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1. Proofs of Propositions 3 and 4

We here provide proofs of Propositions 3 and 4 concerning random equi-correlation-like
matrices. These proofs rely on a series of lemmas that are stated first.

1.1. Additional lemmas

We recall from Appendix A of the paper that a zero-mean random variable is called
sub-Gaussian if there exists σ > 0 (referred to as sub-Gaussian parameter) so that
the moment-generating function obeys the bound E[exp(tZ)] ≤ exp(σ2t2/2) ∀t ∈ R.
If Z1, . . . , Zn are i.i.d. copies of Z and vj ∈ R

n, j = 1, . . . , p, are fixed vectors, then

P

(
max

1≤j≤p
|v⊤j Z| > σ max

1≤j≤p
‖vj‖2

(√
2 log p+ z

))
≤ 2 exp

(
−1

2
z2

)
, z ≥ 0. (1.1)

Bernstein-type inequality for squared sub-Gaussian random variables

The following exponential inequality combines Lemma 14, Proposition 16 and Remark
18 in [4].

Lemma 1. Let Z1, . . . , Zm be i.i.d. zero-mean sub-Gaussian random variables with
parameter σ and the property that E[Z2

1 ] ≤ 1. Then for any z ≥ 0, one has

P

(
m∑

i=1

Z2
i > m+ zm

)
≤ exp

(
−cmin

{
z2

σ4
,
z

σ2

}
m

)
, (1.2)

where c > 0 is an absolute constant.

Concentration of extreme singular values of sub-Gaussian random

matrices

Let smin(A) and smax(A) denote the minimum and maximum singular value of a matrix
A. The following lemma is a special case of Theorem 39 in [4].
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Lemma 2. Let A be an n× s matrix with i.i.d. zero-mean sub-Gaussian entries with
sub-Gaussian parameter σ and unit variance. Then for every z ≥ 0, with probability
at least 1 − 2 exp(−cz2), one has

smax

(
1

n
A⊤A− I

)
≤ max(δ, δ2), where δ = C

√
s

n
+

z√
n
, (1.3)

with C, c depending only on σ.

Entry-wise concentration of the Gram matrix associated with a

sub-Gaussian random matrix

The next lemma results from Lemma 1 in [2] and the union bound.

Lemma 3. Let X be an n× p random matrix of i.i.d. zero-mean, unit variance sub-
Gaussian entries with parameter σ. Then

P

(
max

1≤j,k≤p

∣∣∣∣∣

(
1

n
X⊤X − I

)

jk

∣∣∣∣∣ > z

)
≤ 4p2 exp

(
− nz2

128(1 + 4σ2)2

)
(1.4)

for all z ∈
(
0, 8(1 + 4σ2)

)
.

1.2. Application to Ens+

Recall that the class Ens+ is given by

Ens+ : X = (xij)1≤i≤n
1≤j≤p

, {xij} i.i.d. from a sub-Gaussian distribution on R+. (1.5)

We shall make use of the following decomposition valid for any X from (1.5).

X = X̃ + µ1, (1.6)

where the entries {x̃ij} of X̃ are zero mean sub-Gaussian random variables with pa-
rameter σ, say, µ = E[x11] and 1 is an n×p-matrix of ones. In the sequel, we specialize
to the case where the entries of X are scaled such that

Σ∗ = E

[
1

n
X⊤X

]
= (1 − ρ)I + ρ11⊤ (1.7)

for ρ ∈ (0, 1), i.e. the population Gram matrix has equi-correlation structure. Then,
decomposition (1.6) becomes

X = X̃ +
√
ρ1, and E[x̃2

11] = (1 − ρ). (1.8)

Accordingly, we have the following expansion of Σ = 1
nX

⊤X .

Σ =
1

n
X̃⊤X̃ +

√
ρ

(
1

n
X̃⊤1+

1

n
1⊤X̃

)
+ ρ11⊤, where E

[
1

n
X̃⊤X̃

]
= (1 − ρ)I.

