09 | 274.6 /1.00 | 111.3 /1.08 | 247.9 /1.02
Solution z*_. . | 266.6 /1.11 | 204.5 /1.07 | 103.3 /1.00 |  250.7 /1.03
Solution z%,, | 253.0 /1.06 | 282.9 /1.03 | 108.1 /1.05 | 242.5 /1.00

Table 2: The loss of the optimal solution x* with respect to the other loss

function. The left column gives the absolute loss and the second column gives

the relative difference to the best.




Sparsity
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Sparsity:
e compression setting - fit the data with less coefficients,

e regression setting - non-zero weights correspond to important features.

The Li-norm is the best convex approximation of the cardinality function

n
card(x) = lim ||z} = > L0
1=1

among all L,-norms,
n

lzllh =D il

1=1
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Sensitivity to outliers in a regression problem:
Model for data generation: output y; is equal to true underlying function

f(xz;) plus an additive noise term &; (measurement noise),

yi = fx:) + e

Effect of outliers for different loss functions

- -‘Ll—loss
_L2—Ioss

A regression problem in R,

eps-insensitive
Huber loss

- Traning date, f9=x +noise ' Where the true function is lin-

ear. The outputs are disturbed
by small Gaussian noise and
two outliers have been added.
The L1-loss is insensitive to the
outliers whereas the Lo-loss is

very much affected.
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Sensitivity to outliers in a regression problem:

e the Lo-loss is very much affected by outliers since large residuals are

heavily penalized,
e the L-loss is much less affected by outliers than the Ls-loss,

e the e-insensitive loss forces the fitted linear function away from the
“regular” training data towards the outliers. Basically, so that at all

residuals of the “regular” training data are at the e-boundary,,
e the Huber loss is between Li-loss and Lo-loss

e the log-barrier loss produces in this case no feasible solution
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MACHINE LEARNING

Regularization:

Not always a good idea just to minimize the loss = bicriterion problem
min{ || Az — 0], [lz[[},

Justification of the new criterion:
e limits the influence of a single dimension /feature x;,
e sparse solution = e.g. by using ||z||; as regularizer.

Pareto-optimal solutions of multi-criterion problems via scalarization,
mxin A || Az = b|| 4+ Xo ||z|],
Since A\, Ao > 0 we can eliminate \; and get

min || Az — b + A [z

where \ = ﬁ—f —> ) is called regularization parameter.



Regularized approximation II
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Trade-off curve for different regularizers: Los-loss for the term Ax — b

and Li- or Lo-regularizer,

min || Az — bll, + A [z

Trade-off between Loss and Regularizer Trade-off between Loss and Regularizer
—Number of nonzero components of x —Number of nonzero components of x
—||x||x versus ||Ax — b||2 o —||x||2 versus ||Ax — b||2
* Solutions for different values of A * Solutions for different values of A
— S
8" 8
) )
N N 2
D D
= =
= =
20 20
Q “ Q
/e /o

Reéidual: ;HAx —b||2 3 L q . l ﬁ%sidu;l: HACL‘ - bﬂg
Figure 3: The optimization problem is solved for different values of A\, basically
A€ {2F|k = —12,...,12}, which gives the red markers. The whole trade-off

curves is obtained by linear interpolation. z € R*® and A € R°%*°0 has full
rank = z* = A~'b minimizes ||Az — b||.
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How to represent functions: f:R¢ —» R

Problem: All functions are an infinite-dimensional space !

e Parameterized function class: f(x) = Z?Zl w;oi(x), where ¢; is a set of

basis functions (usually linearly independent),

1. linear functions ¢;(z) = z;,

2. polynomials (second order ¢;;(z) = z;x;),

3. trigonometric basis on |0, 27], ¢ = {1,sin(x), cos(x),sin(2z), ...},

In RBF networks one has for each training point X;, 1 =1,..., N,
i(z) = e le=Xill’/2o*) 5 —1 N

e Discretize space (e.g. grid) = function is defined by values on the grid.

d
[0,1]¢ discretized with spacing h yields (%) points

= only possible in low dimension d.
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Regression 11
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Parameterized function classes:

More degrees of freedom = data can be fitted much better !

Polynomial expansion: min Loss RBF expansion: min Loss

. 25—

.‘.‘Ll—loss .‘.‘Ll—loss
) _Lz—loss _L2—Ioss

- - -eps—insensitive N - - -eps—insensitive

Huber loss Huber loss

* Training data, f(x)=x + noise » Training data, f(x)=x + noise|

*|—True function f(x) —True function f(x)

Left: Polynomials up to 7th order, Right: RBF network.
Single data points affect largely the solution - Why ?

