Supplementary material to 'Non-negative least squares for high-dimensional linear models: consistency and sparse recovery without regularization'

Martin Slawski^{*} and Matthias Hein

Saarland University Campus E 1.1 Saarbrücken, Germany e-mail: ms@cs.uni-saarland.de e-mail: ms@cs.uni-saarland.de ; hein@cs.uni-saarland.de

1. Proofs of Propositions 3 and 4

We here provide proofs of Propositions 3 and 4 concerning random equi-correlation-like matrices. These proofs rely on a series of lemmas that are stated first.

1.1. Additional lemmas

We recall from Appendix A of the paper that a zero-mean random variable is called sub-Gaussian if there exists $\sigma > 0$ (referred to as sub-Gaussian parameter) so that the moment-generating function obeys the bound $\mathbf{E}[\exp(tZ)] \leq \exp(\sigma^2 t^2/2) \ \forall t \in \mathbb{R}$. If Z_1, \ldots, Z_n are i.i.d. copies of Z and $v_j \in \mathbb{R}^n$, $j = 1, \ldots, p$, are fixed vectors, then

$$\mathbf{P}\left(\max_{1\leq j\leq p}|v_j^{\top}\mathbf{Z}| > \sigma \max_{1\leq j\leq p}\|v_j\|_2\left(\sqrt{2\log p} + z\right)\right) \leq 2\exp\left(-\frac{1}{2}z^2\right), \ z\geq 0.$$
(1.1)

Bernstein-type inequality for squared sub-Gaussian random variables

The following exponential inequality combines Lemma 14, Proposition 16 and Remark 18 in [4].

Lemma 1. Let Z_1, \ldots, Z_m be i.i.d. zero-mean sub-Gaussian random variables with parameter σ and the property that $\mathbf{E}[Z_1^2] \leq 1$. Then for any $z \geq 0$, one has

$$\mathbf{P}\left(\sum_{i=1}^{m} Z_i^2 > m + zm\right) \le \exp\left(-c\min\left\{\frac{z^2}{\sigma^4}, \frac{z}{\sigma^2}\right\}m\right),\tag{1.2}$$

where c > 0 is an absolute constant.

$Concentration \ of \ extreme \ singular \ values \ of \ sub-Gaussian \ random \ matrices$

Let $s_{\min}(A)$ and $s_{\max}(A)$ denote the minimum and maximum singular value of a matrix A. The following lemma is a special case of Theorem 39 in [4].

^{*}Supported by the Cluster of Excellence 'Multimodal Computing and Interaction' (MMCI) of Deutsche Forschungsgemeinschaft (DFG)

Lemma 2. Let A be an $n \times s$ matrix with i.i.d. zero-mean sub-Gaussian entries with sub-Gaussian parameter σ and unit variance. Then for every $z \ge 0$, with probability at least $1 - 2 \exp(-cz^2)$, one has

$$s_{\max}\left(\frac{1}{n}A^{\top}A - I\right) \le \max(\delta, \delta^2), \quad where \quad \delta = C\sqrt{\frac{s}{n}} + \frac{z}{\sqrt{n}},$$
 (1.3)

with C, c depending only on σ .

$Entry-wise\ concentration\ of\ the\ Gram\ matrix\ associated\ with\ a\ sub-Gaussian\ random\ matrix$

The next lemma results from Lemma 1 in [2] and the union bound.

Lemma 3. Let X be an $n \times p$ random matrix of i.i.d. zero-mean, unit variance sub-Gaussian entries with parameter σ . Then

$$\mathbf{P}\left(\max_{1\leq j,k\leq p} \left| \left(\frac{1}{n} X^{\top} X - I\right)_{jk} \right| > z \right) \leq 4p^2 \exp\left(-\frac{nz^2}{128(1+4\sigma^2)^2}\right)$$
(1.4)

for all $z \in (0, 8(1+4\sigma^2))$.

1.2. Application to Ens₊

Recall that the class Ens_+ is given by

Ens₊:
$$X = (x_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \{x_{ij}\}$$
 i.i.d. from a sub-Gaussian distribution on \mathbb{R}_+ . (1.5)

We shall make use of the following decomposition valid for any X from (1.5).

$$X = \overline{X} + \mu \mathbb{1},\tag{1.6}$$

where the entries $\{\tilde{x}_{ij}\}$ of \tilde{X} are zero mean sub-Gaussian random variables with parameter σ , say, $\mu = \mathbf{E}[x_{11}]$ and $\mathbb{1}$ is an $n \times p$ -matrix of ones. In the sequel, we specialize to the case where the entries of X are scaled such that

$$\Sigma^* = \mathbf{E}\left[\frac{1}{n}X^\top X\right] = (1-\rho)I + \rho \mathbf{1}\mathbf{1}^\top$$
(1.7)

for $\rho \in (0, 1)$, i.e. the population Gram matrix has equi-correlation structure. Then, decomposition (1.6) becomes

$$X = \widetilde{X} + \sqrt{\rho} \mathbb{1}, \quad \text{and} \ \mathbf{E}[\widetilde{x}_{11}^2] = (1 - \rho).$$
(1.8)