(1.9)
Observe that

n−1X̃⊤1 = D11⊤, and n−11⊤X̃ = 11⊤D, (1.10)

where D ∈ R
p×p is a diagonal matrix with diagonal entries djj = n−1

∑n
i=1 x̃ij ,

j = 1, . . . , p. It hence follows from (1.1) that

P

(
max
j,k

∣∣∣n−1X̃⊤1∣∣∣
jk
> 2σ

√
2 log(p ∨ n)

n

)
≤ 2

p ∨ n, (1.11)
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Combining (1.7), (1.9), (1.11) and Lemma 3, it follows that there exists a constant
C > 0 depending only on σ such that

P

(
max
j,k

∣∣∣∣∣

(
X⊤X

n
− Σ∗

)

jk

∣∣∣∣∣ > C

√
log(p ∨ n)

n

)
≤ 6

p ∨ n. (1.12)

Let now S ⊂ {1, . . . , p}, |S| = s < n be given. Without loss of generality, let us assume
that S = {1, . . . , s}. In the sequel, we control smax(Σ

∗
SS − ΣSS). From decomposition

(1.9), we obtain that

smax(Σ
∗
SS − ΣSS) ≤ (1 − ρ)smax

(
1

1 − ρ

X̃⊤
S X̃S

n
− I

)
+ 2

√
ρsmax

(
X̃⊤

S 1S

n

)
(1.13)

Introduce w = (
∑n

i=1 x̃i1/n, . . . ,
∑n

i=1 x̃is/n)
⊤

as the vector of column means of X̃S .
We have that

smax

(
X̃⊤

S 1S

n

)
= sup

‖u‖
2
=1

sup
‖v‖

2
=1

u⊤
X̃⊤

S 1S

n
v = sup

‖u‖
2
=1

sup
‖v‖

2
=1

u⊤w1⊤v =
√
s‖w‖2.

(1.14)
Moreover,

‖w‖2
2 =

s∑

j=1

(∑n
i=1 x̃ij

n

)2

=
1

n

s∑

j=1

z2
j , where zj = n−1/2

n∑

i=1

x̃ij . (1.15)

Noting that the {zj}s
j=1 are i.i.d. zero-mean sub-Gaussian random variables with pa-

rameter σ and variance no larger than one, we are in position to apply Lemma 1,
which yields that for any t ≥ 0

P
(
‖w‖2

2 >
s

n
(1 + t)

)
≤ exp

(
−cmin

(
t2

σ4
,
t

σ2

)
s

)
. (1.16)

Combining (1.13), (1.14) and (1.16) and using Lemma 2 to control the term

smax

(
1

1−ρ
X̃⊤

S X̃S

n − I

)
, we obtain that for any t ≥ 0 and any z ≥ 0

P

(
smax(Σ

∗
SS − ΣSS) > max

{
C

√
s

n
+

z√
n
,

(
C

√
s

n
+

z√
n

)2
}

+ 2

√
s2(1 + t)

n

)

≤ exp(−c1 min{t, t2}s) − 2 exp(−c2z2),

(1.17)

where C, c1, c2 > 0 only depend on the sub-Gaussian parameter σ. Equipped with
these auxiliary results, we now turn to the proofs of Proposition 3 and 4.

1.3. Proof of Proposition 3

Let us first recall the restricted eigenvalue condition.

Condition 2. Let J (s) = {J ⊆ {1, . . . , p} : 1 ≤ |J | ≤ s} and for J ∈ J (s) and
α ≥ 1,

R(J, α) = {δ ∈ R
p : ‖δJc‖1 ≤ α‖δJ‖1}.

