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Roadmap

• What is semi-supervised learning (SSL) ? What is transduction ?

• The cluster/manifold assumption

• graph-based SSL using regularized least squares

1. Interpretation in terms of label propagation

2. Interpretation in terms of a data-dependent kernel

• Experiments

1



Why semi-supervised learning ?

• Human labels can be expensive and time consuming,

• There is a lot of unlabeled data around us e.g. images and text on the

web. The knowledge about the unlabeled data “should” be helpful to

build better classifiers,

2



What is semi-supervised learning ?

Input space X, Output: {−1, 1} (binary classification):

• a small set L of labeled data (Xl, Yl),

• a large set U of unlabeled data Xu.

• notation: n=l+u, total number of data points. T denotes the set of all

points.

e.g. a small number of labeled images and a huge number of unlabeled

images from the internet.

Definition:

• Transduction: Prediction of the labels Yu of the unlabeled data Xu,

• SSL: Construction of a classifier f : X → {−1, 1} on the whole input

space (using the unlabeled data).
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Is it always helpful ?

No !

Because:

• in order to deal with a small amount of labeled data we have to make

strong assumptions about the underlying joint probability measure

P(X, Y ) e.g. a relation of P(X) and P(Y |X).

But:

• empirical success of SSL methods shows that unlabeled data can improve

performance.

• nice application of SSL from an unexpected side: spectral matting

(Levin et al. 2006) a kind of user-interactive segmentation (foreground /

background).
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Matting

Left: Input Image with user labels, Right: Image segmentation
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The cluster assumption

Cluster assumption: points which can be connected via (many) paths

through high-density regions are likely to have the same label.
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The manifold-assumption

Manifold assumption: each class lies on a separate manifold.

7



The cluster/manifold-assumption

Cluster/Manifold assumption: points which can be connected via a path

through high density regions on the data manifold are likely to have the

same label.

=⇒ Use regularizer which prefers functions which vary smoothly along

the manifold and do not vary in high density regions.
8



The cluster/manifold-assumption II

Problem: We have only (a lot of) unlabeled and some labeled points and no

information about the density and the manifold.

9



The cluster/manifold-assumption III

Approach: Use a graph to approximate the manifold (and density).

10



The cluster/manifold-assumption IV

Define a regularization functional which penalizes functions which vary in

high-density regions.

〈f, Lf〉 = 〈f, (D − W )f〉 =

n
∑

i,j=1

wij(fi − fj)
2,

where D = diδij with di =
∑n

j=1
wij and the graph Laplacian is defined as

L = D − W .

For the ε-neighborhood graph one can show (Bousquet, Chapelle and Hein

(2003), Hein (2006)) under certain technical conditions that as ε → 0 and

nεm → ∞ ( m is dimension of the manifold).

lim
n→∞

1

nεm+2

n
∑

i,j=1

wij(fi − fj)
2 ∼

∫

M
‖∇f‖2

p(x)2dx
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Regularized least squares

Transductive Learning via regularized least squares:

Zhu, Ghahramani, Lafferty (2002,2003):

arg min
f∈Rn, fL=YL

n
∑

i,j∈T

wij(fi − fj)
2 .

Belkin and Niyogi (2003):

arg min
f∈Rn

∑

i∈L

(yi − fi)
2 + λ

∑

i,j∈T

wij(fi − fj)
2 .

Zhou, Bousquet, Lal, Weston and Schoelkopf (2003):

arg min
f∈Rn

∑

i∈T

(yi − fi)
2 + λ

∑

i,j∈T

wij

(

fi√
di

− fj√
dj

)2

,

where yi = 0 if i ∈ U .
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Regularized least squares

arg min
f∈Rn

∑

i∈T

(yi − fi)
2 + λ

∑

i,j∈T

wij

(

fi√
di

− fj√
dj

)2

,

where yi = 0 if i ∈ U . Note that

fT (

� − D−1/2WD−1/2)f =
∑

i,j∈T
wij

(

fi√
di

− fj
√

dj

)2

.