Accordingly, we have the following expansion of $\Sigma = \frac{1}{n} X^{\top} X$.

$$\Sigma = \frac{1}{n}\widetilde{X}^{\top}\widetilde{X} + \sqrt{\rho}\left(\frac{1}{n}\widetilde{X}^{\top}\mathbb{1} + \frac{1}{n}\mathbb{1}^{\top}\widetilde{X}\right) + \rho\mathbf{1}\mathbf{1}^{\top}, \quad \text{where} \quad \mathbf{E}\left[\frac{1}{n}\widetilde{X}^{\top}\widetilde{X}\right] = (1-\rho)I.$$
(1.9)

Observe that

$$n^{-1}\widetilde{X}^{\top}\mathbb{1} = D\mathbf{1}\mathbf{1}^{\top}, \text{ and } n^{-1}\mathbb{1}^{\top}\widetilde{X} = \mathbf{1}\mathbf{1}^{\top}D,$$
 (1.10)

where $D \in \mathbb{R}^{p \times p}$ is a diagonal matrix with diagonal entries $d_{jj} = n^{-1} \sum_{i=1}^{n} \widetilde{x}_{ij}$, $j = 1, \ldots, p$. It hence follows from (1.1) that

$$\mathbf{P}\left(\max_{j,k} \left| n^{-1} \widetilde{X}^{\top} \mathbb{1} \right|_{jk} > 2\sigma \sqrt{\frac{2\log(p \vee n)}{n}} \right) \le \frac{2}{p \vee n},\tag{1.11}$$

Combining (1.7), (1.9), (1.11) and Lemma 3, it follows that there exists a constant C > 0 depending only on σ such that

$$\mathbf{P}\left(\max_{j,k} \left| \left(\frac{X^{\top}X}{n} - \Sigma^*\right)_{jk} \right| > C\sqrt{\frac{\log(p \vee n)}{n}} \right) \le \frac{6}{p \vee n}.$$
(1.12)

Let now $S \subset \{1, \ldots, p\}$, |S| = s < n be given. Without loss of generality, let us assume that $S = \{1, \ldots, s\}$. In the sequel, we control $s_{\max}(\Sigma_{SS}^* - \Sigma_{SS})$. From decomposition (1.9), we obtain that

$$s_{\max}(\Sigma_{SS}^* - \Sigma_{SS}) \le (1 - \rho) s_{\max}\left(\frac{1}{1 - \rho} \frac{\widetilde{X}_S^\top \widetilde{X}_S}{n} - I\right) + 2\sqrt{\rho} s_{\max}\left(\frac{\widetilde{X}_S^\top \mathbbm{1}_S}{n}\right) \quad (1.13)$$

Introduce $w = \left(\sum_{i=1}^{n} \tilde{x}_{i1}/n, \dots, \sum_{i=1}^{n} \tilde{x}_{is}/n\right)^{\top}$ as the vector of column means of \tilde{X}_S . We have that

$$s_{\max}\left(\frac{\widetilde{X}_{S}^{\top}\mathbb{1}_{S}}{n}\right) = \sup_{\|u\|_{2}=1} \sup_{\|v\|_{2}=1} u^{\top} \frac{\widetilde{X}_{S}^{\top}\mathbb{1}_{S}}{n} v = \sup_{\|u\|_{2}=1} \sup_{\|v\|_{2}=1} u^{\top} w \mathbf{1}^{\top} v = \sqrt{s} \|w\|_{2}.$$
(1.14)

Moreover,

$$\|w\|_{2}^{2} = \sum_{j=1}^{s} \left(\frac{\sum_{i=1}^{n} \widetilde{x}_{ij}}{n}\right)^{2} = \frac{1}{n} \sum_{j=1}^{s} z_{j}^{2}, \quad \text{where } z_{j} = n^{-1/2} \sum_{i=1}^{n} \widetilde{x}_{ij}.$$
(1.15)

Noting that the $\{z_j\}_{j=1}^s$ are i.i.d. zero-mean sub-Gaussian random variables with parameter σ and variance no larger than one, we are in position to apply Lemma 1, which yields that for any $t \ge 0$

$$\mathbf{P}\left(\|w\|_{2}^{2} > \frac{s}{n}(1+t)\right) \le \exp\left(-c\min\left(\frac{t^{2}}{\sigma^{4}}, \frac{t}{\sigma^{2}}\right)s\right).$$
(1.16)

Combining (1.13), (1.14) and (1.16) and using Lemma 2 to control the term $s_{\max}\left(\frac{1}{1-\rho}\frac{\tilde{X}_{S}^{\top}\tilde{X}_{S}}{n}-I\right), \text{ we obtain that for any } t \ge 0 \text{ and any } z \ge 0$ $\mathbf{P}\left(s_{\max}(\Sigma_{SS}^{*}-\Sigma_{SS})>\max\left\{C\sqrt{\frac{s}{n}}+\frac{z}{\sqrt{n}},\left(C\sqrt{\frac{s}{n}}+\frac{z}{\sqrt{n}}\right)^{2}\right\}+2\sqrt{\frac{s^{2}(1+t)}{n}}\right)$ $\le \exp(-c_{1}\min\{t,t^{2}\}s)-2\exp(-c_{2}z^{2}),$ (1.17)

where $C, c_1, c_2 > 0$ only depend on the sub-Gaussian parameter σ . Equipped with these auxiliary results, we now turn to the proofs of Proposition 3 and 4.

