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1. Proofs of Propositions 3 and 4

We here provide proofs of Propositions 3 and 4 concerning random equi-correlation-like
matrices. These proofs rely on a series of lemmas that are stated first.

1.1. Additional lemmas

We recall from Appendix A of the paper that a zero-mean random variable is called
sub-Gaussian if there exists o > 0 (referred to as sub-Gaussian parameter) so that
the moment-generating function obeys the bound Elexp(tZ)] < exp(c?t?/2) Vt € R.
If Zy,...,Z, areii.d. copies of Z and v; € R", j =1,...,p, are fixed vectors, then

1
N : < —=2? >0. (1.
P (maé(ph/] Z| > o max vl ( 210gp+z)) < 2exp 5% ), 22 0. (1.1)

1<j

Bernstein-type inequality for squared sub-Gaussian random variables

The following exponential inequality combines Lemma 14, Proposition 16 and Remark
18 in [4].

Lemma 1. Let Zy,...,Z,, be i.i.d. zero-mean sub-Gaussian random variables with
parameter o and the property that B[Z2] < 1. Then for any z > 0, one has

m 2
P(ZZZ-2>m+zm> < exp (—cmin{%,%}m), (1.2)
i=1

where ¢ > 0 is an absolute constant.

Concentration of extreme singular values of sub-Gaussian random
matrices

Let $min(A) and spmax(A) denote the minimum and maximum singular value of a matrix
A. The following lemma is a special case of Theorem 39 in [4].
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Lemma 2. Let A be an n X s matriz with i.i.d. zero-mean sub-Gaussian entries with
sub-Gaussian parameter o and unit variance. Then for every z > 0, with probability
at least 1 — 2 exp(—cz?), one has

1+ 9 S z
- _I)< =02+ = .
Smax <nA A I) < max(0,0“), where 0 O\/;-I— ok (1.3)

with C', ¢ depending only on o.

Entry-wise concentration of the Gram matrix associated with a
sub-Gaussian random matriz

The next lemma results from Lemma 1 in [2] and the union bound.

Lemma 3. Let X be an n X p random matriz of i.i.d. zero-mean, unit variance sub-
Gaussian entries with parameter o. Then

1
P < max (—XTX — I)
1<jk<p |\ n ik

for all z € (0,8(1+ 40?)).
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1.2. Application to Ensy

Recall that the class Ensy is given by

Ens; : X = (zij)1<i<n, {2} 1.1.d. from a sub-Gaussian distribution on R;. (1.5)
1<j<p

We shall make use of the following decomposition valid for any X from (1.5).
X=X +ul, (1.6)
where the entries {Z;;} of X are zero mean sub-Gaussian random variables with pa-

rameter o, say, 1 = E[x11] and 1 is an n X p-matrix of ones. In the sequel, we specialize
to the case where the entries of X are scaled such that

Y =E PXTX] =1 —-p)I+p11" (1.7)
n

for p € (0,1), i.e. the population Gram matrix has equi-correlation structure. Then,
decomposition (1.6) becomes

X =X+pl, and E[F3,]=(1-p). (1.8)

Accordingly, we have the following expansion of ¥ = %X TX.

151 1= 1 1= 11
Y=-X"X+p (—Xﬁl + —]lTX) +p11", where E {—XTX} =(1-p)l.
n n n n

(1.9)

Observe that B B
n'X"1=D11", and n '1TX =11"D, (1.10)
where D € RP*? is a diagonal matrix with diagonal entries d;; = n='>"" | 7,

j=1,...,p. It hence follows from (1.1) that

21 2
> 204/ og(p\/n)> < : (1.11)
jk n pVvVn

2

P (max ‘nil)N(T]l
Jrk




Combining (1.7), (1.9), (1.11) and Lemma 3, it follows that there exists a constant
C > 0 depending only on ¢ such that

XTX
P [ max ( —E*)
g,k n ik

Let now S C {1,...,p}, |S| = s < n be given. Without loss of generality, let us assume
that S = {1,...,s}. In the sequel, we control smax(X5g — Xss). From decomposition
(1.9), we obtain that

. 1 XX Xi1
Smax(ESS ESS) (1 - )Smax <TS—S — I) + 2\/ﬁsmax ( 5’;1 S) (113)

p n

> C log(pv”)>g 0 (1.12)
n pVvVn

Introduce w = (30 T /n, ..oy iy Eis/n)T as the vector of column means of Xg.
We have that