We say that the design satisfies the (α, s)-restricted eigenvalue condition if there
exists a constant φ(α, s) so that

min
J∈J (s)

min
δ∈R(J,α)\0

δ⊤Σδ

‖δJ‖2
2

≥ φ(α, s) > 0. (1.18)

The proof of Proposition 3 relies on a recent result in [3]. In order to state that result,
we need the following preliminaries concerning ψ2-random variables taken from [1] (see
Definition 1.1.1 and Theorem 1.1.5 therein).
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Definition 1. A random variable Z is said to be ψ2 with parameter θ > 0 if

inf
{
a > 0 : E

[
exp(Z2/a2)

]
≤ e
}
≤ θ. (1.19)

Lemma 4. If a random variable Z has the property that there exist positive constants
C,C′ so that ∀z ≥ C′

P (|Z| ≥ z) ≤ exp
(
−z2/C2

)
,

then Z is ψ2 with parameter no more than 2 max(C,C′).

The following statement is essentially a special case of Theorem 1.6 in [3]. We state it
in simplified form that is sufficient for our purpose here.

Lemma 5. Let Ψ ∈ R
n×p be a matrix whose rows Ψ1, . . . ,Ψn, are independent random

vectors that are

1. isotropic, i.e. E[
〈
Ψi, u

〉2
] = 1, i = 1, . . . , n,

2. ψ2, i.e. there exists θ > 0 such that for every unit vector u ∈ R
p

inf
{
a > 0 : E

[
exp(

〈
Ψi, u

〉2
/a2)

]
≤ e
}
≤ θ, i = 1, . . . , n. (1.20)

Let further R ∈ R
p×p be a positive definite matrix with minimum eigenvalue ϑ > 0

and set Γ = 1
nR

⊤Ψ⊤ΨR. Then, for any δ ∈ (0, 1) and any α ∈ [1,∞), there exist
positive constants Cθ, c > 0 (the first depending on the ψ2 parameter θ) so that if

n ≥ Cθ

δ2
s

(
1 +

16(3α2)(3α+ 1)

ϑ2δ2

)
log
(
c
p

sδ

)
,

with probability at least 1−2 exp(−δ2n/Cθ), Γ satisfies the (α, s)-restricted eigenvalue
condition with φ(α, s) = ϑ2(1 − δ)2 .

We now state and prove Proposition 3.

Proposition 3. Let X be a random matrix from Ens+ (1.5) scaled such that Σ∗ =
E[ 1

nX
⊤X ] = (1−ρ)I+ρ11⊤ for some ρ ∈ (0, 1). Set δ ∈ (0, 1). There exists constants

C, c > 0 depending only on δ, ρ and the sub-Gaussian parameter of the centered entries
of X so that if n ≥ C s log(p ∨ n), then, with probability at least 1 − exp(−cδ2n) −
6/(p∨n), Σ = X⊤X/n has the self-regularizing property with τ2 = ρ/2 and satisfies the
(3/τ2, s) restricted eigenvalue condition of Theorem 2 with φ(3/τ2, s) = (1−ρ)(1−δ)2.

Proof. We first show that Σ satisfies the self-regularizing property with τ2 ≥ ρ/2 with
probability at least 1 − 6/(p ∨ n). According to Eq.(6.4) in the paper, we have

τ2
0 = min

λ∈T p−1

λ⊤Σλ ≥ min
λ∈T p−1

λ⊤Σ∗λ− max
λ∈T p−1

λ⊤ (Σ∗ − Σ)λ ≥ ρ− max
j,k

∣∣∣(Σ − Σ∗)jk

∣∣∣ .

Consequently, in virtue of (1.12), there exists a numerical constant C′ depending on
σ and ρ only so that if n ≥ C′ log(p ∨ n), τ2

0 ≥ 1
2ρ with the probability as claimed. In

the sequel, it will be shown that conditional on the event {τ2
0 ≥ ρ/2}, Lemma 5 can

be applied with

Γ = Σ, R = (Σ∗)1/2, Ψ = X(Σ∗)−1/2, ϑ2 = 1 − ρ, α =
3

τ2
≤ 6

ρ
, θ = Cσ,ρ,

where (Σ∗)1/2 is the root of Σ∗ and Cσ,ρ is a constant depending only on σ and
ρ. By construction, Ψ = X(Σ∗)−1/2 has independent isotropic rows. It remains to
establish that the rows satisfy condition (1.20) of Lemma 5. Since the rows of Ψ are
i.i.d., it suffices to consider a single row. Let us write X1 for the transpose of the first
row of X and accordingly Ψ1 = (Σ∗)−1/2X1 for the transpose of the first row of Ψ.

