
Convex Optimization and Modeling Jun.-Prof. Matthias Hein

Solution of Exercise Sheet 8 09.06.2010

Exercise 18 - Implementation of Gradient Descent and New-
ton method

a. (6 Points)

• Implement gradient descent with the Armijo rule in Matlab,
• Implement the Newton method (stepsize selection with Armijo rule) in Matlab,
• use separate functions for

1. getStepSize: stepsize selection with Armijo rule. One chooses β ∈ (0, 1) and
σ ∈ (0, 1) and s > 0. Then the stepsize αk is defined as αk = βms, where m is the
first non-negative integer such that

f(xk+1)− f(xk) = f(xk + βmsdk)− f(xk) ≤ σβms
〈
∇f(xk), dk

〉
.

We fix s = 1 and use only the parameters σ and β.
input: current point, current gradient, descent direction, β, σ.
output: stepsize.

2. f: returns the function value evaluated at a point
input: a point x,
output: the objective evaluated at x.

3. gradf: returns the gradient of f evaluated at a point
input: a point x,
output: the gradient of f evaluated at x.

4. Hessf: returns the Hessian of f evaluated at a point
input: a point x,
output: the Hessian of f evaluated at x.

Sample matlab files NewtonExercise.m and DescentExercise.m can be downloaded
from the course webpage.

As a function f use the example from the book (Equation 9.20),

f(x1, x2) = ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1+0.1.

As initial point take a random sample from a Gaussian (x=randn(2,1)).

Stopping criterion: ‖∇f‖ ≤ 10−4.

Test your code ! If it does not run =⇒ 0 points.

b. (2 Points) Run the gradient descent code for σ = {0.1, 0.3, 0.5, 0.7, 0.9} and β = {0.1, 0.3, 0.5, 0.7, 0.9}
for 10 different starting values for each set of parameters σ, β in the stepsize selection.
Plot the average number of required steps in dependency of σ, β. Explain the plot.

c. (2 Points) Run the Newton method for σ = {0.1, 0.3, 0.5, 0.7, 0.9} and β = {0.1, 0.3, 0.5, 0.7, 0.9}
for 10 different starting values for each set of parameters σ, β in the stepsize selection.
Plot the average number of required steps in dependency of σ, β. Explain the plot.

d. (2 Points) Verify the experiment done in BV (page 481). Use gradient descent with the
norms P1 and P2 (see Equation 9.25, page 476) and run it once for the gradient descent for
P1 and P2 and directly Newton’s method. All runs with the same starting point. Plot
f(xk)− p∗ as on page 482 for all three cases.
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Solution:

Figure 1: For this particular problem we see that a large σ is generally not favorable. The
minimal number of steps can be achieved using a small value of σ and a moderately small value of
β. Note that the number of steps is minimal for σ = 1

2 which is what the bound predicts.

As a general result we see that values of σ > 1
2 should be avoided.

d. In the last exercise we have fixed the initial vector with randn(’state’,2).

a.

σ\β 0.1 0.3 0.5 0.7 0.9
0.1 35 14 22 25 38
0.3 38 15 22 21 25
0.5 42 17 22 17 16
0.7 51 45 32 27 26
0.9 397 157 78 75 64

Table 1: The average number of iterations (rounded to the next integer) over 100 runs for different
values of σ and β for the gradiend descent method.
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b.

σ\β 0.1 0.3 0.5 0.7 0.9
0.1 6 6 6 5 6
0.3 6 6 6 6 6
0.5 9 7 7 6 6
0.7 68 22 13 12 10
0.9 67 76 55 42 37

Table 2: The average number of iterations (rounded to the next integer) over 100 runs for different
values of σ and β for the Newton method.

c.

Figure 2: For this particular problem we see that a large σ is generally not favorable. The
required number of iterations is very stable for σ < 0.7 for all values of β. This is in constrast to
the descent method where the number of iterations varies much more.

Figure 3: The Newton method converges in 5 steps.
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Figure 4: The steepest descent method with descent direction dk = −P−1
1 ∇f converges in 13 steps.

Figure 5: The steepest descent method with descent direction dk = −P−1
2 ∇f converges in 118

steps. Note, the huge difference in the number of iterations. The reason for that is that the
transformation with P1 improves the condition number (P1 is a good approximation of the Hessian)
whereas P2 worsens the condition number (P2 is a bad approximation of the Hessian.

4