XJ1 XJ1
smax< S S)- sup  sup uT 285, = sup  sup u' wl'v=/s|w|s.

n llull=1[lv]l,=1 n llull=11lv],=1
(1.14)
Moreover,
s ; 1 s n
lwly =>" (M) ==Y "2}, where z;=n"'?>Y & (1.15)
n
Jj=1 j=1 i—1

Noting that the {z;}3_; are i.i.d. zero-mean sub-Gaussian random variables with pa-
rameter ¢ and variance no larger than one, we are in position to apply Lemma 1,
which yields that for any ¢ > 0

5 8 [t 0t
P (Hw||2 > ﬁ(l + t)) < exp <—cm1n <;, F) s> . (1.16)

Combining (1.13), (1.14) and (1.16) and using Lemma 2 to control the term

~ e
Smax 1T1p XSnXS — I ), we obtain that for any ¢ > 0 and any z > 0

P (Smax(zgs —Xss) > maX{C\/%—i- %, <C\/§+ %)2} +2 @)

< exp(—cy min{t, t?}s) — 2 exp(—c22?),

(1.17)

where C,c1,c2 > 0 only depend on the sub-Gaussian parameter o. Equipped with
these auxiliary results, we now turn to the proofs of Proposition 3 and 4.

1.3. Proof of Proposition 3
Let us first recall the restricted eigenvalue condition.

Condition 2. Let J(s) = {J C {1,...,p} : 1 < |J| < s} and for J € J(s) and
a>1,

R(J,0) ={0 € R : [0l < |05l }-
We say that the design satisfies the (a, s)-restricted eigenvalue condition if there

exists a constant ¢(a, s) so that

§TY6
> ¢(a, s) > 0. 1.18
JeJ(s) 56R(Ja)\0 H5]||2 2 ¢ ) ( )

The proof of Proposition 3 relies on a recent result in [3]. In order to state that result,
we need the following preliminaries concerning ¢s-random variables taken from [1] (see
Definition 1.1.1 and Theorem 1.1.5 therein).



Definition 1. A random variable Z is said to be 1o with parameter 6 > 0 if
inf {a > 0: E [exp(Z°/a*)] < e} < 6. (1.19)

Lemma 4. If a random variable Z has the property that there exist positive constants
C,C" so thatVz > C'
P(|Z]| > 2z) < exp (—22/02) ,

then Z is 1o with parameter no more than 2 max(C,C").

The following statement is essentially a special case of Theorem 1.6 in [3]. We state it
in simplified form that is sufficient for our purpose here.

Lemma 5. Let U € R™*? be a matriz whose rows U, ... U™ are independent random
vectors that are

1. isotropic, i.c. E[<\Iﬂ,u>2] =1,i=1,...,n,
2. s, i.e. there exists 0 > 0 such that for every unit vector u € RP

inf {a >0: E [exp(<\11i,u>2 /az)} < e} <0, i=1,...,n. (1.20)

Let further R € RP*P be a positive definite matrix with minimum eigenvalue ¥ > 0
and set T = LRTWTWR. Then, for any § € (0,1) and any o € [1,00), there eist
positive constants Cy, ¢ > 0 (the first depending on the vy parameter 0) so that if

Cy 16(3a?)(3a + 1) D
nZ s (”192—52 tog (¢35

with probability at least 1 —2exp(—562n/Cy), T satisfies the («a, s)-restricted eigenvalue
condition with ¢(a, s) = 9?(1 — )% .

We now state and prove Proposition 3.

Proposition 3. Let X be a random matrix from Ens; (1.5) scaled such that ¥* =
E[1XTX] = (1—-p)I+p11T for some p € (0,1). Set § € (0, 1). There exists constants
C, ¢ > 0 depending only on d, p and the sub-Gaussian parameter of the centered entries
of X so that if n > C slog(p V n), then, with probability at least 1 — exp(—cd?n) —
6/(pvn), ¥ = X T X/n has the self-regularizing property with 72 = p/2 and satisfies the
(3/72, 5) restricted eigenvalue condition of Theorem 2 with ¢(3/72,s) = (1—p)(1—6)%.