Furthermore, we make use of the decomposition X1 = X̃1 +
√
ρ1, where the entries
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of X̃1 are i.i.d zero-mean sub-Gaussian random variables with parameter σ (cf. (1.8)).
We then have for any unit vector u

〈
Ψ1, u

〉
=
〈
(Σ∗)−1/2X1, u

〉
=
〈
(Σ∗)−1/2 (X̃1 +

√
ρ1), u

〉

=
〈
X̃1, (Σ∗)−1/2 u

〉
+

√
ρ

(1 − ρ) + pρ
〈1, u〉

≤
〈
X̃1, (Σ∗)−1/2 u

〉
+ 1.

For the second equality, we have used that 1 is an eigenvector of Σ∗ with eigenvalue
1 + (p− 1)ρ, while the inequality results from Cauchy-Schwarz. We now estimate the
moment-generating function of the random variable

〈
Ψ1, u

〉
as follows. For any t ≥ 0,

we have

E[exp(t
〈
Ψ1, u

〉
)] ≤ exp(t)E

[
exp

(
t
〈
X̃1, (Σ∗)−1/2 u

〉)]

≤ exp(t)E

[
exp

(
σ2t2

2
‖(Σ∗)−1/2 u‖2

2

)]

≤ exp(t) exp

(
σ2t2

2(1 − ρ)

)

≤ e exp

(
(σ2 + 2)t2

2(1 − ρ)

)
= e exp

(
σ̃2t2

2

)
,

where σ̃ =
√

(σ2 + 2)/(1 − ρ). For the third equality, we have used that the maximum
eigenvalue of (Σ∗)−1 equals (1 − ρ)−1. Analogously, we obtain that

−
〈
Ψ1, u

〉
≤
〈
−X̃1, (Σ∗)−1/2 u

〉
+1, and E[exp(t

〈
−Ψ1, u

〉
)] ≤ e exp

(
σ̃2t2

2

)
∀t ≥ 0.

From the Chernov bound, we hence obtain that for any z ≥ 0

P(|
〈
Ψ1, u

〉
| > z) ≤ 2e exp

(
− z2

2σ̃2

)
.

Invoking Lemma 4 with C′ = σ̃
√

3 log(2e) and C =
√

6σ̃, it follows that the random

variable
〈
Ψ1, u

〉
is ψ2 with parameter 2

√
6σ̃ =: Cσ,ρ, and we conclude that the rows

of the matrix Ψ indeed satisfy condition (1.20) with θ equal to that value of the
parameter.

1.4. Proof of Proposition 4

Proposition 4. Let X be a random matrix from Ens+ (1.5) scaled such that Σ∗ =
E[ 1

nX
⊤X ] = (1 − ρ)I + ρ11⊤ for some ρ ∈ (0, 1). Fix S ⊂ {1, . . . , p}, |S| ≤ s.

Then there exists constants c, c′, C, C′ > 0 depending only on ρ and the sub-Gaussian
parameter of the centered entries of X such that for all n ≥ Cs2 log(p ∨ n),

τ2(S) ≥ cs−1 − C′
√

log p

n

with probability no less than 1 − 6/(p ∨ n) − 3 exp(−c′(s ∨ logn)).

Proof. The scaling of τ2(S) is analyzed based on the representation

τ2(S) = min
θ∈Rs, λ∈T p−s−1

1

n
‖XSθ −XScλ‖2

2 . (1.21)
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In the following, denote by S
s−1 = {u ∈ R

s : ‖u‖2 = 1} the unit sphere in R
s.

