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Exercise 12 - Perturbation of the feasible set

a. (2 Points) Exercise 5.1d)

Solution:

a. The constraint (x−2)(x−4) ≤ u is equivalent to the feasible set 3−
√

1 + u ≤ x ≤ 3+
√

1 + u
for u ≥ −1. For u < −1 the problem is infeasible. For u ≥ 8 the feasible set contains the
global minimum of the objective function at x = 0 and thus p∗ = 1. Thus we get

p∗(u) =

{ 1, for u ≥ 8,
11 + u− 6

√
1 + u, if −1 ≤ u ≤ 8,

∞ if u < 1.

The function p∗(u) is differentiable for −1 < u < 8 and

∂p∗

∂u
= 1− 3√

1 + u
, =⇒ ∂p∗

∂u

∣∣∣
0

= −2 = −λ∗.

Exercise 13 - Barrier method

This exercise shows to construct an unconstrained problem from a constrained problem. This will
be the idea of the interior point method/barrier method, which we will discuss next.

a. (2 Points) Exercise 5.15.

Solution:

a. The function hi(fi(x)) is convex as it is the concatenation of a non-decreasing convex function
hi and a convex function fi. As the objective is convex and a sum of convex functions is
convex, the function φ(x) = f0(x) +

∑s
i=1 hi(fi(x)) is convex.

If x∗ is optimal for φ, a necessary and sufficient condition is,

∇f0(x∗) +
m∑

i=1

h′i(fi(x∗))∇fi(x∗) = 0,

where h′i(fi(x∗)) ≥ 0 for all i = 1, . . . , s.

The Lagrange function of the original problem is

L(x, λ) = f0(x) +
m∑

i=1

λifi(x).

and as the dual Lagrange function is defined as q(λ) = infx L(x, λ) we obtain, that λ′i =
h′i(fi(x∗)), i = 1, . . . , s is dual feasible.
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The corresponding lower bound is given by,

q(λ′) = f0(x∗) +
m∑

i=1

h′i(fi(x∗))fi(x∗).

Note, that x∗ needs not to be feasible for the original primal problem. But as the hi become
more and more steep at 0, at some point x∗ will become feasible for the original problem.
This will be the basic building principle for the barrier method.

Exercise 14 - A problem where strong duality fails

a. (3 Points) Exercise 5.21a)-c).

Solution:

a. The objective is clearly convex and x2

y is the perspective of x2 (p. 89, Example 3.18) and
thus convex. Alternatively one computes the Hessian and observes that the determinant is
zero (product of the two eigenvalues) and the trace (sum of the two eigenvalues) is positive
and thus one eigenvalue is zero, the other one is positive and thus the Hessian is positive
semi-definite on the whole domain.

b. The Lagrangian is

L((x, y), λ) = e−x + λ
x2

y
.

The Lagrangian is lower-bounded by zero and this lower bound can be arbitrarily well ap-
proximated by driving x and y to infinity (y = x3 is sufficient that both terms converge to
zero as x→∞). This holds for any λ ≥ 0 and thus

q(λ) = 0.

The dual problem is thus trivial and the dual optimal value d∗ is equal to 0. The optimal
value p∗ of the primal problem is 1 as the feasible set X is,

X = {(x, y)
∣∣ x = 0, y > 0},

and thus the optimal duality gap p∗ − d∗ is equal to 1.

c. Slater’s condition does not hold as there exists no feasible point (x, y) ∈ X where x2

y < 0.

Exercise 15 - The weak min-max inequality

In order to appreciate the result of strong duality even more it is instructive to derive the weak
min-max inequality.

a. (2 Points) Exercise 5.24.
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Solution:

a. We have to prove that for f : Rn × Rm → R, W × Z ⊆ dom f and W,Z non-empty

sup
z∈Z

inf
w∈W

f(w, z) ≤ inf
w∈W

sup
z∈Z

f(w, z).

Note, that f(w, z) ≤ supz∈Z f(w, z) for all z ∈ Z and therefore

inf
w∈W

f(w, z) ≤ inf
w∈W

sup
z∈Z

f(w, z), ∀ z ∈ Z.

Since the above inequality holds with respect to all z ∈ Z we can take the supremum on the
left hand side,

sup
z∈Z

inf
w∈W

f(w, z) ≤ inf
w∈W

sup
z∈Z

f(w, z).

Exercise 16 - Geometric Interpretation of KKT conditions

a. (3 Points) Exercise 5.31.

Solution:

a. Suppose that λ∗i = 0, i = 1, . . . ,m, then the KKT condition implies ∇f0(x∗) = 0 which
clearly implies the first order optimality condition. Thus the interesting case is where λ∗i > 0
for at least one i ∈ {1, . . . ,m}. We define S = {i

∣∣ λ∗i > 0}. Then fi(x∗) = 0 for all i ∈ S and
thus all these inequality constraints are active (these are not necessarily all active inequality
constraints). Note, that for all i ∈ S,

〈∇fi(x∗), x− x∗〉 = 0,

defines a supporting hyperplane at x∗ of the feasible set X. This follows by the first-order
condition,

fi(x) ≥ fi(x∗) + 〈∇fi(x∗), x− x∗〉 = 〈∇fi(x∗), x− x∗〉 .

In particular for any feasible point x ∈ X and i ∈ S,

〈∇fi(x∗), x− x∗〉 ≤ 0,

〈
n∑

i=1

λ∗i∇fi(x∗), x− x∗
〉
≤ 0,

and thus the KKT condition implies the first order optimality condition using ∇f0(x∗) =
−
∑n

i=1 λ
∗
i∇fi(x∗),

〈∇f0(x∗), x− x∗〉 ≥ 0,

for all feasible x ∈ X.
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