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Abstract

We present a generalized version of spec-
tral clustering using the graph p-Laplacian,
a nonlinear generalization of the standard
graph Laplacian. We show that the second
eigenvector of the graph p-Laplacian inter-
polates between a relaxation of the normal-
ized and the Cheeger cut. Moreover, we
prove that in the limit as p → 1 the cut
found by thresholding the second eigenvec-
tor of the graph p-Laplacian converges to the
optimal Cheeger cut. Furthermore, we pro-
vide an efficient numerical scheme to com-
pute the second eigenvector of the graph p-
Laplacian. The experiments show that the
clustering found by p-spectral clustering is at
least as good as normal spectral clustering,
but often leads to significantly better results.

1. Introduction

In recent years, spectral clustering has become one of
the major clustering methods. The reasons are its
generality, efficiency and its rich theoretical founda-
tion. Spectral clustering can be applied to any kind of
data with a suitable similarity measure and the clus-
tering can be computed for millions of points. The
theoretical background includes motivations based on
balanced graph cuts, random walks and perturbation
theory. We refer to (von Luxburg, 2007) and references
therein for a detailed introduction to various aspects
of spectral clustering.

In this paper our focus lies on the motivation of spec-
tral clustering as a relaxation of balanced graph cut
criteria. It is well known that the second eigenvectors
of the unnormalized and normalized graph Laplacians
correspond to relaxations of the ratio cut (Hagen &
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Kahng, 1991) and normalized cut (Shi & Malik, 2000).
There are also relaxations of balanced graph cut cri-
teria based on semi-definite programming (De Bie &
Cristianini, 2006), which turn out to be better than the
standard spectral ones but are computationally more
expensive.

In this paper we establish a connection between the
Cheeger cut and the second eigenvector of the graph
p-Laplacian, a nonlinear generalization of the graph
Laplacian. A p-Laplacian which differs slightly from
the one used in this paper has been used for semi-
supervised learning by Zhou and Schölkopf (2005).
Our main motivation for the use of eigenvectors of the
graph p-Laplacian was the generalized isoperimetric
inequality of Amghibech (2003) which relates the sec-
ond eigenvalue of the graph p-Laplacian to the optimal
Cheeger cut. The isoperimetric inequality becomes
tight as p→ 1, so that the second eigenvalue converges
to the optimal Cheeger cut value. In this article we ex-
tend the isoperimetric inequality of Amghibech to the
unnormalized graph p-Laplacian. However, our key re-
sult is to show that the cut obtained by thresholding
the second eigenvector of the p-Laplacian converges to
the optimal Cheeger cut as p→ 1, which provides the-
oretical evidence that p-spectral clustering is superior
to the standard case. Moreover, we provide an efficient
algorithmic scheme for the (approximate) computation
of the second eigenvector of the p-Laplacian and the
resulting clustering. This allows us to do p-spectral
clustering also for large scale problems. Our experi-
mental results show that as one varies p from 2 (stan-
dard spectral clustering) to 1 the value of the Cheeger
cut obtained by thresholding the second eigenvector of
the graph p-Laplacian is always decreasing.

In Section 2, we review balanced graph cut criteria. In
Section 3, we introduce the graph p-Laplacian followed
by the definition of eigenvectors of nonlinear operators.
In Section 4, we provide the theoretical key result re-
lating the cut found by thresholding the second eigen-
vector of the graph p-Laplacian to the optimal Cheeger
cut. The algorithmic scheme is presented in Section 5
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and extensive experiments on various datasets, includ-
ing large scale ones, are given in Section 6.

2. Balanced graph cut criteria

Given a set of points in a feature space and a similarity
measure, the data can be transformed into a weighted,
undirected graph G, where the vertices V represent
the points in the feature space and the positive edge
weights W encode the similarity of pairs of points. A
clustering of the points is then equivalent to a parti-
tion of V into subsets C1, . . . , Ck (which will be called
clusters in the following). The usual objective for such
a partitioning is to have high within-cluster similarity
and low inter-cluster similarity. Additionally, the clus-
ters should be balanced in the sense that the “size” of
the clusters should not differ too much. All the graph
cut criteria presented in this section implement these
objectives with slightly different emphasis on the indi-
vidual properties.

