Mathematik für Informatiker II

Universität des Saarlandes Sommersemester 2011 Matthias Hein Christoph Eisinger

Hausübungsblatt 5

Abgabe: Freitag, 20. Mai 2011, 10:10 Uhr

Aufgabe 1 (3+3=6 Punkte)

Sei V ein Vektorraum über einem Körper K. Zeigen Sie, dass für alle $v \in V$ gilt:

- (a) $0 \cdot v = \vec{0}$
- (b) $(-1) \cdot v = -v$.

Aufgabe 2 (10+8=18 Punkte)

Sei $V = \{f: \mathbb{R} \to \mathbb{R}\}$ die Menge aller reellwertigen Funktionen auf \mathbb{R} .

(a) Zeigen Sie, dass V zusammen mit den Verknüpfungen

$$(f+g)(x) := f(x) + g(x)$$
 für $x \in \mathbb{R}, f, g \in V$
 $(\lambda f)(x) := \lambda f(x)$ für $\lambda, x \in \mathbb{R}, f \in V$

ein R-Vektorraum ist.

- (b) Welche der folgenden Teilmengen von V sind auch Unterräume?
 - (i) $U_1 = \{ f \in V | f(0) = 0 \}$
 - (ii) $U_2 = \{ f \in V | f(1) = 1 \}$
 - (iii) $U_3 = \{ f \in V | f(x) = f(-x) \ \forall x \in \mathbb{R} \}$
 - (iv) $U_4 = \{ f \in V | f(x) = |f(x)| \forall x \in \mathbb{R} \}$

Aufgabe 3 (4+8=12 Punkte)

Sei $V = \{f: \mathbb{N} \to \mathbb{R}\}$ der \mathbb{R} -Vektorraum aller reellwertigen Funktionen auf \mathbb{N} .

- (a) Zeigen Sie, dass $U:=\{f\in V|\exists n_0\in\mathbb{N}\ \forall n\geq n_0: f(n)=0\}$ ein Untervektorraum von V ist.
- (b) Für $k \in \mathbb{N}$ sei $\delta_k : \mathbb{N} \to \mathbb{R}, j \mapsto \begin{cases} 1, & j = k \\ 0, & j \neq k \end{cases}$. Zeigen Sie, dass die Menge $\{\delta_k | k \in \mathbb{N}\}$ eine Basis von U ist.