Expanding the square in (1.21), we have

τ2(S) = min
θ∈Rs, λ∈T p−s−1

θ⊤ΣSSθ − 2θ⊤ΣSScλ+ λ⊤ΣScScλ

≥ min
r≥0, u∈Ss−1, λ∈T p−s−1

r2u⊤Σ∗
SSu− r2smax (ΣSS − Σ∗

SS)−

− 2ru⊤ΣSScλ+ λ⊤ΣScScλ

≥ min
r≥0, u∈Ss−1, λ∈T p−s−1

r2u⊤Σ∗
SSu− r2smax (ΣSS − Σ∗

SS)

− 2ρru⊤1− 2ru⊤(ΣSSc − Σ∗
SSc)λ+ ρ+

1 − ρ

p− s
−

− max
λ∈T p−s−1

∣∣λ⊤(ΣScSc − Σ∗
ScSc)λ

∣∣ .

(1.22)

For the last inequality, we have used that minλ∈T p−s−1 λ⊤Σ∗
ScScλ = ρ + 1−ρ

p−s . We
further set

∆ = smax (ΣSS − Σ∗
SS) , (1.23)

δ = max
u∈Ss−1,λ∈T p−s−1

∣∣u⊤ (ΣScSc − Σ∗
ScSc)λ

∣∣ . (1.24)

The random terms ∆ and δ will be controlled uniformly over u ∈ S
s−1 and λ ∈ T p−s−1

below by invoking (1.12) and (1.17). For the moment, we treat these two terms as
constants. We now minimize the lower bound in (1.22) w.r.t. u and r separately from
λ. This minimization problem involving u and r only reads

min
r≥0, u∈Ss−1

r2u⊤Σ∗
SSu− 2ρru⊤1− r2∆ − 2rδ. (1.25)

We first derive an expression for

φ(r) = min
u∈Ss−1

r2u⊤Σ∗
SSu− 2ρru⊤1. (1.26)

We decompose u = u‖ + u⊥, where u‖ =
〈

1√
s
, u
〉

1√
s

is the projection of u on the

unit vector 1/
√
s, which is an eigenvector of Σ∗

SS associated with its largest eigenvalue
1 + ρ(s − 1). By Parseval’s identity, we have ‖u‖‖2

2 = γ, ‖u⊥‖2
2 = (1 − γ) for some

γ ∈ [0, 1]. Inserting this decomposition into (1.26) and noting that the remaining
eigenvalues of Σ∗

SS are all equal to (1 − ρ), we obtain that

φ(r) = min
γ∈[0,1]

Φ(γ, r),

with Φ(γ, r) = r2γ (1 + (s− 1)ρ)︸ ︷︷ ︸
smax(Σ∗

SS
)

+r2(1 − γ) (1 − ρ)︸ ︷︷ ︸
smin(Σ∗

SS
)

−2ρr
√
γ
√
s, (1.27)

where we have used that 〈u⊥,1〉 = 0. Let us put aside the constraint γ ∈ [0, 1] for
a moment. The function Φ in (1.27) is a convex function of γ, hence we may find
an (unconstrained) minimizer γ̃ by differentiating and setting the derivative equal to
zero. This yields γ̃ = 1

r2s , which coincides with the constrained minimizer if and only
if r ≥ 1√

s
. Otherwise, γ̃ ∈ {0, 1}. We can rule out the case γ̃ = 0, since for all r < 1/

√
s

Φ(0, r) = r2(1 − ρ) > r2(1 + (s− 1)ρ) − 2ρr
√
s = Φ(1, r).