The solution f∗ can be found as:

f∗ =
(

�

+ λ(

� − D−1/2WD−1/2)
)−1

Y

or with S = D−1/2WD−1/2 and α = λ
1+λ (0 < α < 1),

f∗ = 1

1+λ

[

� − λ
1+λS

]−1

Y = (1 − α)[

� − αS]−1Y, .
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Label Propagation

Interpretation of the solution f∗ in terms of label propagation:

f∗ = (1 − α)
[

� − αS
]−1

Y

One can show [

� − αS]−1 =
∑∞

r=0
αrSr.

f∗ = (1 − α)
[

� − αS
]−1

Y =
∑

∞

r=0 αrSr

∑

∞

r=0 αr Y

Solution f∗ can be interpreted as the limit f∗ = limt→∞ ft of the iterative

scheme ft with f(0) = Y ,

ft+1 = αSft + (1 − α)Y ⇒ ft+1 = αtStY + (1 − α)
∑t

r=0
(αS)rY,

where limt→∞ αtStY = 0.
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Relation to random walks

The solution is given by

f∗ = (1 − α)
[

� − αS
]−1

Y =
∑

∞

r=0 αrSr

∑

∞

r=0 αr Y

Using S = D−1/2WD−1/2 we get with the stochastic matrix P = D−1W ,

S = D1/2PD−1/2 and Sr = D1/2P rD−1/2 .

Plugging the expression for Sr into the equation for the solution f ,

f ∗ = D1/2

∑

∞

r=0 αrP r

∑

∞

r=0 αr D−1/2Y
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Comments

• All approaches can also be interpreted as kernel machines. Let L† be the

pseudo-inverse of the graph Laplacian. Then

K = L†,

is a (data-dependent) kernel on n points. Let fi =
∑n

j=1
αjk(xi, xj).

Then

f>Lf = α>KT LKα = α>Kα.

• The structure of the graph influences significantly the result. For

high-dimensional data one can improve the performance by using

“Manifold Denoising” as a preprocessing method.
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Experiments

• Run DemoSSL

• Make yourself familiar with the demo
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Experiments I

Does it work ?

Use: Two Moons (Balanced/Unbalanced) in low dimensions (2-5) !

• Find the best parameters for 4 labeled points.

Questions:

• What is your test error ? How stable is it (Draw new labeled points) ?

• What happens if you increase the noise dimensions (30 and 200) ?
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Experiments II

Influence of the regularization parameter:

Use: Two Moons (Balanced/Unbalanced) in low dimensions (2-10) and ≈ 10

labeled points!

• Study influence of the regularization parameter (min/max).

Questions:

• What behavior do you observe ?

• Can you explain it ?
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Experiments III

The solution f∗ of the SSL problem: f∗ = D1/2

∑

∞

r=0 αrP r

∑

∞

r=0 αr D−1/2Y .

• λ → ∞ (α → 1):

For a connected graph it holds: limm→∞
1

m

∑m
r=0

P r
ij = πj , where π is the

stationary distribution of the the random walk P . This yields

f −→ D−1/2











πT

. . .

πT











(D1/2Y ).

• λ → 0 (α → 0):

f −→ Y + α S Y = Y + α D1/2 P D1/2 Y.
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Experiments IV

What happens if the cluster assumption is not valid ?

Use: Two Gaussians (Balanced/No Cluster) in low dimensions (2-10) !

Questions:

• How many labels do you need to get a test error below 10%.

• What happens if you increase the dimension ?
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Experiments V

What happens if the graph structure is bad ?

Use: Two Gaussians (Balanced/Different variance) in high dimensions (130)

with 10 labeled points !

Questions:

• What happens here ?

• compare mutual and symmetric k-nearest neighbor graph. Which is

better for this dataset ?

• How could we even improve the performance ?

• What happens if you increase the dimension to 200 ?
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How to choose parameters in practice ?

Cross validation works (quite well) !

But:

• A lot of parameters usually lead to zero cross-validation error.

• Evaluate other characteristics of the solution (e.g. class proportions in

the solution versus class proportions in the labeled set) to choose in this

set of parameters.
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Conclusions of the practical session

• Graph-based methods work very well if underlying assumptions are

satisfied.

• Graph-structure is very important ( not well studied yet in machine

learning). Graph-structure is as important as variations of algorithms.

• Many applications of graph-based methods and more to come.
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