1.3. Proof of Proposition 3

Let us first recall the restricted eigenvalue condition.

Condition 2. Let $\mathcal{J}(s) = \{J \subseteq \{1, \ldots, p\} : 1 \leq |J| \leq s\}$ and for $J \in \mathcal{J}(s)$ and $\alpha \geq 1$,

$$\mathcal{R}(J,\alpha) = \{\delta \in \mathbb{R}^p : \|\delta_{J^c}\|_1 \le \alpha \|\delta_J\|_1\}$$

We say that the design satisfies the (α, s) -restricted eigenvalue condition if there exists a constant $\phi(\alpha, s)$ so that

$$\min_{J \in \mathcal{J}(s)} \min_{\delta \in \mathcal{R}(J,\alpha) \setminus \mathbf{0}} \frac{\delta^{\top} \Sigma \delta}{\|\delta_J\|_2^2} \ge \phi(\alpha, s) > 0.$$
(1.18)

The proof of Proposition 3 relies on a recent result in [3]. In order to state that result, we need the following preliminaries concerning ψ_2 -random variables taken from [1] (see Definition 1.1.1 and Theorem 1.1.5 therein).

Definition 1. A random variable Z is said to be ψ_2 with parameter $\theta > 0$ if

$$\inf \left\{ a > 0 : \mathbf{E} \left[\exp(Z^2/a^2) \right] \le e \right\} \le \theta.$$
(1.19)

Lemma 4. If a random variable Z has the property that there exist positive constants C, C' so that $\forall z > C'$

$$\mathbf{P}\left(|Z| \ge z\right) \le \exp\left(-z^2/C^2\right)$$

then Z is ψ_2 with parameter no more than $2 \max(C, C')$.

The following statement is essentially a special case of Theorem 1.6 in [3]. We state it in simplified form that is sufficient for our purpose here.

Lemma 5. Let $\Psi \in \mathbb{R}^{n \times p}$ be a matrix whose rows Ψ^1, \ldots, Ψ^n , are independent random vectors that are

- 1. *isotropic*, *i.e.* $\mathbf{E}[\langle \Psi^i, u \rangle^2] = 1$, i = 1, ..., n, 2. ψ_2 , *i.e.* there exists $\theta > 0$ such that for every unit vector $u \in \mathbb{R}^p$

$$\inf\left\{a>0: \mathbf{E}\left[\exp(\langle \Psi^{i}, u \rangle^{2} / a^{2})\right] \le e\right\} \le \theta, \quad i=1,\ldots,n.$$
(1.20)

Let further $R \in \mathbb{R}^{p \times p}$ be a positive definite matrix with minimum eigenvalue $\vartheta > 0$ and set $\Gamma = \frac{1}{n} R^{\top} \Psi^{\top} \Psi R$. Then, for any $\delta \in (0,1)$ and any $\alpha \in [1,\infty)$, there exist positive constants C_{θ} , c > 0 (the first depending on the ψ_2 parameter θ) so that if

$$n \ge \frac{C_{\theta}}{\delta^2} s \left(1 + \frac{16(3\alpha^2)(3\alpha+1)}{\vartheta^2 \delta^2} \right) \log\left(c\frac{p}{s\delta}\right),$$

with probability at least $1 - 2 \exp(-\delta^2 n/C_{\theta})$, Γ satisfies the (α, s) -restricted eigenvalue condition with $\phi(\alpha, s) = \vartheta^2 (1 - \delta)^2$.

We now state and prove Proposition 3.

Proposition 3. Let X be a random matrix from Ens₊ (1.5) scaled such that $\Sigma^* =$ $\mathbf{E}[\frac{1}{n}X^{\top}X] = (1-\rho)I + \rho \mathbf{1}\mathbf{1}^{\top}$ for some $\rho \in (0,1)$. Set $\delta \in (0,1)$. There exists constants C, c > 0 depending only on δ, ρ and the sub-Gaussian parameter of the centered entries of X so that if $n \ge C s \log(p \lor n)$, then, with probability at least $1 - \exp(-c\delta^2 n) - c\delta^2 n$ $6/(p \lor n), \Sigma = X^{\top} X/n$ has the self-regularizing property with $\tau^2 = \rho/2$ and satisfies the $(3/\tau^2, s)$ restricted eigenvalue condition of Theorem 2 with $\phi(3/\tau^2, s) = (1-\rho)(1-\delta)^2$.