Before the definition of the balanced graph cut criteria,
we have to introduce some notation. The number of
points is denoted by n = |V | and the complement of a
set A ⊂ V is written as A = V \A. The degree function
d : V → R of the graph is given as di =

∑n
j=1 wij and

the cut of A ⊂ V and A is defined as

cut(A,A) =
∑

i∈A, j∈A

wij .

Moreover, we denote by |A| the cardinality of the set
A and by vol(A) =

∑
i∈A di the volume of A. In the

balanced graph cut criteria one either tries to balance
the cardinality or the volume of the clusters.

The ratio cut RCut(C,C) (Hagen & Kahng, 1991) and
the normalized cut NCut(C,C) (Shi & Malik, 2000) for
a partition of V into C,C are defined as

RCut(C,C) =
cut(C,C)
|C|

+
cut(C,C)
|C|

,

NCut(C,C) =
cut(C,C)

vol(C)
+

cut(C,C)
vol(C)

.

A slightly different balancing behavior is induced by
the corresponding ratio Cheeger cut RCC(C,C) and
normalized Cheeger cut NCC(C,C) defined as

RCC(C,C) =
cut(C,C)

min{|C| ,
∣∣C∣∣} ,

NCC(C,C) =
cut(C,C)

min{vol(C), vol(C)}
.

One has the following simple relation between the nor-
malized cut NCut(C,C) and the normalized Cheeger

cut NCC(C,C):

NCC(C,C) ≤ NCut(C,C) ≤ 2 NCC(C,C).

The analogous result holds for the ratio cut
RCut(C,C) and the ratio Cheeger cut RCC(C,C).
It is known that finding the global optimum of all
these balanced graph cut criteria is NP-hard, see (von
Luxburg, 2007). In Section 4, we will show how spec-
tral relaxations of these criteria are related to the
eigenproblem of the graph p-Laplacian.

Up to now the cuts are just defined for a partition
of V into two sets. For a partition of V into k sets
C1, . . . , Ck the ratio and normalized cut can be gener-
alized (von Luxburg, 2007) as

RCut(C1, . . . , Ck) =
k∑
i=1

cut(Ci, Ci)
|Ci|

, (1)

NCut(C1, . . . , Ck) =
k∑
i=1

cut(Ci, Ci)
vol(Ci)

. (2)

There seems to exist no generally accepted multi-
partition version of the Cheeger cuts. We come back
to this issue in Section 5, when we discuss how to get
multiple clusters using the second eigenvector of the
graph p-Laplacian.

3. The graph p-Laplacian

It is well known, see e.g. (Hein et al., 2007), that the
standard graph Laplacian ∆2 can be defined as the
operator which induces the following quadratic form
for a function f : V → R:

〈f,∆2f〉 =
1
2

n∑
i,j=1

wij(fi − fj)2.

For the standard inner product one gets the unnor-
malized graph Laplacian ∆(u)

2 which in matrix nota-
tion is given as ∆(u)

2 = D −W , and for the weighted
inner product, 〈f, g〉 =

∑n
i=1 di fi gi, one obtains the

normalized1 graph Laplacian ∆(n)
2 given as ∆(n)

2 =
I − D−1W . One can ask now if there exists an op-
erator ∆p which induces the general form (for p > 1),

〈f,∆pf〉 =
1
2

n∑
i,j=1

wij |fi − fj |p.

It turns out that this question can be answered pos-
itive, see (Amghibech, 2003). The resulting operator

1Note that our notation differs from the one in (Hein
et al., 2007) where they denote our normalized graph
Laplacian as “random walk graph Laplacian”.
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∆p is the graph p-Laplacian (which we abbreviate as
p-Laplacian if no confusion is possible). Similar to the
graph Laplacian we obtain, dependent on the choice of
the inner product, the unnormalized and normalized
p-Laplacian ∆(u)

p and ∆(n)
p . Let i ∈ V , then

(∆(u)
p f)i =

∑
j∈V

wij φp (fi − fj),

(∆(n)
p f)i =

1
di

∑
j∈V

wij φp (fi − fj).

where φp : R→ R is defined for x ∈ R as

φp(x) = |x|p−1 sign(x).

Note that φ2(x) = x, so that we recover the standard
graph Laplacians for p = 2. In general, the p-Laplacian
is a nonlinear operator: ∆p(αf) 6= α∆pf for α ∈ R.