—> use regularization to limit influence of one single parameter.
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Regression 111

MACHINE LEARNING

Parameterized function classes:

Regularization with ||z|l, == solution less influenced by outliers !

Polynomial expansion: min Loss + L2—Regularization RBF expansion: min Loss + L2—Regularization
e .
.‘.‘Ll—loss .‘.‘Ll—loss
. _Lz—loss _L2—Ioss
- - -eps—insensitive . - - -eps—insensitive
RN 1

Huber loss
* Training data, f(x)=x + noise
—True function f(x)

Huber loss
* Training data, f(x)=x + noise
*|l—True function f(x)

Left: Polynomials up to 7th order, Right: RBF network. The regularizer

limits the influence of single outliers on the solution.



Menily  UNIVERSITAT
. DES
SAARLANDES

Smoothing Regularization
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Problems with regularization of the weights:
e Regularization just on the parameters is unintuitive,

e requires that weights are comparable (scale-problem),

Solution:
e we want basically a smooth solution !
e enforce smoothness using regularization,

e use ||Df| as regularizer, where D is a differential operator.

YN
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Smoothness assumption

Why do we want a smooth solution 7

The observed outputs/measurements Y are contaminated by noise ¢;
Y = f(Xi) +ei

where
e f is the “true” underlying function,

e ¢, is a noise distribution e.g. Gaussian, shot-noise,...

Exact fit of the data means that we fit the noise but not the true
function !
Overfitting !!!

A smooth function will not fit the noise !

The level of smoothness depends on the noise level.
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Functions on a grid:

e discretization of [—-1,1) x = —-1,—-1+ h,—1+2h,...,1 —2h,1 — h, 1,

e function values are determined on the grid (apart from that no

restrictions !)

e for simplicity: linear interpolation of f between grid points

How can we incorporate smoothness 7
e approximate derivatives using finite differences,

e different regularizers lead to different behavior,

'2 XD )
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Finite differences:
o H =3(f0-fa-1) o H| =FH(FG+D) - f-1),
= (1) = 2£6) + £ - 1))

QJ|QJ
8 [~

2 f

® 52

—> approximated derivatives are just matrix multiplications with the
discretized f

(-1 1 0 0 0) [ £(2)-£(1)
O U by | @)
0 0 -1 1 0 £(4)-£(3)

\ o 0 0 -1 1) \ £(5)-£(4) /

— Regularize with: ||[Df||5 (linear splines), | Df||, (total variation).
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Total Variation versus Linear Splines

What is the effect of the different norms ?

min|7f = Y5 +A¢(Df).

Note that the training data (X;,Y;) need not lie on grid points.
—> Interpolate f linearly at training data points.

1

FX0) = 7 ((@re1 = Xo)F@n) + (X = 20) f(2r41)),

where x}. is largest grid point smaller than Xj;.

f(@p11)




Total Variation versus Linear Splines
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What is the effect of the different norms ?

min|7f = Y5 +A¢(Df).

) Fitting: 22 sin(z) - Linear Spline: ||V f||3 ~ Fitting: 2*sin(z) - Total Variation: ||V f]|;
--fitted function --fitted function
« Training data . « Training data

—True function . —True function

Setting: 200 samples of true function 2 sin(x) with Gaussian noise o = 0.2
Left: Linear Splines || Df||3, Right: Total Variation | Df||,.



Total Variation versus Linear Splines II

MACHINE LEARNING

What is the effect of the different norms ?

min||f - Y5+ Ap(Df).

Fitting step function - Linear Spline: ||V f||3 Fitting step function - Total Variation: ||V fl
--fitted function . --fitted function .
- Training data . - Training data .
—True function N . “l—True function L. .o
. .
. . .. .;
: o 3 . " s st
:‘ - . ..c. o = .. .._‘;‘. ...-
.:o :‘ ] '] ; . H

Setting: 200 samples of true function 1,-g with Gaussian noise ¢ = 0.2
Left: Linear Splines || Df||2, Right: Total Variation | Df]|,.

oy ™
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Higher order derivatives: Penalization of second-order derivatives leads

to thin-plate splines.

Fitting: x?sin(x) - Thin-Plate Spline: |V f||3

--fitted function
« Training data

—True function

2

Setting: 200 samples of true function =< sin(x) with Gaussian noise o = 0.2

Thin-Plate-Regularizer penalizes second derivative (change of the first one) !

' WAl
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The null space of a differential operator D:

/| Df =0},

is the set of functions not penalized by the regularizer.

It does not cost anything to fit the data with functions from the null space !

Any deviation from the null space is penalized !

Null space of:
e first-order derivative: constant functions,
e second-order derivative: linear functions,

e k-th order derivative: k — 1-order polynomials.

)y P~
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