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Exercise 7 - Equivalent convex optimization problems

a. (2 Points) Exercise 4.5. Derive the equivalence of problem a) and b). Note, that the first
problem is unconstrained but has a non-differentiable objective, whereas the second problem
has a differentiable objective but has additional constraints. Thus both methods have to
be solved by quite different optimization techniques. It can happen that one problem can
be solved much more efficient than the other one. Recognizing equivalent problems is a key
ability in convex optimization.

b. (5 Points) Exercise 4.11. Note again, that the minimization of the norm is an unconstrained
but non-smooth problem, whereas the the equivalent optimization problems have a smooth
objective but require additional constraints.

Solution:

a. We fix x and minimize with respect to wk (note that we can minimize wk componentwise),

∂

∂wk

[ m∑
i=1

( (〈ai, x〉 − bi)2

wi + 1
+M2wi

)]
= − (〈ak, x〉 − bk)2

(wk + 1)2
+M2.

Solving for the extremal point yields

wk =
| 〈ak, x〉 − bk|

M
− 1.

Now, we have the constraint wk ≥ 0. We note that wk < 0 if | 〈ak, x〉 − bk| < M . However,
the derivative is strictly positive if | 〈ak, x〉 − bk| < M and thus the minima is attained at
wk = 0 under the constraint wk ≥ 0. In total we have,

wk =
{ |〈ak,x〉−bk|

M − 1, if | 〈ak, x〉 − bk| ≥M ,
0, otherwise.

The objective becomes

(〈ak, x〉 − bk)2

wk + 1
+M2wk =

{
2M | 〈ak, x〉 − bk| −M2, if | 〈ak, x〉 − bk| ≥M ,
(〈ak, x〉 − bk)2, if | 〈ak, x〉 − bk| < M .

and thus we get back the objective of the robust least squares problem Thus both problems
are equivalent since the optimization over individual variables leads to equivalent problems.

b. In the following we always have x ∈ Rn, A ∈ Rm×n, b ∈ Rm. Moreover, �,� denotes
componentwise inequalities,

• Minimizing ‖Ax− b‖∞ is equivalent to the LP

min t
subject to: Ax− b � t1,

Ax− b � −t1,

where t ∈ R and 1 is a vector of ones.
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• Minimizing ‖Ax− b‖1 is equivalent to the LP

min
m∑

i=1

ti

subject to: Ax− b � t,
Ax− b � −t, ,

where now t ∈ Rm,

• Minimizing ‖Ax− b‖1 subject to ‖x‖∞ ≤ 1 is equivalent to the LP

min
m∑

i=1

ti

subject to: Ax− b � t,
Ax− b � −t, ,
− 1 � x � 1,

where t ∈ Rm.

• Minimizing ‖x‖1 subject to ‖Ax− b‖∞ ≤ 1 is equivalent to the LP

min
n∑

i=1

ti

subject to: Ax− b � 1,

Ax− b � −1, ,

− t � x � t,

where t ∈ Rn.
Another equivalent formulation can be found by decomposing x = x+ − x−,

min
n∑

i=1

[x+
i + x−i ]

subject to: Ax+ −Ax− − b � 1,

Ax+ −Ax− − b � −1, ,

x+ � 0, x− � 0.

• Minimizing ‖Ax− b‖1 + ‖x‖∞ can be formulated as the LP

min
m∑

i=1

ti + s

subject to: Ax− b � t,
Ax− b � −t, ,
− s1 � x � s1

where now t ∈ Rm and s ∈ R.

Exercise 8 - Solving simple convex optimziation problems

a. (5 Points) Exercise 4.1. Use the optimality conditions given in the lecture and/or provide
reasonable arguments e.g. using the optimality results for linear programming derived in the
second lecture.
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b. (3 Points) Exercise 4.8. a) and d). It often happens that one can rewrite an optimization
problem and solve the minimization over some of the variables in closed form. Therefore it
is important to know the solution of simple optimization problems.

Solution:

• We have the following optimization problem,

min f0(x1, x2)
subject to: 2x1 + x2 ≥ 1,

x1 + 3x2 ≥ 1,
x1 ≥ 0, x2 ≥ 0.

The extremal points of the feasible set1 are given as

u1 =
(

1
0

)
, u2 =

(
2
5
1
5

)
, u1 =

(
0
1

)
.

The second one is the intersection of the two hyperplanes,

x1 + 3x2 − 1 = 2x1 + x2 − 1 =⇒ 2x1 + x2 = 1 =⇒ x2 =
1
2
x1.

Plugging this condition again into the hyperplane, we attain the second extremal point.