3.1. Eigenvalues and eigenvectors of the graph
p-Laplacian

Since our goal is to use the p-Laplacian for spectral
clustering, the natural question arises how one can
define eigenvectors and eigenvalues for such a non-
linear operator. For notational simplicity we restrict
us in this section to the case of the unnormalized p-
Laplacian ∆(u)

p but all definitions and results carry
over to the normalized version ∆(n)

p .

Definition 3.1 The real number λp is called an eigen-
value for the p-Laplacian ∆(u)

p if there exists a function
v : V → R such that

(∆(u)
p v)i = λp φp (vi) , ∀ i = 1, ..., n.

The function v is called a p-eigenfunction of ∆(u)
p cor-

responding to the eigenvalue λp.

The origin of this definition of an eigenvector for non-
linear operators lies in the Rayleigh-Ritz principle, a
variational characterization of eigenvalues and eigen-
vectors for linear operators. For a symmetric matrix
A ∈ Rn×n, it is well-known that one can obtain the
smallest eigenvalue λ(1) and the corresponding eigen-
vector v(1) satisfying Av(1) = λ(1) v(1) via the varia-
tional characterization

v(1) = arg min
f∈Rn

〈f,A f〉Rn
‖f‖22

,

where the p-norm is defined as ‖f‖pp :=
∑n
i=1 |fi|

p.
Note that this characterization implies that (up to
rescaling) v(1) is the global minimizer of 〈f,Af〉 sub-
ject to ‖f‖2 = 1. This variational characterization can

now be carried over to nonlinear operators. We define
for the unnormalized p-Laplacian ∆(u)

p ,

Qp(f) :=
〈
f,∆(u)

p f
〉

=
1
2

n∑
i,j=1

wij |fi − fj |p,

and define similarly the functional Fp : RV → R,

Fp(f) :=
Qp(f)
‖f‖pp

.

Theorem 3.1 The functional Fp has a critical point
at v ∈ RV if and only if v is a p-eigenfunction of
∆(u)
p . The corresponding eigenvalue λp is given as

λp = Fp(v). Moreover, we have Fp(αf) = Fp(f) for
all f ∈ RV and α ∈ R.

Proof: One can check that the condition for a critical
point of Fp at v can be rewritten as

∆pv −
Qp(v)
‖v‖pp

φp(v) = 0.

Thus, with Definition 3.1 v is an eigenvector of ∆p.
Moreover, the equation implies that a given eigenvec-
tor v to the eigenvalue λp is a critical point of Fp if
λp = Fp(v). Summing up the eigenvector equation of
Definition 3.1 shows this equality. The last statement
follows directly from the definition. �

This theorem shows that in order to get all eigen-
vectors and eigenvalues of ∆(u)

p we have to find all
critical points of the functional Fp. Moreover, with
Fp(αf) = Fp(f), we observe that the usual property
for linear operators that eigenvectors are invariant un-
der scaling carries over to the nonlinear case. The
following proposition is a generalization of a result
by Fiedler (1973) to the graph p-Laplacian. It re-
lates the connectivity of the graph to properties of the
first eigenvalue λ(1)

p of the p-Laplacian. We denote by
1A ∈ RV the function which is one on A and zero else.

Proposition 3.1 The multiplicity of the first eigen-
value λ(1)

p = 0 of the p-Laplacian ∆(u)
p is equal to the

number K of connected components C1, . . . , CK of the
graph. The corresponding eigenspace for λ(1)

p = 0 is
given as {

∑K
i=1 αi1j∈Ci |αi ∈ R, i = 1, . . . ,K}.

Proof: We have Qp(f) ≥ 0, so that all eigenvalues
λp of ∆(u)

p are non-negative. Similar to the case p = 2,
one can check that

∑n
i,j=1 wij |fi−fj |p = 0, if and only

if f is constant on each connected component. �

In spectral clustering the graph is usually assumed to
be connected, so that v(1)

p = c1 for c ∈ R, otherwise
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spectral clustering is trivial. For the following we as-
sume that the graph is connected. The previous propo-
sition suggests that similar to the standard case p = 2
we need at least the second eigenvector to construct a
partitioning of the graph. For p = 2, we get the sec-
ond eigenvector again by the variational Rayleigh-Ritz
principle,

v(2) = arg min
f∈Rn

{〈
f,∆(u)

2 f
〉

‖f‖22
| 〈f,1〉 = 0.