Proof. We first show that Σ satisfies the self-regularizing property with $\tau^2 \geq \rho/2$ with probability at least $1 - 6/(p \lor n)$. According to Eq.(6.4) in the paper, we have

$$\tau_0^2 = \min_{\lambda \in T^{p-1}} \lambda^\top \Sigma \lambda \ge \min_{\lambda \in T^{p-1}} \lambda^\top \Sigma^* \lambda - \max_{\lambda \in T^{p-1}} \lambda^\top \left(\Sigma^* - \Sigma\right) \lambda \ge \rho - \max_{j,k} \left| (\Sigma - \Sigma^*)_{jk} \right|.$$

Consequently, in virtue of (1.12), there exists a numerical constant C' depending on σ and ρ only so that if $n \geq C' \log(p \vee n), \tau_0^2 \geq \frac{1}{2}\rho$ with the probability as claimed. In the sequel, it will be shown that conditional on the event $\{\tau_0^2 \ge \rho/2\}$, Lemma 5 can be applied with

$$\Gamma = \Sigma, \quad R = (\Sigma^*)^{1/2}, \quad \Psi = X(\Sigma^*)^{-1/2}, \quad \vartheta^2 = 1 - \rho, \quad \alpha = \frac{3}{\tau^2} \le \frac{6}{\rho}, \quad \theta = C_{\sigma,\rho},$$

where $(\Sigma^*)^{1/2}$ is the root of Σ^* and $C_{\sigma,\rho}$ is a constant depending only on σ and ρ . By construction, $\Psi = X(\Sigma^*)^{-1/2}$ has independent isotropic rows. It remains to establish that the rows satisfy condition (1.20) of Lemma 5. Since the rows of Ψ are i.i.d., it suffices to consider a single row. Let us write X^1 for the transpose of the first row of X and accordingly $\Psi^1 = (\Sigma^*)^{-1/2} X^1$ for the transpose of the first row of Ψ . Furthermore, we make use of the decomposition $X^1 = \widetilde{X}^1 + \sqrt{\rho} \mathbf{1}$, where the entries

of \widetilde{X}^1 are i.i.d zero-mean sub-Gaussian random variables with parameter σ (cf. (1.8)). We then have for any unit vector u

$$\begin{split} \left\langle \Psi^{1}, u \right\rangle &= \left\langle (\Sigma^{*})^{-1/2} X^{1}, u \right\rangle = \left\langle (\Sigma^{*})^{-1/2} (\widetilde{X}^{1} + \sqrt{\rho} \mathbf{1}), u \right\rangle \\ &= \left\langle \widetilde{X}^{1}, (\Sigma^{*})^{-1/2} u \right\rangle + \sqrt{\frac{\rho}{(1-\rho) + p\rho}} \left\langle \mathbf{1}, u \right\rangle \\ &\leq \left\langle \widetilde{X}^{1}, (\Sigma^{*})^{-1/2} u \right\rangle + 1. \end{split}$$

For the second equality, we have used that **1** is an eigenvector of Σ^* with eigenvalue $1 + (p-1)\rho$, while the inequality results from Cauchy-Schwarz. We now estimate the moment-generating function of the random variable $\langle \Psi^1, u \rangle$ as follows. For any $t \ge 0$, we have

$$\begin{aligned} \mathbf{E}[\exp(t\left\langle \Psi^{1}, u\right\rangle)] &\leq \exp(t) \mathbf{E}\left[\exp\left(t\left\langle \widetilde{X}^{1}, (\Sigma^{*})^{-1/2} u\right\rangle\right)\right] \\ &\leq \exp(t) \mathbf{E}\left[\exp\left(\frac{\sigma^{2}t^{2}}{2} \| (\Sigma^{*})^{-1/2} u \|_{2}^{2}\right)\right] \\ &\leq \exp(t) \exp\left(\frac{\sigma^{2}t^{2}}{2(1-\rho)}\right) \\ &\leq e \exp\left(\frac{(\sigma^{2}+2)t^{2}}{2(1-\rho)}\right) = e \exp\left(\frac{\widetilde{\sigma}^{2}t^{2}}{2}\right), \end{aligned}$$

where $\tilde{\sigma} = \sqrt{(\sigma^2 + 2)/(1 - \rho)}$. For the third equality, we have used that the maximum eigenvalue of $(\Sigma^*)^{-1}$ equals $(1 - \rho)^{-1}$. Analogously, we obtain that

$$-\left\langle \Psi^{1}, u \right\rangle \leq \left\langle -\widetilde{X}^{1}, (\Sigma^{*})^{-1/2} u \right\rangle + 1, \quad \text{and} \quad \mathbf{E}[\exp(t\left\langle -\Psi^{1}, u \right\rangle)] \leq e \exp\left(\frac{\widetilde{\sigma}^{2} t^{2}}{2}\right) \ \forall t \geq 0.$$

From the Chernov bound, we hence obtain that for any $z \ge 0$

$$\mathbf{P}(|\langle \Psi^1, u \rangle| > z) \le 2e \exp\left(-\frac{z^2}{2\widetilde{\sigma}^2}\right).$$

Invoking Lemma 4 with $C' = \tilde{\sigma}\sqrt{3\log(2e)}$ and $C = \sqrt{6}\tilde{\sigma}$, it follows that the random variable $\langle \Psi^1, u \rangle$ is ψ_2 with parameter $2\sqrt{6}\tilde{\sigma} =: C_{\sigma,\rho}$, and we conclude that the rows of the matrix Ψ indeed satisfy condition (1.20) with θ equal to that value of the parameter.

