Mathematik für Informatiker II

Universität des Saarlandes Sommersemester 2011 Matthias Hein Christoph Eisinger

Hausübungsblatt 2

Abgabe: Freitag, 29. April 2011, vor der Vorlesung

Sei G eine Gruppe. Für $E \subseteq G$ heißt

$$\langle E \rangle := \bigcap \left\{ U \mid E \subseteq U, \ U \text{ ist Untergruppe von } G \right\}$$

das Erzeugnis von E in G oder die von E erzeugte Untergruppe von G. Sie ist die kleinste Untergruppe von G, die E enthält.

Gilt $E = \{g\}$ für ein $g \in G$, so schreibt man statt $\langle \{g\} \rangle$ auch $\langle g \rangle$. Solch eine von einem einzelnen Element erzeugte Gruppe nennt man zyklisch.

Aufgabe 1 (4+2+2 Punkte)

Für $n \in \mathbb{N}$ sei S_n die Menge aller Permutationen von $\{1, \ldots, n\}$, d.h. aller Bijektionen $\{1, \ldots, n\} \to \{1, \ldots, n\}$. Wir versehen S_n mit der Hintereinanderausführung (Komposition) " \circ " von Abbildungen als Verknüpfung, d.h. für $\sigma, \tau \in S_n$ sei $\sigma \tau := \sigma \circ \tau$ defniert durch

$$(\sigma \circ \tau)(k) := \sigma(\tau(k))$$
 für alle $k \in \{1, \dots, n\}$.

- (a) Zeigen Sie, dass (S_n, \circ) eine Gruppe ist.
- (b) Bestimmen Sie die Ordnung von S_n .
- (c) Gegeben seien $\sigma = (263)(47)$ und $\tau = (14)(265)$. Berechnen Sie $\sigma \tau$ und $\tau \sigma$.

Aufgabe 2 (3+4+2+4 Punkte)

Es sei $U := \langle (1342) \rangle \subseteq S_4$.

- (a) Geben Sie U in aufzählender Schreibweise an.
- (b) Bestimmen Sie alle Untergruppen von U.
- (c) Wieviele verschieden Linksnebenklassen σU gibt es mit $\sigma \in S_4$?
- (d) Bestimmen Sie (13)U und U(13).

Aufgabe 3 (4+4+3 Punkte)

Gegeben sei eine endliche Gruppe (G, \circ) mit neutralem Element e sowie ein Element $g \in G$.

- (a) Zeigen Sie, dass ein $n \in \mathbb{N}$ existiert mit $g^n = e$. Hierbei bezeichnet g^k die k-fache Verknüpfung von g mit sich selbst.
- (b) Sei n_0 das kleinste n wie in (a). Zeigen Sie, dass dann

$$\langle g \rangle = \{ g^k \mid k = 0, \dots, n_0 - 1 \},$$

wobei $g^0 := e$.

(c) Zeigen Sie, dass $\langle g \rangle$ eine Untergruppe von G ist.