Exercise 18 - Implementation of Gradient Descent and Newton method

a. (6 Points)

- Implement gradient descent with the Armijo rule in Matlab,
- Implement the Newton method (stepsize selection with Armijo rule) in Matlab,
- use separate functions for

1. getStepSize: stepsize selection with Armijo rule. One chooses $\beta \in(0,1)$ and $\sigma \in(0,1)$ and $s>0$. Then the stepsize α^{k} is defined as $\alpha^{k}=\beta^{m} s$, where m is the first non-negative integer such that

$$
f\left(x^{k+1}\right)-f\left(x^{k}\right)=f\left(x^{k}+\beta^{m} s d^{k}\right)-f\left(x^{k}\right) \leq \sigma \beta^{m} s\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle
$$

We fix $s=1$ and use only the parameters σ and β.
input: current point, current gradient, descent direction, β, σ. output: stepsize.
2. f : returns the function value evaluated at a point
input: a point x,
output: the objective evaluated at x.
3. gradf: returns the gradient of f evaluated at a point input: a point x, output: the gradient of f evaluated at x.
4. Hessf: returns the Hessian of f evaluated at a point input: a point x,
output: the Hessian of f evaluated at x.
Sample matlab files NewtonExercise.m and DescentExercise.m can be downloaded from the course webpage.

As a function f use the example from the book (Equation 9.20),

$$
f\left(x_{1}, x_{2}\right)=e^{x_{1}+3 x_{2}-0.1}+e^{x_{1}-3 x_{2}-0.1}+e^{-x_{1}+0.1}
$$

As initial point take a random sample from a Gaussian ($\mathrm{x}=\mathrm{randn}(2,1)$).

$$
\text { Stopping criterion: } \quad\|\nabla f\| \leq 10^{-4}
$$

Test your code! If it does not run $\Longrightarrow 0$ points.
b. (2 Points) Run the gradient descent code for $\sigma=\{0.1,0.3,0.5,0.7,0.9\}$ and $\beta=\{0.1,0.3,0.5,0.7,0.9\}$ for 10 different starting values for each set of parameters σ, β in the stepsize selection. Plot the average number of required steps in dependency of σ, β. Explain the plot.
c. (2 Points) Run the Newton method for $\sigma=\{0.1,0.3,0.5,0.7,0.9\}$ and $\beta=\{0.1,0.3,0.5,0.7,0.9\}$ for 10 different starting values for each set of parameters σ, β in the stepsize selection. Plot the average number of required steps in dependency of σ, β. Explain the plot.
d. (2 Points) Verify the experiment done in BV (page 481). Use gradient descent with the norms P_{1} and P_{2} (see Equation 9.25, page 476) and run it once for the gradient descent for P_{1} and P_{2} and directly Newton's method. All runs with the same starting point. Plot $f\left(x^{k}\right)-p^{*}$ as on page 482 for all three cases.

Solution:

Figure 1: For this particular problem we see that a large σ is generally not favorable. The minimal number of steps can be achieved using a small value of σ and a moderately small value of β. Note that the number of steps is minimal for $\sigma=\frac{1}{2}$ which is what the bound predicts.

As a general result we see that values of $\sigma>\frac{1}{2}$ should be avoided.
d. In the last exercise we have fixed the initial vector with randn('state' , 2).

a. | $\sigma \backslash \beta$ | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.1 | 35 | 14 | 22 | 25 | 38 |
| 0.3 | 38 | 15 | 22 | 21 | 25 |
| 0.5 | 42 | 17 | 22 | 17 | 16 |
| 0.7 | 51 | 45 | 32 | 27 | 26 |
| 0.9 | 397 | 157 | 78 | 75 | 64 |

Table 1: The average number of iterations (rounded to the next integer) over 100 runs for different values of σ and β for the gradiend descent method.

b. \quad| $\sigma \backslash \beta$ | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.1 | 6 | 6 | 6 | 5 | 6 |
| 0.3 | 6 | 6 | 6 | 6 | 6 |
| 0.5 | 9 | 7 | 7 | 6 | 6 |
| 0.7 | 68 | 22 | 13 | 12 | 10 |
| 0.9 | 67 | 76 | 55 | 42 | 37 |

Table 2: The average number of iterations (rounded to the next integer) over 100 runs for different values of σ and β for the Newton method.
c.

Figure 2: For this particular problem we see that a large σ is generally not favorable. The required number of iterations is very stable for $\sigma<0.7$ for all values of β. This is in constrast to the descent method where the number of iterations varies much more.

Figure 3: The Newton method converges in 5 steps.

Figure 4: The steepest descent method with descent direction $d^{k}=-P_{1}^{-1} \nabla f$ converges in 13 steps.

Figure 5: The steepest descent method with descent direction $d^{k}=-P_{2}^{-1} \nabla f$ converges in 118 steps. Note, the huge difference in the number of iterations. The reason for that is that the transformation with P_{1} improves the condition number (P_{1} is a good approximation of the Hessian) whereas P_{2} worsens the condition number (P_{2} is a bad approximation of the Hessian.