1.4. Proof of Proposition 4

Proposition 4. Let X be a random matrix from Ens₊ (1.5) scaled such that $\Sigma^* = \mathbf{E}[\frac{1}{n}X^{\top}X] = (1-\rho)I + \rho\mathbf{1}\mathbf{1}^{\top}$ for some $\rho \in (0,1)$. Fix $S \subset \{1,\ldots,p\}, |S| \leq s$. Then there exists constants c, c', C, C' > 0 depending only on ρ and the sub-Gaussian parameter of the centered entries of X such that for all $n \geq Cs^2 \log(p \vee n)$,

$$\tau^2(S) \ge cs^{-1} - C'\sqrt{\frac{\log p}{n}}$$

with probability no less than $1 - 6/(p \lor n) - 3 \exp(-c'(s \lor \log n))$.

Proof. The scaling of $\tau^2(S)$ is analyzed based on the representation

$$\tau^{2}(S) = \min_{\theta \in \mathbb{R}^{s}, \ \lambda \in T^{p-s-1}} \frac{1}{n} \| X_{S}\theta - X_{S^{c}}\lambda \|_{2}^{2}.$$
(1.21)

In the following, denote by $\mathbb{S}^{s-1} = \{u \in \mathbb{R}^s : ||u||_2 = 1\}$ the unit sphere in \mathbb{R}^s . Expanding the square in (1.21), we have

$$\tau^{2}(S) = \min_{\theta \in \mathbb{R}^{s}, \ \lambda \in T^{p-s-1}} \theta^{\top} \Sigma_{SS} \theta - 2\theta^{\top} \Sigma_{SS^{c}} \lambda + \lambda^{\top} \Sigma_{S^{c}S^{c}} \lambda$$

$$\geq \min_{r \geq 0, \ u \in \mathbb{S}^{s-1}, \ \lambda \in T^{p-s-1}} r^{2} u^{\top} \Sigma_{SS}^{*} u - r^{2} s_{\max} \left(\Sigma_{SS} - \Sigma_{SS}^{*} \right) - 2r u^{\top} \Sigma_{SS^{c}} \lambda + \lambda^{\top} \Sigma_{S^{c}S^{c}} \lambda$$

$$\geq \min_{r \geq 0, \ u \in \mathbb{S}^{s-1}, \ \lambda \in T^{p-s-1}} r^{2} u^{\top} \Sigma_{SS}^{*} u - r^{2} s_{\max} \left(\Sigma_{SS} - \Sigma_{SS}^{*} \right)$$

$$- 2\rho r u^{\top} \mathbf{1} - 2r u^{\top} (\Sigma_{SS^{c}} - \Sigma_{SS^{c}}^{*}) \lambda + \rho + \frac{1 - \rho}{p - s} - \frac{1}{\lambda \in T^{p-s-1}} \left| \lambda^{\top} (\Sigma_{S^{c}S^{c}} - \Sigma_{S^{c}S^{c}}^{*}) \lambda \right|.$$
(1.22)

For the last inequality, we have used that $\min_{\lambda \in T^{p-s-1}} \lambda^{\top} \Sigma^*_{S^c S^c} \lambda = \rho + \frac{1-\rho}{p-s}$. We further set

$$\Delta = s_{\max} \left(\Sigma_{SS} - \Sigma_{SS}^* \right), \tag{1.23}$$

$$\delta = \max_{u \in \mathbb{S}^{s-1}, \lambda \in T^{p-s-1}} \left| u^{\top} \left(\Sigma_{S^c S^c} - \Sigma^*_{S^c S^c} \right) \lambda \right|.$$
(1.24)

The random terms Δ and δ will be controlled uniformly over $u \in \mathbb{S}^{s-1}$ and $\lambda \in T^{p-s-1}$ below by invoking (1.12) and (1.17). For the moment, we treat these two terms as constants. We now minimize the lower bound in (1.22) w.r.t. u and r separately from λ . This minimization problem involving u and r only reads

$$\min_{r\geq 0,\ u\in\mathbb{S}^{s-1}} r^2 u^{\top} \Sigma^*_{SS} u - 2\rho r u^{\top} \mathbf{1} - r^2 \Delta - 2r\delta.$$
(1.25)