}
.

This form is not suited for the p-Laplacian since its
eigenvectors are not necessarily orthogonal. However,
for a function with 〈f,1〉 = 0 one has

‖f‖22 =
∥∥∥f − 1

n
〈f,1〉 1

∥∥∥2

2
= minc∈R ‖f − c1‖22 .

Thus, we can write equivalently,

v(2) = arg min
f∈Rn

〈
f,∆(u)

2 f
〉

minc∈R ‖f − c1‖22
.

This motivates the definition of F (2)
p : RV → R,

F (2)
p (f) =

Qp(f)
minc∈R ‖f − c1‖pp

.

Theorem 3.2 The second eigenvalue λ
(2)
p of the

graph p-Laplacian ∆(u)
p is equal to the global mini-

mum of the functional F (2)
p . The corresponding eigen-

vector v(2)
p of ∆(u)

p is then given as v(2)
p = u∗ − c∗1

for any global minimizer u∗ of F
(2)
p , where c∗ =

arg minc∈R
∑n
i=1 |u∗i−c|p. Furthermore, the functional

F
(2)
p satisfies F (2)

p (tu+c1) = F
(2)
p (u), for all t, c ∈ R.

Proof: Can be found in (Bühler & Hein, 2009). �

Thus, instead of solving the complicated nonlinear
equation of Definition 3.1 to obtain the second eigen-
vector of the graph p-Laplacian, we just have to find
the global minimum of the functional F (2)

p . In the
next section, we discuss the relation between the sec-
ond eigenvalue λ(2)

p of the graph p-Laplacian and the
balanced graph cuts of Section 2. In Section 5, we pro-
vide an algorithmic framework to compute the second
eigenvector of the p-Laplacian efficiently.

4. Spectral properties of the graph
p-Laplacian and the Cheeger cut

Now that we have discussed the variational characteri-
zation of the second eigenvector of the p-Laplacian, we
will provide the relation to the relaxation of balanced
graph cut criteria as it can be done for the standard
graph Laplacian.

4.1. Spectral relaxation of balanced graph cuts

It is well known that the second eigenvector of the
unnormalized and normalized standard graph Lapla-
cians (p = 2) is the solution of a relaxation of the ratio
cut RCut(C,C) and normalized cut NCut(C,C), see
e.g. (von Luxburg, 2007). We will show now that the
second eigenvector v(2)

p of the p-Laplacian can also be
seen as a relaxation of balanced graph cuts.

Theorem 4.1 For p > 1 and every partition of V
into C,C there exists a function fp,C ∈ RV such that
the functional F (2)

p associated to the unnormalized p-
Laplacian satisfies

F (2)
p (fp,C) = cut(C,C)

∣∣∣∣ 1

|C|
1
p−1

+
1∣∣C∣∣ 1
p−1

∣∣∣∣p−1

,

with the special cases,

F
(2)
2 (f2,C) = RCut(C,C),

lim
p→1

F (2)
p (fp,C) = RCC(C,C).

Moreover, one has F
(2)
p (fp,C) ≤ 2p−1 RCC(C,C).

Equivalent statements hold for a function gp,C for the
normalized cut and the normalized p-Laplacian ∆(n)

p .

Proof: Let p > 1, then we define for a partition C,C
of V the function fp,C : V → R as

(fp,C)i =
{

1/ |C|
1
p−1 , i ∈ C,

−1/
∣∣C∣∣ 1

p−1 , i ∈ C.

One has Qp(fp,C) =
∑
i∈C, j∈C

∣∣∣ 1

|C|
1
p−1

+ 1

|C|
1
p−1

∣∣∣p.
Moreover, one has
minc∈R ‖fp,C − c1‖pp = ‖fp,C‖pp = 1

|C|
1
p−1

+ 1

|C|
1
p−1

.

With F (2)
p (fp,C) = Qp(fp,C)/minc∈R ‖f − c1‖pp, we get

F (2)
p (fp,C) =

∑
i∈C,y∈C

wij

∣∣∣∣ 1

|C|
1
p−1

+
1∣∣C∣∣ 1
p−1

∣∣∣∣p−1

≤
∑

i∈C,y∈C

wij

∣∣∣∣ 2

min{|C| ,
∣∣C∣∣} 1

p−1

∣∣∣∣p−1

= 2p−1 RCC(C,C).

