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Exercise 9 - Solution of simple QCQPs

a. (6 Points) Exercise 4.21. The introduction of the new variable y = A−
1
2x simplifies all

problems. Note additionally, that for a symmetric matrix A the smallest eigenvalue λmin(A)
of A is given as

λmin(A) = min{〈y,Ay〉
∣∣ ‖y‖2 = 1},

or equivalently,

λmin(A) = min
y

〈y,Ay〉
‖y‖2

.

Solution:

a. As A ∈ Sn++ the mapping y = A
1
2x is bijective and thus we can use y as alternative variable.

The problem rewritten in y gives,

min
〈
A−

1
2 c, y

〉
subject to: 〈y, y〉 ≤ 1

We have by Cauchy-Schwarz,
〈
A−

1
2 c, y

〉
≥ −

∥∥∥A− 1
2 c
∥∥∥ ‖y‖ and equality is attained for y =

−αA− 1
2 c with α ≥ 0. Using ‖y‖ ≤ 1, the minimum is clearly p∗ = −

∥∥∥A− 1
2 c
∥∥∥ and y∗ =

− 1∥∥∥A− 1
2 c

∥∥∥A−
1
2 c. Transforming back to the old variable x, we get x∗ = − 1∥∥∥A− 1

2 c
∥∥∥A−1c.

In the general case when A /∈ Sn+ we do an eigendecomposition of A with A =
∑
r λruru

T
r

and write x =
∑
r αrur and get the equivalent problem,

min
∑
r

αr 〈c, ur〉

subject to:
∑
r

λrα
2
r ≤ 1

Let S = span{ur
∣∣λr ≤ 0}. If c is not orthogonal to S, then p∗ = −∞ as α can be driven to

either minus or plus infinity.

• If λk < 0 for some k then p∗ = −∞ as αk can be driven to either plus or minus infinity
and thus any point becomes feasible.

• If λk = 0 and 〈c, uk〉 6= 0, then again p∗ = −∞,
• If 〈c, uk〉 = 0 for all k with λk = 0, then the problem reduces to the one above.

b. We do again a variable transformation, y = A
1
2 (x− x0), which is again bijective. Note that

x = x0 +A−
1
2 y. The equivalent problem is,

min 〈c, x0〉+
〈
c, A

1
2 y
〉

subject to: 〈y, y〉 ≤ 1
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The part 〈c, x0〉 in the objective is just a constant and thus the minimizer is the same as in
a), y∗ = − 1∥∥∥A− 1

2 c
∥∥∥A−

1
2 c and the optimal value p∗ = 〈c, x0〉−

∥∥∥A− 1
2 c
∥∥∥. Transforming into the

original variable we get

x∗ = x0 −
1∥∥∥A− 1

2 c
∥∥∥A−1c.

c. Using again that A ∈ Sn++ we do the variable transformation y = A
1
2x and get the problem,

min
〈
y,A−

1
2BA−

1
2 y
〉

subject to: 〈y, y〉 ≤ 1

Now, we know that λmin(A) = min{〈x,Ax〉
∣∣ ‖x‖2 = 1}. Thus if the minimum is attained

at the boundary then it is the minimal eigenvalue of A−
1
2BA−

1
2 which is non-negative as

B ∈ Sn+ and A ∈ Sn++. If the minimum is attained inside, the gradient of the objective,

∇f(y) = 2A−
1
2BA−

1
2 y,

has to vanish which is the case for any element of the null space of A−
1
2BA−

1
2 in particular

y = 0. Thus p∗ = 0 as the smallest eigenvalue is non-negative and one solution is always
y∗ = 0 and thus x∗ = 0.

In the case where B /∈ Sn+ we get,

p∗ =
{

λmin(A−
1
2BA−

1
2 ), if λmin(A−

1
2BA−

1
2 ) ≤ 0,

0, else.

Exercise 10 - Robust quadratic programming

Robust programming is useful in many applications where full knowledge of the problem param-
eters is unavailable. Robust programming optimizes the worst case over all possible parameter
possibilities.

a. (4 Points) Exercise 4.28a) and b). For b) it might be helpful to first consider the effect of
such a perturbation on a fixed vector x,

〈x, (P − P0)x〉 .

Solution:

a. E = {P1, . . . , PK}, where Pi ∈ Sn+, i = 1, . . . ,K. The robust quadratic program can be
formulated as

min t

subject to:
1
2
〈x, Pix〉+ 〈q, x〉+ r ≤ t, i = 1, . . . ,K

Ax � b.

Since we have a quadratic inequality constraint and a linear objective, we have a QCQP.
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b. E = {P ∈ Sn
∣∣∣ − γ1n � P − P0 � γ1n}. We have

−γ1n � P − P0 � γ1n ⇐⇒ −γ ‖x‖2 ≤ 〈x, (P − P0)x〉 ≤ γ ‖x‖2 , ∀x ∈ Rn.

Thus, we get,

sup
P∈E
〈x, Px〉 = 〈x, P0x〉+ sup

P∈E
〈x, (P − P0)x〉 ≤ 〈x, P0x〉+ γ ‖x‖2 . (1)

The last inequality is actually an equality since for an arbitrary vector ez with ‖ez‖ = 1 we
have P = γeze

T
z + P0 ∈ E since ezeTz � 1n which is equivalent to,

〈x, (P − P0)x〉 = γ 〈x, ez〉2 ≤ γ ‖x‖2 ‖ez‖2 , ∀x ∈ Rn,

and we have equality if, x = λez, with λ ≥ 0. Thus, for any fixed x we can find a P such
that equality in Equation (1) holds. In total, we have

sup
P∈E
〈x, Px〉 = 〈x, (P0 + γ1n)x〉 .

Thus we get the problem,

min
1
2
〈x, (P0 + γ1n)x〉+ 〈q, x〉+ r

subject to: Ax � b,

which is a QP.

Exercise 11 - Lagrangian, dual problem and strong duality

a. (5 Points) Exercise 5.1a)-c).

Solution:

a. • the domain D of the objective function is D = R,
• We have the inequality (x−2)(x−4) ≤ 0 and thus the feasible set is X = {x | 2 ≤ x ≤ 4},
• The quadratic objective is strictly increasing on [2, 4] thus the optimal solution is x∗ = 2

and the optimal value p∗ = 5.

b. The Lagrangian is given as

L(x, λ) = x2 + 1 + λ(x2 − 6x+ 8) = (1 + λ)x2 − 6λx+ (8λ+ 1),

where λ ∈ R+. The Lagrangian is a convex function in x with positive sign for λ > −1 and
thus we can easily determine the minimum in x as the stationary point of the Lagrangian,

∂L

∂x
(x, λ) = 2(1 + λ)x− 6λ = 0.

This leads to x = 3λ
1+λ ∈ D. For λ ≤ −1 the Lagrangian is unbounded from below and thus

the dual function is given as

q(λ) = inf
x∈D

L(x, λ) =
{ −λ2+9λ+1

1+λ for λ > −1
−∞ else.

We verify that: q(λ) ≤ p∗. We have

−λ2 + 9λ+ 1
1 + λ

≤ 5 ⇔ 5(1 + λ) ≥ −λ2 + 9λ+ 1 ⇔ (λ− 2)2 ≥ 0,

and since this holds for all λ we have weak duality, ∀λ ≥ 0, q(λ) = d∗ ≤ p∗.
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Figure 1: Left: the constrained problem, Right: the dual function.
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