We first derive an expression for

$$\phi(r) = \min_{u \in \mathbb{S}^{s-1}} r^2 u^\top \Sigma_{SS}^* u - 2\rho r u^\top \mathbf{1}.$$
 (1.26)

We decompose $u = u^{\parallel} + u^{\perp}$, where $u^{\parallel} = \left\langle \frac{1}{\sqrt{s}}, u \right\rangle \frac{1}{\sqrt{s}}$ is the projection of u on the unit vector $1/\sqrt{s}$, which is an eigenvector of Σ_{SS}^* associated with its largest eigenvalue $1 + \rho(s-1)$. By Parseval's identity, we have $||u^{\parallel}||_2^2 = \gamma$, $||u^{\perp}||_2^2 = (1-\gamma)$ for some $\gamma \in [0,1]$. Inserting this decomposition into (1.26) and noting that the remaining eigenvalues of Σ_{SS}^* are all equal to $(1-\rho)$, we obtain that

$$\phi(r) = \min_{\gamma \in [0,1]} \Phi(\gamma, r),$$

with $\Phi(\gamma, r) = r^2 \gamma \underbrace{(1 + (s - 1)\rho)}_{s_{\max}(\Sigma^*_{SS})} + r^2(1 - \gamma) \underbrace{(1 - \rho)}_{s_{\min}(\Sigma^*_{SS})} - 2\rho r \sqrt{\gamma} \sqrt{s},$ (1.27)

where we have used that $\langle u^{\perp}, \mathbf{1} \rangle = 0$. Let us put aside the constraint $\gamma \in [0, 1]$ for a moment. The function Φ in (1.27) is a convex function of γ , hence we may find an (unconstrained) minimizer $\tilde{\gamma}$ by differentiating and setting the derivative equal to zero. This yields $\tilde{\gamma} = \frac{1}{r^{2}s}$, which coincides with the constrained minimizer if and only if $r \geq \frac{1}{\sqrt{s}}$. Otherwise, $\tilde{\gamma} \in \{0, 1\}$. We can rule out the case $\tilde{\gamma} = 0$, since for all $r < 1/\sqrt{s}$

$$\Phi(0,r) = r^2(1-\rho) > r^2(1+(s-1)\rho) - 2\rho r\sqrt{s} = \Phi(1,r).$$

We have $\Phi(\frac{1}{r^2s}, r) = r^2(1-\rho) - \rho$ and $\Phi(\frac{1}{r^2s}, \frac{1}{\sqrt{s}}) = \Phi(1, \frac{1}{\sqrt{s}})$. Hence, the function $\phi(r)$ in (1.26) is given by

$$\phi(r) = \begin{cases} r^2 s_{\max}(\Sigma_{SS}^*) - 2\rho r \sqrt{s} & r \le 1/\sqrt{s}, \\ r^2(1-\rho) - \rho & \text{otherwise.} \end{cases}$$
(1.28)

The minimization problem (1.25) to be considered eventually reads

$$\min_{r \ge 0} \psi(r), \quad \text{where } \psi(r) = \phi(r) - r^2 \Delta - 2r\delta.$$
(1.29)

We argue that it suffices to consider the case $r \leq 1/\sqrt{s}$ in (1.28) provided

$$((1-\rho)-\Delta) > \delta\sqrt{s},\tag{1.30}$$

a condition we will comment on below. If this condition is met, differentiating shows that ψ is increasing on $(\frac{1}{\sqrt{s}}, \infty)$. In fact, for all r in that interval,

$$\frac{d}{dr}\psi(r) = 2r(1-\rho) - 2r\Delta - 2\delta, \text{ and thus}$$
$$\frac{d}{dr}\psi(r) > 0 \text{ for all } r \in \left(\frac{1}{\sqrt{s}}, \infty\right) \Leftrightarrow \frac{1}{\sqrt{s}}((1-\rho) - \Delta) > \delta.$$

Considering the case $r \leq 1/\sqrt{s}$, we observe that $\psi(r)$ is convex provided

$$s_{\max}(\Sigma_{SS}^*) > \Delta, \tag{1.31}$$

a condition we shall comment on below as well. Provided (1.30) and (1.31) hold true, differentiating (1.29) and setting the result equal to zero, we obtain that the minimizer \hat{r} of (1.29) is given by $(\rho\sqrt{s}+\delta)/(s_{\max}(\Sigma_{SS}^*)-\Delta)$. Substituting this result back into (1.29) and in turn into the lower bound (1.22), one obtains after collecting terms

$$\tau^{2}(S) \geq \rho \frac{(1-\rho) - \Delta}{(1-\rho) + s\rho - \Delta} - \frac{2\rho\sqrt{s\delta} + \delta^{2}}{s_{\max}(\Sigma_{SS}^{*}) - \Delta} + \frac{1-\rho}{p-s} - \frac{1}{\lambda \in T^{p-s-1}} \left| \lambda^{\top} (\Sigma_{S^{c}S^{c}} - \Sigma_{S^{c}S^{c}}^{*})\lambda \right|.$$

$$(1.32)$$

In order to control Δ (1.23), we apply (1.17) with the choices

$$z = \sqrt{s \vee \log n}$$
, and $t = 1 \vee \frac{\log n}{s}$.