The first equality shows the general result and simpli-
fies to the ratio cut for p = 2. The limit p→ 1 follows
with limα→∞(aα + bα)1/α = max{a, b}. �

Thus, since one minimizes over all functions in the
eigenproblem for the second eigenvector of the p-
Laplacian ∆(u)

p and ∆(n)
p it is a relaxation of the
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ratio/normalized cut for p = 2 and for the ra-
tio/normalized Cheeger cut in the limit of p → 1.
In the interval 1 < p < 2 the eigenproblem can be
seen as as a relaxation of the interpolation between ra-
tio/normalized cut and the ratio/normalized Cheeger
cut, for the functional F (2)

p of ∆(u)
p we get,

F (2)
p (fp,C) = cut(C,C)

∣∣∣∣ 1

|C|
1
p−1

+
1∣∣C∣∣ 1
p−1

∣∣∣∣p−1

,

which can be understood using the inequalities be-
tween lp-norms, for α ≥ β ≥ 1 one has ‖x‖β ≥ ‖x‖α,

1
|C|

+
1
|C|
≥
(

1
|C|α

+
1
|C|α

) 1
α

≥ max
{

1
|C|

,
1
|C|

}
,

with α = 1/(p − 1) and thus for 1 < p < 2, one has
∞ > α > 1.

The spectral relaxation of ratio (Hagen & Kahng,
1991) and normalized cut (Shi & Malik, 2000) was one
of the main motivations for standard spectral cluster-
ing. There exist other possibilities to relax the ratio
and normalized cut problem, see (De Bie & Cristianini,
2006), which lead to a semi-definite program. These
relaxations give better bounds on the true cut than the
standard spectral relaxation (p = 2), though they are
computationally expensive. However, up to our knowl-
edge the bounds which can be achieved by semidefinite
programming are not as tight as the ones which we pro-
vide in the next section for the p-Laplacian as p→ 1.

4.2. Isoperimetric Inequality - the second
eigenvalue λ

(2)
p and the Cheeger cut

The isoperimetric inequality (Chung, 1997) for the
graph Laplacian (p = 2) provides additional theoreti-
cal backup for the spectral relaxation. It provides up-
per and lower bounds on the ratio/normalized Cheeger
cut in terms of the second eigenvalue of the graph p-
Laplacian. We define the optimal ratio and normalized
Cheeger cut values hRCC and hNCC as

hRCC = inf
C

RCC(C,C) and hNCC = inf
C

NCC(C,C).

The standard isoperimetric inequality for p = 2 (see
Chung, 1997) is given as

h2
NCC

2
≤ λ

(2)
2 ≤ 2hNCC,

where λ
(2)
2 is the second eigenvalue of the standard

normalized graph Laplacian (p = 2). The isoperimet-
ric inequality for the normalized p-Laplacian has been
proven by Amghibech (2003).

Theorem 4.2 (Amghibech, 2003) Denote by λ
(2)
p

the second eigenvalue of the normalized p-Laplacian
∆(n)
p . Then for any p > 1,

2p−1

(
hNCC

p

)p
≤ λ(2)

p ≤ 2p−1 hNCC .

We extend the result of Amghibech to the unnormal-
ized p-Laplacian.

Theorem 4.3 Denote by λ
(2)
p the second eigenvalue

of the unnormalized p-Laplacian ∆(u)
p . For p > 1,(

2
maxidi

)p−1(
hRCC

p

)p
≤ λ(2)

p ≤ 2p−1hRCC .

Proof: Can be found in (Bühler & Hein, 2009). �

Note that hNCC < 1 and hRCC
maxidi

< 1, so that in both
cases the left hand side of the bound is smaller than
hNCC resp. hRCC. When considering the limit p→ 1,
one observes that the bounds on λp become tight as
p → 1. Thus in the limit of p → 1, the second eigen-
value of the unnormalized/normalized p-Laplacian ap-
proximates the optimal ratio/normalized Cheeger cut
arbitrarily well.