– f0(x1, x2) = x1 + x2. This is a linear program and thus the optimal value (if it exists)
is attained at one of the extremal points, which we can easily check

f0(1, 0) = 1, f0

(2
5
,

1
5

)
=

3
5
, f0(0, 1) = 1.

Since obviously the minimum is attained, we have x∗ =
(

2
5 ,

1
5

)
and p∗ = 3

5 .

– f0(x1, x2) = −(x1 + x2). The problem is unbounded from below, p∗ = −∞.

– f0(x1, x2) = x1. With the constraint we have f0(x1, x2) ≥ 0 and the minimum 0 is
attained at the set {(0, x2) |x2 ≥ 1}.

– f0(x1, x2) = max{x1, x2}. The level set {x | f0(x) = c} of the max-function is the set
{(c, x2) | 0 ≤ x2 ≤ c}

⋃
{(x1, c) | 0 ≤ x1 ≤ c}. From the sketch of the feasible set it is

obvious that thus the minimum is attained on the diagonal (x1 = x2). The “minimal”
diagonal point contained in the set, lies on the first hyperplane 3x1 = 1⇒ x∗ =

(
1
3 ,

1
3

)
.

This point is feasible since the second hyperplane has the value 4
3 ≥ 1. One can check

that the point on the diagonal on the second hyperplane is not feasible.

– f0(x1, x2) = x2
1 + 9x2

2. We know that x0 is optimal given that,

〈∇f, x− x0〉 ≥ 0, ∀x ∈ X,

where X is the feasible set. If the optimum lies in the interior of X the gradient has to
vanish. We have for the gradient

∇f = (2x1, 18x2),

We first note that the gradient vanishes only at x = (0, 0) which is not feasible. Thus
the optimum is attained at the boundary of X. Thus the optimum is either attained

1In the extended value formulation we could add (∞, 0) and (0,∞) as extremal points. Then the feasible set
would be the convex hull of its extremal points.
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at an extremal point or if the optimum lies at a point of the boundary which is not
extremal, then the gradient ∇f has to be orthogonal to the boundary. First we check
the function value of f0 at the extremal points:

f0(1, 0) = 1, f0

(
2/5, 1/5

)
= 4/25 + 9/25 = 13/25, f0(0, 1) = 9.

The feasible set is the intersection of four half-spaces which have (inward-pointing)
normals,

n1 = (0, 1), n2 = (2, 1), n3 = (1, 3), n4 = (1, 0).

We compute for each normal vector the point for which the gradient would be propor-
tional to the normal vector,

α ≥ 0, u1 =
(

0,
α

18

)
, u2 =

(
α,

α

18

)
, u3 =

(α
2
,
α

6

)
, u4 =

(α
2
, 0
)
.

For u1 and u4 the resulting point (0, 0) which fulfills x2 = 0 resp. x1 = 0 is not feasible.
For u2 the point lies on the hyperplane 2x1 + x2 = 1 given that α = 18

37 . However, the
resulting point x1 = 18

37 and x2 = 1
37 does not fulfill the second constraint x1 + 3x2 ≥ 1

and thus is also not feasible. For u3 the point lies on the hyperplane x1 + 3x3 = 1 for
α = 1 so that the candidate is x∗ = ( 1

2 ,
1
6 ). This point fulfills also all other constraints,

in particular

2x∗1 + x∗2 =
7
6
≥ 1.

The function value is f0(x∗) = 1
4 + 9 1

36 = 1
2 . Note, that this is also smaller than the

function value at all extremal points (even though this is not necessary to check as the
global optimum is for this problem unique since the objective is strictly convex).

• – We distinguish three cases. First, Ax = b has no solution, that is b is not in the range
of A. In this case the problem is infeasible, p∗ = ∞. Second, the problem is feasible
and c is orthogonal to the null space of A. Any feasible vector x can be written as,
x = x0 + v, where x0 is a solution of Ax = b and v ∈ ker(A). The objective function is
then constant on the feasible set

〈c, x〉 = 〈c, x0〉+ 〈c, v〉 = 〈c, x0〉 .

Thus the optimal value is p∗ = 〈c, x0〉. Third, the problem is feasible but c is not
orthogonal to the null space of A. In this case it is obvious that p∗ = −∞ as 〈c, v〉 can
be made arbitrarily small.

– We have,

〈c, x〉 ≥ min
i
ci

n∑
i=1

xi.

Moreover, the minimum is attained if we use

x∗i =

{
1 if i = arg min

j
cj ,

0 else.

Note, that the optimal solution is not unique if the minimum of c is not unique. The
optimal value is p∗ = mini ci. If

∑
i xi ≤ 1 then the solution is p∗ = min{0,mini ci}.
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