We have Φ( 1
r2s , r) = r2(1 − ρ) − ρ and Φ( 1

r2s ,
1√
s
) = Φ(1, 1√

s
). Hence, the function

φ(r) in (1.26) is given by

φ(r) =

{
r2smax(Σ

∗
SS) − 2ρr

√
s r ≤ 1/

√
s,

r2(1 − ρ) − ρ otherwise.
(1.28)
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The minimization problem (1.25) to be considered eventually reads

min
r≥0

ψ(r), where ψ(r) = φ(r) − r2∆ − 2rδ. (1.29)

We argue that it suffices to consider the case r ≤ 1/
√
s in (1.28) provided

((1 − ρ) − ∆) > δ
√
s, (1.30)

a condition we will comment on below. If this condition is met, differentiating shows
that ψ is increasing on ( 1√

s
,∞). In fact, for all r in that interval,

d

dr
ψ(r) = 2r(1 − ρ) − 2r∆ − 2δ, and thus

d

dr
ψ(r) > 0 for all r ∈

(
1√
s
,∞
)

⇔ 1√
s
((1 − ρ) − ∆) > δ.

Considering the case r ≤ 1/
√
s, we observe that ψ(r) is convex provided

smax(Σ
∗
SS) > ∆, (1.31)

a condition we shall comment on below as well. Provided (1.30) and (1.31) hold true,
differentiating (1.29) and setting the result equal to zero, we obtain that the minimizer
r̂ of (1.29) is given by (ρ

√
s+ δ)/(smax(Σ

∗
SS) − ∆). Substituting this result back into

(1.29) and in turn into the lower bound (1.22), one obtains after collecting terms

τ2(S) ≥ρ (1 − ρ) − ∆

(1 − ρ) + sρ− ∆
− 2ρ

√
sδ + δ2

smax(Σ∗
SS) − ∆

+
1 − ρ

p− s
−

− max
λ∈T p−s−1

∣∣λ⊤(ΣScSc − Σ∗
ScSc)λ

∣∣ .
(1.32)

In order to control ∆ (1.23), we apply (1.17) with the choices

z =
√
s ∨ logn, and t = 1 ∨ logn

s
.

Consequently, there exists a constant C1 > 0 depending only on σ so that if
n > C1(s ∨ logn), we have that

P(A) ≥ 1 − 3 exp(−c′(s ∨ log n)),

where A =

{
∆ ≤ 2

√
s2(1 + 1 ∨ (log(n)/s))

n
+ C′

√
s ∨ logn

n

}
(1.33)

In order to control δ (1.24) and the last term in (1.32), we make use of (1.12), which
yields that

P(B) ≥ 1 − 6

p ∨ n, where

B =

{
δ ≤ C

√
s log(p ∨ n)

n

}
∩
{

sup
λ∈T p−s−1

∣∣λ⊤(ΣScSc − Σ∗
ScSc)λ

∣∣ ≤ C

√
log(p ∨ n)

n

}
.

(1.34)

For the remainder of the proof, we work conditional on the two events A and B. In
view of (1.33) and (1.34), we first note that there exists C2 > 0 depending only on σ
and ρ such that if n ≥ C2s

2 log(p ∨ n) the two conditions (1.30) and (1.31) supposed
to be fulfilled previously indeed hold. To conclude the proof, we re-write (1.32) as

τ2(S) ≥ ρ(1 − ∆/(1 − ρ))

(1 − ∆/(1 − ρ)) + s ρ
1−ρ

+
2ρ

√
s

1+(s−1)ρδ

1 − ∆/(1 + (s− 1)ρ)
− δ2/(1 + (s− 1)ρ)

1 − ∆/(1 + (s− 1)ρ)
−

− max
λ∈T p−s−1

∣∣λ⊤(ΣScSc − Σ∗
ScSc)λ

∣∣ .
(1.35)
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Conditional on A ∩ B, there exists C3 > 0 depending only on σ and ρ such that
if n ≥ C3(s

2 ∨ (s logn)), when inserting the resulting scalings separately for each
summand in (1.35), we have that

c1s
−1 − C4

√
log(p ∨ n)

n
− C5

log(p ∨ n)

n
− C6

√
log(p ∨ n)

n

= c1s
−1 − C7

√
log(p ∨ n)

n
.