Consequently, there exists a constant $C_1 > 0$ depending only on σ so that if $n > C_1(s \lor \log n)$, we have that

$$\mathbf{P}(\mathcal{A}) \ge 1 - 3 \exp(-c'(s \lor \log n)),$$

where $\mathcal{A} = \left\{ \Delta \le 2\sqrt{\frac{s^2(1 + 1 \lor (\log(n)/s))}{n}} + C'\sqrt{\frac{s \lor \log n}{n}} \right\}$ (1.33)

In order to control δ (1.24) and the last term in (1.32), we make use of (1.12), which yields that

$$\mathbf{P}(\mathcal{B}) \ge 1 - \frac{6}{p \lor n}, \text{ where}$$
$$\mathcal{B} = \left\{ \delta \le C \sqrt{\frac{s \log(p \lor n)}{n}} \right\} \cap \left\{ \sup_{\lambda \in T^{p-s-1}} \left| \lambda^{\top} (\Sigma_{S^c S^c} - \Sigma^*_{S^c S^c}) \lambda \right| \le C \sqrt{\frac{\log(p \lor n)}{n}} \right\}.$$
(1.34)

For the remainder of the proof, we work conditional on the two events \mathcal{A} and \mathcal{B} . In view of (1.33) and (1.34), we first note that there exists $C_2 > 0$ depending only on σ and ρ such that if $n \geq C_2 s^2 \log(p \vee n)$ the two conditions (1.30) and (1.31) supposed to be fulfilled previously indeed hold. To conclude the proof, we re-write (1.32) as

$$\tau^{2}(S) \geq \frac{\rho(1 - \Delta/(1 - \rho))}{(1 - \Delta/(1 - \rho)) + s\frac{\rho}{1 - \rho}} + \frac{2\rho \frac{\sqrt{s}}{1 + (s - 1)\rho}\delta}{1 - \Delta/(1 + (s - 1)\rho)} - \frac{\delta^{2}/(1 + (s - 1)\rho)}{1 - \Delta/(1 + (s - 1)\rho)} - \frac{1}{1 - \Delta/(1 + (s - 1$$

Conditional on $\mathcal{A} \cap \mathcal{B}$, there exists $C_3 > 0$ depending only on σ and ρ such that if $n \geq C_3(s^2 \vee (s \log n))$, when inserting the resulting scalings separately for each summand in (1.35), we have that

$$c_{1}s^{-1} - C_{4}\sqrt{\frac{\log(p \vee n)}{n}} - C_{5}\frac{\log(p \vee n)}{n} - C_{6}\sqrt{\frac{\log(p \vee n)}{n}}$$

= $c_{1}s^{-1} - C_{7}\sqrt{\frac{\log(p \vee n)}{n}}.$ (1.36)

We conclude that if $n \ge \max\{C_1, C_2, C_3\}s^2 \log(p \lor n)$, (1.36) holds with probability no less than $1 - \frac{6}{p\lor n} - 3\exp(-c'(s\lor \log n))$.

2. Empirical scaling of $\tau^2(S)$ for Ens₊

In Section 6.3, we have empirically investigated the scaling of $\tau^2(S)$ for the class (1.5) in a high-dimensional setting for the following designs.

$$\begin{split} E_1: \ \left\{ x_{ij} \right\} &\stackrel{\text{i.i.d.}}{\sim} \ a \text{ uniform}([0, 1/\sqrt{3 \cdot a}]) + (1-a)\delta_0, a \in \left\{ 1, \frac{2}{3}, \frac{1}{3}, \frac{2}{15} \right\} \ \left(\rho \in \left\{ \frac{3}{4}, \frac{1}{2}, \frac{1}{3}, \frac{1}{10} \right\} \right) \\ E_2: \ \left\{ x_{ij} \right\} &\stackrel{\text{i.i.d.}}{\sim} \ \frac{1}{\sqrt{\pi}} \text{ Bernoulli}(\pi), \ \pi \in \left\{ \frac{1}{10}, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, \frac{9}{10} \right\} \ \left(\rho \in \left\{ \frac{1}{10}, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, \frac{9}{10} \right\} \right) \\ E_3: \ \left\{ x_{ij} \right\} &\stackrel{\text{i.i.d.}}{\sim} \ |Z|, \ Z \sim a \text{ Gaussian}(0, 1) + (1-a)\delta_0, \ a \in \left\{ 1, \frac{\pi}{4}, \frac{\pi}{8}, \frac{\pi}{20} \right\} \ \left(\rho \in \left\{ \frac{2}{\pi}, \frac{1}{2}, \frac{1}{4}, \frac{1}{10} \right\} \right) \\ E_4: \ \left\{ x_{ij} \right\} &\stackrel{\text{i.i.d.}}{\sim} \ a \text{Poisson}(3/\sqrt{12 a}) + (1-a)\delta_0, \ a \in \left\{ 1, \frac{2}{3}, \frac{1}{3}, \frac{2}{15} \right\} \ \left(\rho \in \left\{ \frac{3}{4}, \frac{1}{2}, \frac{1}{4}, \frac{1}{10} \right\} \right) \end{split}$$

The results for E_1 are presented in the paper, and the results for E_2 to E_4 are displayed below.