Proof. We first show that ¥ satisfies the self-regularizing property with 72 > p/2 with
probability at least 1 —6/(p V n). According to Eq.(6.4) in the paper, we have

2= min A'EA> min ATE*A— max A (S X))\ > p— max ’(Z =X 0l -
AeTr—1 AeTP—1 AeTP—1 Jrk J

Consequently, in virtue of (1.12), there exists a numerical constant C’ depending on
o and p only so that if n > C’log(p V n), 7§ > 3p with the probability as claimed. In
the sequel, it will be shown that conditional on the event {78 > p/2}, Lemma 5 can
be applied with

3

=y, R=(Z9)Y?, T=X(E)"2 #?=1-p, a==<

SRR

0=C,
T ’ P

where (X*)!/2 is the root of ¥* and C, , is a constant depending only on ¢ and
p. By construction, ¥ = X (X*)~'/2 has independent isotropic rows. It remains to
establish that the rows satisfy condition (1.20) of Lemma 5. Since the rows of ¥ are
i.i.d., it suffices to consider a single row. Let us write X' for the transpose of the first
row of X and accordingly W' = (X*)~1/2 X! for the transpose of the first row of .
Furthermore, we make use of the decomposition X! = X+ /p1, where the entries



of X! are i.i.d zero-mean sub-Gaussian random variables with parameter o (cf. (1.8)).
We then have for any unit vector u

(0 ) = <(z*)—1/2 Xl,u> - <(z*)—1/2 (X! + \/ﬁl),u>
_ <)}1, (E*)fl/Q u> i
< <)~<1, (E*)_1/2u> 1.
For the second equality, we have used that 1 is an eigenvector of ¥* with eigenvalue
1+ (p — 1)p, while the inequality results from Cauchy-Schwarz. We now estimate the

moment-generating function of the random variable <\I/1, u> as follows. For any ¢ > 0,
we have

Elexp(t (U', u))] < exp(t) E {exp (t <)~(1, (z*)~1/2 u>)}

<exp(t)E [exp (?H(E*)_l/?uﬂgﬂ

o?t?
<exp(t)exp | ———

N0
<o () - o (7).

where 7 = /(02 + 2)/(1 — p). For the third equality, we have used that the maximum
eigenvalue of (X*)~! equals (1 — p)~t. Analogously, we obtain that

1 v1 *\—1/2 1 F2t?
— (U u) < <—X ,(Z7) u>+1, and Efexp(t (—VU', u))] < eexp - vt > 0.

From the Chernov bound, we hence obtain that for any z > 0

22
P(| (o' <2 - .
(|< ,u>| >z) < eexp( 252)
Invoking Lemma 4 with C’ = 5+/31log(2¢) and C = /65, it follows that the random
variable <\I/1, u> is 1)y with parameter 2v/65 =: Cs.p, and we conclude that the rows
of the matrix ¥ indeed satisfy condition (1.20) with 6 equal to that value of the
parameter. O

1.4. Proof of Proposition

Proposition 4. Let X be a random matrix from Ens; (1.5) scaled such that ¥* =
E[1XTX] = (1 — p)I + p11T for some p € (0,1). Fix S C {1,...,p}, |S| < s.
Then there exists constants ¢, ¢/, C, C' > 0 depending only on p and the sub-Gaussian
parameter of the centered entries of X such that for all n > Cs?log(p V n),

72(S) > es™t = ' logp

n

with probability no less than 1 —6/(pV n) — 3exp(—c'(s V logn)).

Proof. The scaling of 72(9) is analyzed based on the representation

1
2 . 2
°(S) = min — | Xg0 — Xgec 5. 1.21
( ) 0eRs, )\EITP*S*1 n ” s s H2 ( )



In the following, denote by S*=' = {u € R® : [jul|, = 1} the unit sphere in R*.
Expanding the square in (1.21), we have

72(8) = min 0 Vg0 — 20T Tgge A + AT Dgege
OERS, AeTP—s—1

. 2 TNk 2 *
> min reu Yequ —1res Yss — 2 —
= >0, ueSs—1, AeTP—s—1 55 max (B ss)

— 2TUT2550/\ =+ ATZSCSC)\

. Tk 2 *
> min r2ut Y5 o — 12 $max (Bgs — 2
T r>0, ueSs—1, xeTr—s-1 59 max ( = SS)

(1.22)

—2pru’1 —2ru’ (Sgge — Lhge )N+ p + -
— S
- A (Zgese — Dhege)A| -

(max AT (Bsese — Bgege)A|

For the last inequality, we have used that minycpp-s—1 )\TE*CSC)\ = p+ ;:’S). We
further set

A = Smax (ESS - EZ‘S) y (123)

— T _ *
0= uegs—lrg\aé)é"p7371 "U, (ESCSC ESCSC) )\’ . (124)