(1.36)

We conclude that if n ≥ max{C1, C2, C3}s2 log(p ∨ n), (1.36) holds with probability
no less than 1 − 6

p∨n − 3 exp(−c′(s ∨ logn)).

2. Empirical scaling of τ2(S) for Ens+

In Section 6.3, we have empirically investigated the scaling of τ2(S) for the class (1.5)
in a high-dimensional setting for the following designs.

E1: {xij} i.i.d.∼ a uniform([0, 1/
√

3 · a])+(1−a)δ0, a ∈ {1, 2
3 ,

1
3 ,

2
15} (ρ ∈ { 3

4 ,
1
2 ,

1
3 ,

1
10})

E2: {xij} i.i.d.∼ 1√
π

Bernoulli(π), π ∈ { 1
10 ,

1
4 ,

1
2 ,

3
4 ,

9
10} (ρ ∈ { 1

10 ,
1
4 ,

1
2 ,

3
4 ,

9
10})

E3: {xij} i.i.d.∼ |Z|, Z ∼ aGaussian(0, 1)+(1−a)δ0, a ∈ {1, π
4 ,

π
8 ,

π
20} (ρ ∈ { 2

π ,
1
2 ,

1
4 ,

1
10})

E4: {xij} i.i.d.∼ aPoisson(3/
√

12 a) + (1 − a)δ0, a ∈ {1, 2
3 ,

1
3 ,

2
15} (ρ ∈ { 3

4 ,
1
2 ,

1
4 ,

1
10})

The results for E1 are presented in the paper, and the results for E2 to E4 are displayed
below.

2.1. E2
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2.2. E3
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2.3. E4

3. Additional empirical results on the ℓ2-error in estimating β∗

The results in the two tables below are complementary to the experimental results in
Section 6.2 of the paper. We here report ‖β̂−β∗‖2 (NNLS) and ‖β̂ℓ1,� − β∗‖2 (NNℓ1)
in correspondence to Tables 1 and 2 of the paper.

Design I

p/n
2 3 5 10

s/n nnls nnℓ1 nnls nnℓ1 nnls nnℓ1 nnls nnℓ1
0.05 1.0±.01 1.0±.01 1.1±.01 1.1±.01 1.2±.01 1.2±.01 1.3±.01 1.3±.01

0.1 1.4±.01 1.4±.01 1.6±.01 1.6±.01 1.8±.02 1.8±.02 2.1±.02 2.1±.02

0.15 1.8±.01 1.8±.02 2.0±.02 2.0±.02 2.4±.02 2.4±.02 3.1±.04 3.4±.05

0.2 2.1±.02 2.2±.04 2.5±.02 2.6±.07 3.1±.03 3.3±.04 5.4±.10 6.9±.19

0.25 2.5±.02 2.6±.04 3.1±.03 3.7±.14 4.5±.07 7.2±.27 12.0±.2 15.3±.2

0.3 3.0±.03 3.4±.11 4.0±.05 5.5±.24 8.1±.19 12.8±.3 18.6±.1 19.8±.1

Design II

p/n
2 3 5 10

s/n nnls nnℓ1 nnls nnℓ1 nnls nnℓ1 nnls nnℓ1
0.02 0.6±.01 0.7±.01 0.6±.01 0.7±.01 0.6±.01 0.7±.01 0.6±.01 0.7±.01

0.04 0.7±.01 1.0±.01 0.7±.01 1.0±.01 0.7±.01 1.0±.01 0.7±.01 1.0±.01

0.06 0.8±.01 1.2±.01 0.8±.01 1.2±.01 0.8±.01 1.2±.02 0.9±.01 1.2±.01

0.08 0.9±.01 1.3±.02 0.9±.01 1.3±.02 0.9±.01 1.3±.02 1.0±.01 1.4±.01

0.1 1.0±.01 1.4±.02 1.0±.01 1.5±.02 1.0±.01 1.5±.02 1.1±.01 1.5±.02
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