Still the problem remains how to transform the real-
valued second eigenvector of the p-Laplacian into a
partitioning of the graph. We use the standard proce-
dure and threshold the second eigenvector v(2)

p to ob-
tain the partitioning. The optimal threshold is deter-
mined by minimizing the corresponding Cheeger cut.
For the second eigenvector v(2)

p of the unnormalized
graph p-Laplacian ∆(u)

p we determine,

arg min
Ct={i∈V | v(2)p (i)>t}

RCC(Ct, Ct), (3)

and similarly for the second eigenvector v
(2)
p of the

normalized graph p-Laplacian ∆(n)
p we compute,

arg min
Ct={i∈V | v(2)p (i)>t}

NCC(Ct, Ct). (4)

The obvious question is how good the cut values ob-
tained by thresholding the second eigenvector of the
p-Laplacian are compared to optimal Cheeger cut val-
ues. The following Theorem answers this question and
provides the key motivation for p-spectral clustering.

Theorem 4.4 Denote by h∗RCC and h∗NCC the ra-
tio/normalized Cheeger cut values obtained by tresh-
olding the second eigenvector v

(2)
p of the unnormal-

ized/normalized p-Laplacian via (3) for ∆(u)
p resp. (4)
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Algorithm 1 p-Laplacian based Spectral Clustering
1: Input: weight matrix W , number of desired clus-

ters k, choice of p-Laplacian.
2: Initialization: cluster C1 = V , number of clus-

ters s = 1
3: repeat
4: Minimize F

(2)
p : RCi → R for the chosen p-

Laplacian for each cluster Ci, i = 1, . . . , s.
5: Compute optimal threshold for dividing each

cluster Ci via (3) for ∆(u)
p or (4) for ∆(n)

p .
6: Choose to split the cluster Ci so that the total

multi-partition cut criterion is minimized (ratio
cut (1) for ∆(u)

p and normalized cut (2) for ∆(n)
p ).

7: s⇐ s+ 1
8: until number of clusters s = k

for ∆(n)
p . Then for p > 1,

hRCC ≤ h∗RCC ≤ p
(
maxi∈V di

) p−1
p
(
hRCC

) 1
p ,

hNCC ≤ h∗NCC ≤ p
(
hNCC

) 1
p .

Proof: Can be found in (Bühler & Hein, 2009). �

One observes that in the limit of p→ 1 both inequal-
ities become tight, which implies that for p → 1 the
cut found by thresholding the second eigenvector of
the p-Laplacian converges to the optimal Cheeger cut.

5. p-Spectral Clustering

The algorithmic scheme for p-Spectral Clustering is
shown in Algorithm 1. More than two clusters are ob-
tained by consecutive splitting of clusters until the de-
sired number of clusters is reached. As multi-partition
criterion, we use the established generalized versions
of ratio cut (1) and normalized cut (2). However, one
could also think about multi-partition versions of the
Cheeger cut. The sequential splitting of clusters is the
more “traditional” way to do spectral clustering. Al-
ternatively, one uses for the standard graph Laplacian
the first k eigenvectors to define a new representation
of the data. In this new k-dimensional representa-
tion one then applies a standard clustering algorithm
like k-means. This alternative is not possible in our
case since at the moment we are not able to compute
higher-order eigenvectors of the p-Laplacian. However,
as Theorem 4.4 shows there is also need for going this
way since thresholding will yield the optimal Cheeger
cut in the limit p→ 1.

The functional F (2)
p : RV → R is non-convex and thus

we cannot guarantee to reach the global minimum. In-
deed, a direct minimization for small values of p leads

often very fast to convergence to a non-optimal lo-
cal minimum. Thus we use a different procedure us-
ing the fact that for p = 2 we can easily compute
the global minimizer of F (2)

2 . It is just the second
eigenvector of the standard graph Laplacian, which
can be efficiently computed for sparse matrices e.g.
using ARPACK. Since the functional Fp(f) is contin-
uous in p, we can hope for close values p1 and p2 that
the global minimizer of F (2)

p1 and F (2)
p2 are also close (at

least the local minimizer should be close). Moreover, it
is well known that Newton-like methods have superlin-
ear convergence close to the local optima (Bertsekas,
1999). These two facts suggest to solve the problem
F

(2)
p (u) by minimizing a sequence of functionals Fpi ,

F (2)
p0 , F

(2)
p1 , ..., F

(2)
p , with p0 = 2 > p1 > ... > p ,

where each step is initialized with the solution of the
previous step and initialization is done with p0 = 2.
In the experiments we found that the update rule
pt+1 = 0.9 pt yields a good trade-off between decreas-
ing too fast with the danger that the optimum for F (2)

pt

is far away from the optimum of F (2)
pt+1 and decreasing

too slow which yields fast convergence of the Newton
method but needs a lot of iterations.