The random terms A and § will be controlled uniformly over v € S*~1 and A € TP~5~!
below by invoking (1.12) and (1.17). For the moment, we treat these two terms as
constants. We now minimize the lower bound in (1.22) w.r.t. u and r separately from
A. This minimization problem involving u and 7 only reads

min  r?u' Xheu — 2pru’ 1 — r2A — 2r. (1.25)
r>0, ueSs—1

We first derive an expression for

o(r) = min r2u Shqu — 2pru’ 1. (1.26)
u€Ss—

We decompose u = ull + ut, where ull = <\/i§,u> % is the projection of u on the

unit vector 1/4/s, which is an eigenvector of X5 ¢ associated with its largest eigenvalue
1+ p(s — 1). By Parseval’s identity, we have |[ull||3 = 7, [[ut||3 = (1 — ~) for some
~v € [0,1]. Inserting this decomposition into (1.26) and noting that the remaining
eigenvalues of X§g are all equal to (1 — p), we obtain that

¢(r) = min (y,7),
with ®(v,7) =1y (1 + (s — 1)p) +7*(1 =) (1 —p) —2pr/FVs, (1.27)
—_—— ——

Smax(z*ss) Smin(z*ss)

where we have used that (ut,1) = 0. Let us put aside the constraint v € [0,1] for
a moment. The function ® in (1.27) is a convex function of v, hence we may find
an (unconstrained) minimizer 5 by differentiating and setting the derivative equal to
zero. This yields 7 = %, which coincides with the constrained minimizer if and only
ifr > % Otherwise, 7 € {0, 1}. We can rule out the case ¥ = 0, since for all 7 < 1/4/s

®(0,7) =r*(1 —p) >r*(1+ (s — 1)p) — 2prv/s = (1, 7).

We have ®(=4-,7r) = r?(1 — p) — p and ®(4, =) = O(1, 15). Hence, the function
o(r) in (1.26) is given by

S
S

QZ/)(T) _ {T2Smax(2§5) - 2pT\/§ r S 1/\/57 (128)

r2(1—p)—p otherwise.



The minimization problem (1.25) to be considered eventually reads

m;{)lw(r), where (r) = ¢(r) — A — 2r6. (1.29)

We argue that it suffices to consider the case r <1/y/s in (1.28) provided
(1= p) = A) > V5, (1.30)

a condition we will comment on below. If this condition is met, differentiating shows
that ¢ is increasing on (%, 00). In fact, for all r in that interval,

diib(r) =2r(1 —p) — 2rA — 26, and thus
”

d 1 1
%1/)(7“) >0 for allr € <%,oo> &= ﬁ((l —p)—A) >0.
Considering the case r < 1/4/s, we observe that ¢ (r) is convex provided
Smax(X5g) > A, (1.31)

a condition we shall comment on below as well. Provided (1.30) and (1.31) hold true,
differentiating (1.29) and setting the result equal to zero, we obtain that the minimizer
7 of (1.29) is given by (pv/s + 0)/(sSmax(XEg) — A). Substituting this result back into
(1.29) and in turn into the lower bound (1.22), one obtains after collecting terms

— —_ 2 -
DRSS SV T
(1 — p) + sp — A Smax(ESS) -A p—s (132)
| max AT (Zsese — Dhege)A| -

In order to control A (1.23), we apply (1.17) with the choices

1
z=1/sVlogn, and t=1V ogn
s

Consequently, there exists a constant C7 > 0 depending only on ¢ so that if
n > C1(s Vlogn), we have that

P(A) > 1 —3exp(—c(s Vlogn)),

where A = {A < 2\/52(1 +1 \/slog(n)/s)) N C'\/@} (1.33)

In order to control ¢ (1.24) and the last term in (1.32), we make use of (1.12), which
yields that

PB)>1- L, where
pVn

: 1
{5§O M}m{ sup AT (Zsege — Bhege)A| < C w}
" AeTP—s—1 -

(1.34)

For the remainder of the proof, we work conditional on the two events A and B. In
view of (1.33) and (1.34), we first note that there exists Cy > 0 depending only on o
and p such that if n > Cas%log(p V n) the two conditions (1.30) and (1.31) supposed
to be fulfilled previously indeed hold. To conclude the proof, we re-write (1.32) as

p(1=A/(1=p)) 2075550 /04 (s=1p)
(1-=A/A=p)+st25  1-A/(1+(s=1)p) 1-A/1+(s—1)p)

- A (Zgege — ko)A
/\61%1?35{71‘ (Eses Sege) ‘

7'2(5) >

(1.35)



Conditional on A N B, there exists C3 > 0 depending only on ¢ and p such that
if n > C3(s? V (slogn)), when inserting the resulting scalings separately for each
summand in (1.35), we have that

1, log(pVvn) s log(pVvn) Cs log(p V n)
n n (1.36)

C18

S oy L\ A0

We conclude that if n > max{Cy, Cy, C3}s*log(p V n), (1.36) holds with probability

no less than 1 — m — 3exp(—d(sVlogn)).