2.1. E_2

3. Additional empirical results on the ℓ_2 -error in estimating β^*

The results in the two tables below are complementary to the experimental results in Section 6.2 of the paper. We here report $\|\widehat{\beta} - \beta^*\|_2$ (NNLS) and $\|\widehat{\beta}^{\ell_{1,\succeq}} - \beta^*\|_2$ (NN ℓ_1) in correspondence to Tables 1 and 2 of the paper.

$Design \ I$

	p/n											
	2		3		5		10					
s/n	nnls	$nn\ell_1$	nnls	$nn\ell_1$	nnls	$nn\ell_1$	nnls	$nn\ell_1$				
0.05	$1.0 \pm .01$	$1.0 \pm .01$	$1.1 \pm .01$	$1.1 \pm .01$	$1.2 \pm .01$	$1.2 \pm .01$	$1.3 \pm .01$	$1.3 \pm .01$				
0.1	$1.4 \pm .01$	$1.4 \pm .01$	$1.6 \pm .01$	$1.6 \pm .01$	$1.8 \pm .02$	$1.8 \pm .02$	$2.1 \pm .02$	$2.1 \pm .02$				
0.15	$1.8 \pm .01$	$1.8 \pm .02$	$2.0 \pm .02$	$2.0 \pm .02$	$2.4 \pm .02$	$2.4 \pm .02$	$3.1 \pm .04$	$3.4 \pm .05$				
0.2	$2.1 \pm .02$	$2.2 \pm .04$	$2.5 \pm .02$	$2.6 \pm .07$	$3.1 \pm .03$	$3.3 \pm .04$	$5.4 \pm .10$	$6.9 \pm .19$				
0.25	$2.5 \pm .02$	$2.6 \pm .04$	$3.1 \pm .03$	$3.7 \pm .14$	$4.5 \pm .07$	$7.2 \pm .27$	$12.0 \pm .2$	$15.3 \pm .2$				
0.3	$3.0 {\pm}.03$	$3.4 \pm .11$	$4.0 \pm .05$	$5.5 \pm .24$	$8.1 \pm .19$	$12.8 \pm .3$	$18.6 \pm .1$	$19.8 \pm .1$				

Design II

	p/n											
	2		3		5		10					
s/n	nnls	$nn\ell_1$	nnls	$nn\ell_1$	nnls	$nn\ell_1$	nnls	$nn\ell_1$				
0.02	$0.6 \pm .01$	$0.7 \pm .01$	$0.6 \pm .01$	$0.7 \pm .01$	$0.6 {\pm}.01$	$0.7 \pm .01$	$0.6 \pm .01$	$0.7 \pm .01$				
0.04	$0.7 \pm .01$	$1.0 \pm .01$	$0.7 \pm .01$	$1.0 \pm .01$	$0.7 {\pm}.01$	$1.0 \pm .01$	$0.7 \pm .01$	$1.0 \pm .01$				
0.06	$0.8 {\pm}.01$	$1.2 \pm .01$	$0.8 \pm .01$	$1.2 \pm .01$	$0.8 {\pm}.01$	$1.2 \pm .02$	$0.9 {\pm}.01$	$1.2 \pm .01$				
0.08	$0.9 {\pm}.01$	$1.3 \pm .02$	$0.9 \pm .01$	$1.3 \pm .02$	$0.9 {\pm}.01$	$1.3 \pm .02$	$1.0 \pm .01$	$1.4 \pm .01$				
0.1	$1.0 \pm .01$	$1.4 \pm .02$	$1.0 \pm .01$	$1.5 \pm .02$	$1.0 {\pm}.01$	$1.5 \pm .02$	$1.1 \pm .01$	$1.5 \pm .02$				

References

- D. Chafai, O. Guedon, G. Lecue, and A. Pajor. Interactions between Compressed Sensing, Random Matrices and High-dimensional Geometry. Lecture Notes, Université Paris Est Marne-la Vallée, 2012.
- [2] P. Ravikumar, M. Wainwright, G. Raskutti, and B. Yu. High-dimensional covariance estimation by minimizing l₁-penalized log-determinant divergence. *The Electronic Journal of Statistics*, 4:935–980, 2011.
- [3] M. Rudelson and S. Zhou. Reconstruction from anisotropic random measurements. *IEEE Transactions on Information Theory*, to appear, 2012.
- [4] R. Vershynin. In: Compressed Sensing: Theory and Applications, Y. Eldar and G. Kutyniok (eds.), chapter 'Introduction to the non-asymptotic analysis of random matrices'. Cambridge University Press, 2012.