The minimimization of the functionals Fpt is done us-
ing a mixture of gradient and Newton steps. However,
the Hessian of Fpi is not sparse, which causes problems
for large scale problems, but it can be decomposed into

H = A+
(
abT + baT

)
+ bbT ,

where a, b ∈ Rn and the matrix A is sparse. Thus
H is a sum of a sparse matrix plus low-rank updates.
Thus, we just discard the low-rank updates and use
A as a surrogate for the true Hessian. We use the
Minimal Residual method (Paige & Saunders, 1975)
for solving the linear system of the Newton step as
the matrix A is symmetric but not necessarily posi-
tive definite. In order to avoid problems with an ill-
conditioned matrix A, we add a small ridge. Note that
the term minc∈R ‖f − c1‖pp in the functional F (2)

p (f) is
itself a (convex) optimization problem which can be
solved very fast using bisection.

6. Experimental evaluation

In all experiments, we used a symmetric K-NN graph
with K = 10 and weights wij defined as

wij = max{si(j), sj(i)}, where si(j) = e
− 4
σ2
i

‖xi−xj‖2
,

with σi being the Euclidean distance of xi to its
K-nearest neighbor. We evaluate the clustering on
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datasets with known number of classes k. We then
clustered the data into k clusters and checked the
agreement of the found clusters C1, . . . , Ck with the
class structure using the error measure

error(C1, .., Ck) =
1
|V |

k∑
i=1

∑
j∈Ci

IYj 6=Y ′i , (5)

where Yj is the true label of j and Y ′i is the dominant
label in cluster Ci.

6.1. High-dimensional noisy two moons

The two moons dataset is generated as two half-circles
in R2 which are embedded into a d-dimensional space
where Gaussian noiseN (0, σ2Id) is added. When vary-
ing d, n and σ, we always made the same observa-
tion: unnormalized and normalized p-spectral cluster-
ing leads for decreasing values of p to cuts with de-
creasing values of the Cheeger cuts RCC and NCC.
In Fig. 1, we illustrate this for the case d = 100,
n = 2000 and σ2 = 0.02. Note that this dataset is far
from being trivial since the high-dimensional noise has
corrupted the graph (see the edge structure in Fig. 1).
The histogram of the values of the second eigenvectors
for p equal to 2, 1.7, 1.4 and 1.1, show strong differ-
ences. For p = 2, the values are scattered over the
interval, whereas for p = 1.1, they are almost concen-
trated on two peaks. This suggests that for p = 1.1,
the p-eigenvector is quite close to the function fp,C
as defined in Theorem 4.1. The third row in Fig. 1
shows the resulting clusters found by p-spectral clus-
tering with ∆(n)

p . For p → 1, the clustering is almost
perfect despite the difficulty of this dataset. In order
to illustrate that this result is representative, we have
repeated the experiment 100 times. The plot in the
bottom left of Fig. 1 shows the mean of the normal-
ized Cheeger cut, the second eigenvalue λ(2)

p , normal-
ized cut and error as p→ 1. One observes that despite
there is some variance, the results of p-spectral clus-
tering are significantly better than standard spectral
clustering.

6.2. UCI-Datasets

In Table 2 we show results for p-spectral clustering on
several UCI datsets both for the unnormalized (right
column) and the normalized p-Laplacian (left column).
The corresponding Cheeger-cuts (second row) are con-
sistently decreasing as p→ 1. For most of the datasets
this also implies that the ratio/normalized cut de-
creases. Note that the error is often constant despite
the fact that the cut is still decreasing. Opposite to
the other examples, minimizing the cut does not nec-
essarily lead to a smaller error.