O

2. Empirical scaling of 72(S) for Ens

In Section 6.3, we have empirically investigated the scaling of 72(S) for the class (1.5)
in a high-dimensional setting for the following designs.

Er: {ay;) "R aniform([0,1/v3 - a))+(1—a)do, a € {1,2,1, 2} (pe (3,1, L)
Ey: {zi;} L %Bernoulli(ﬂ'), Te{s 153,51 (pe{s 1.5.2.2)

Es: {ay;) "5 |Z), Z ~ aGaussian(0, 1)+(1—a)do, a € {1, 5, T, T} (pe {2,1,1, L)
Ex: {wy;} "X aPoisson(3/v12a) + (1 —a)do, a € {1,2,1, 2} (pe {3,1,1 L)

The results for F; are presented in the paper, and the results for Fs to E, are displayed
below.

2.1. Eo

logz(<* (8))

-10

s/n




l0ga(# (8))

s/n

40

-60

-70

logz(7® (S))

-5

-20

-30

s/n

-40

2.2. Eg

Esp=2/n logz(7* (S))

-5

0.5

-20

-30

s/n

40

-50

-60

-70

s/n

logal# (9))

s/n

a0

-60

-70

s/n

_ 2
o5 Es p=05 loga(%* (S))

s/n

s/n




2.3. E4

logz(<* (8)) logz(<* (8))

s/n
s/n

logz(7® (S))

-5
-10

-20

-30

s/n
s/n

-40

3. Additional empirical results on the £2-error in estimating 3*

The results in the two tables below are complementary to the experimental results in
Section 6.2 of the paper. We here report ||3 — 3*||2 (NNLS) and ||3*= — 3*||2 (NN£;)
in correspondence to Tables 1 and 2 of the paper.

Design I

p/n

s/n nnls nnfq nnls nnfq nnls nnfq nnls nnfq

0.05 1.0+.01 1.0+.01 1.1+.01 1.1+.01 1.2+.01 1.2+.01 1.3+.01 1.3+.01
0.1 1.4+.01 1.4+.01 1.6+.01 1.6+.01 1.8+.02 1.8+.02 2.1+.02 2.1+.02
0.15 | 1.8+.01 | 1.8+.02 2.0£.02 | 2.0£.02 2.4+.02 | 2.4£.02 3.1+.04 | 3.4+.05
0.2 2.14+.02 | 2.2+.04 2.5+.02 | 2.6+.07 3.1+.03 | 3.3+.04 5.4+.10 6.9+.19
0.25 | 2.5+.02 | 2.6+£.04 || 3.1+£.03 | 3.7£.14 || 4.5+£.07 | 7.2+.27 12.0£.2 | 15.3+.2
0.3 3.0+.03 | 3.4+.11 4.04.05 | 5.5+.24 8.1+.19 12.8+.3 18.6+.1 19.8+.1

Design IT

s/n nnls nnty nnls nnty nnls nnty nnls nnty

0.02 | 0.6+.01 | 0.74.01 0.6+.01 | 0.7£.01 0.6+.01 | 0.7£.01 0.64.01 | 0.74.01
0.04 | 0.7+.01 | 1.0+.01 0.7+.01 | 1.0+.01 0.7+.01 | 1.0+.01 0.74£.01 | 1.0£.01
0.06 | 0.84.01 | 1.24.01 0.8+.01 | 1.24.01 0.8+.01 | 1.24.02 0.94.01 | 1.24.01
0.08 | 0.9+.01 | 1.34+.02 0.9+.01 | 1.3+.02 0.94+.01 | 1.3£.02 1.04+.01 | 1.44.01
0.1 1.04£.01 | 1.44.02 1.0£.01 | 1.54.02 1.0£.01 | 1.54.02 1.1£.01 | 1.54.02
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