Table 1. Top: Results of unnormalized p-spectral cluster-
ing with k = 10 for USPS and MNIST using the ratio-
multi-partition criterion (1). In both cases the RCut and
the error significantly decrease as p decreases. Bottom:
confusion matrix for MNIST of the clusters found by p-
spectral clustering for p = 1.2. Class 1 has been split into
two clusters and class 4 and 9 have been merged. Thus
there exists no class 9 in the table. Apart from the merged
classes the clustering reflects the class structure quite well.

USPS MNIST
p RCut Error RCut Error

2.0 0.819 0.233 0.225 0.189
1.9 0.741 0.142 0.209 0.172
1.8 0.718 0.141 0.186 0.170
1.7 0.698 0.139 0.170 0.169
1.6 0.684 0.134 0.164 0.170
1.5 0.676 0.133 0.161 0.133
1.4 0.693 0.141 0.158 0.132
1.3 0.684 0.138 0.155 0.131
1.2 0.679 0.137 0.153 0.129

True/Cluster 0 1 2 3 4 5 6 7 8
0 6845 5 7 0 5 8 26 4 3
1 1 7794 32 8 21 1 2 16 2
2 38 47 6712 25 15 5 8 114 26
3 5 6 31 6939 30 61 2 45 22
4 3 45 2 1 6750 0 14 5 4
5 15 1 4 92 39 6087 61 5 9
6 23 17 6 0 9 23 6797 0 1
7 1 83 22 1 116 2 0 7067 1
8 18 51 13 507 112 122 23 18 5961
9 15 15 3 117 6708 11 4 77 8

6.3. USPS and MNIST

We perform unnormalized p-spectral clustering on the
full USPS and MNIST-datasets (n = 9298 and n =
70000). In Table 1 one observes that for p→ 1 the ra-
tio cut as well as the error decreases for both datasets.
The error is even misleading since the class separation
is quite good but one class has been split which im-
plies that two classes have been merged. This happens
for both datasets and in Table 1 we provide the confu-
sion matrix for MNIST for p-spectral clustering with
p = 1.2. For larger values of number of clusters k we
thus expect better results. In the following table we
present the runtime behavior (in seconds) for USPS:

p 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2
t 10 81 99 144 224 456 1147 2266 4660

As p → 1, the problem becomes more difficult which
is clear since one approximates asymptotically the op-
timal Cheeger cut. However, there is still room for
improvement to speed up our current implementation.
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Figure 1. Results for the two moons data set, 2000 points in 100 dimensions, noise variance 0.02. First row, from left to
right: Second eigenvector of the p-Laplacian for p = 2.0, 1.7, 1.4, 1.1. Second row: Histogram of the values of the second
eigenvector. Last row: Resulting clustering after finding optimal threshold according to the NCC criterion. First column,
top: The values of NCC, the eigenvalue λ

(2)
p , NCut and the error for the example shown on the right. Middle: Plot of

the edge structure. Bottom: Average values plus standard deviation of NCC, NCut, λ
(2)
p and the error for varying p.

Table 2. Results of unnormalized/normalized p-spectral
clustering on UCI-datasets. For each dataset, the rows
correspond to NCut, NCC resp. RCut, RCC and error.

Normalized Unnormalized
p 2.0 1.4 1.1 2.0 1.4 1.1

0.0254 0.0229 0.0289 0.0467 0.0332 0.0332
Breast 0.0209 0.0135 0.0174 0.0300 0.0220 0.0220

0.293 0.293 0.293 0.293 0.293 0.293
0.118 0.0796 0.0796 0.108 0.0946 0.0946

Heart 0.0621 0.0579 0.0579 0.0550 0.0473 0.0473
0.215 0.356 0.356 0.204 0.219 0.219

Ring
norm

0.443 0.420 0.420 0.219 0.210 0.210
0.222 0.210 0.210 0.109 0.105 0.105
0.281 0.288 0.287 0.290 0.310 0.309

Two
norm

0.0821 0.0813 0.0811 0.0392 0.0388 0.0387
0.0411 0.0407 0.0406 0.0196 0.0194 0.0193
0.0257 0.0259 0.0261 0.0255 0.0261 0.0269

Wave
form

0.101 0.0857 0.0828 0.0485 0.0410 0.0396
0.0552 0.0460 0.0438 0.0265 0.0221 0.0210
0.227 0.211 0.201 0.225 0.212 0.201
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