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Solution of Exercise Sheet 3 - 28.4.2010

Exercise 5 - Convex, concave, quasiconvex and quasiconcave
functions

a. (3 Points) Exercise 3.16a)-c) Determine for each function all the classes (convex, concave,
quasiconvex, quasiconcave) to which it belongs.

b. (2 Points) Exercise 3.19a.

c. (2 Bonus Points) Exercise 3.13. (use the hint !). The Kullback-Leibler divergence KL(p||q)
is a classical measure of “distance” between two probability measures p and q. In the exercise
it is used in a more general form for strictly positive measures on Rn

++. Let u, v ∈ Rn
++ (that

means ui > 0, ∀ i = 1, . . . , n)

KL(u||v) =
n∑

i=1

[
ui log

(ui

vi

)
− ui + vi

]
.

The KL-divergence is a special case of the so called Bregman-divergences which have
recently attracted some interest.

Solution:

a. • f(x) = ex − 1 on R. We have ∂2f
∂x2 = ex > 0 for all x ∈ R and thus f is strictly convex

and quasiconvex but not concave. It is however also quasiconcave.
• f(x1, x2) = x1x2 on R++2. The Hessian of f is

Hf(x1, x2) =
(

0 1
1 0

)
.

This matrix has eigenvalues 1 and −1 and thus is indefinite. Therefore f is neither
convex nor concave. The function is not quasiconvex as (1, 0) and (0, 1) are contained
in each sublevel set but ( 1

2 ,
1
2 ) only if the level is larger than 1

4 . The superlevelsets are
convex (see Exercise 4) and thus f is quasiconcave.

• f(x1, x2) = 1
x1 x2

on R++2 has Hessian,

Hf(x1, x2) =
1

x1 x2

(
2
x2
1

− 1
x1 x2

− 1
x1 x2

1
x2
2

)
.

The determinant detHf = 4
x2
1x2

2
+ 1

x2
1x2

2
= 5

x2
1x2

2
is equal to the product of the eigenvalues

and is positive. Thus both eigenvalues have the same sign and as the trace is also
positive - they are both positive and Hf is positive-definite. Thus f is strictly convex
and quasiconvex but not concave or quasiconcave.

b. The function f(x) =
∑r

i=1 αix[i], where α1 ≥ α2 ≥ . . . ≥ αr ≥ 0 and x[s] is the s-th largest
component of the vector x. We have,

f(x) =
r∑

i=1

αix[i] = αr

r∑
i=1

x[i] +
r∑

i=1

(αi − αr)x[i]

= αr

r∑
i=1

x[i] + (αr−1 − αr)
r−1∑
i=1

x[i] + . . .+ (α1 − α2)
1∑

i=1

x[i].
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As
∑k

i=1 x[i] is convex in x and f is a non-negative linear combination of these functions, f
is convex.

c. The hint said that
KL(u||v) = f(u)− f(v)− 〈∇f |v, u− v〉 ,

where f(v) =
∑n

i=1 vi log vi is the negative entropy of v. We have

∂

∂vk
f = log vk + 1,

∂2

∂vk∂vl
f =

1
vl
δlk.

Since the domain of KL is on Rn
++ (which is convex) we conclude that the Hessian of f is

positive definite (diagonal matrix with positive entries). From the first order condition of a
differentiable convex function we derive

f(u) ≥ f(v) + 〈∇f |v, u− v〉 .

which implies KL(u||v) ≥ 0. Moreover, since f is strictly convex we have in the above
inequality only equality if u = v and thus

KL(u||v) = 0 if and only if u = v.

Exercise 7 - Subdifferential

• (4 Points) Derive the subdifferential of the general graph-based total variation energy func-
tional,

F (f) =
n∑

i,j=1

wij |fi − fj |,

where w ∈ Rn×n are the non-negative weights of a graph with n nodes and f ∈ Rn is a
function on the nodes.

• (2 Points) Derive the subdifferential of f : Rn → R with f(x) = ‖x‖∞.

Hints:

• for a) it might be helpful to first derive the subdifferential of the function f : R2 → R,
f(x, y) = |x− y| using the chain rule introduced in the lecture.

• for b) make a case distinction if x = 0 or x 6= 0. For x = 0 the dual norm introduced in
Exercise 1 is helpful and for x 6= 0 the direct use of the definition is required.

Solution:

• In the lecture the following rules were introduced for convex functions f . For f(x) = g(Ax+b)
we have

∂f(x) = AT∂g(Ax+ b),

and for f(x) =
∑r

i=1 αifi(x) where all fi are convex we have,

∂f(x) =
r∑

i=1

αi ∂fi(x).
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Using the hint we have f(x, y) = |x− y| =
∣∣∣∣(1 −1

)(x
y

)∣∣∣∣ and thus,

∂f(x, y) =
(

1
−1

)
sign(x− y).

where we use the set-valued mapping,

sign(x) =

 −1, if x < 0,
[−1, 1], if x = 0,
1, if x > 0.

Thus we get in total for F (f) =
∑n

i,j=1 wij |fi − fj |,

∂F (f) =
n∑

i,j=1

wij(ei − ej) sign(fi − fj),

where ei is the i-th unit vector in Rn. In components, we get

∂F (f)r =
n∑

j=1

wrj sign(fr − fj)−
n∑

i=1

wir sign(fi − fr)

=
n∑

j=1

wrj

(
sign(fr − fj)− sign(fj − fr)

)
=2

n∑
j=1

wrjuij ,

where uij = −uji and
uij = sign(fi − fj).

Note, that this is not the same as,

∂F (f)r = 2
n∑

j=1

wrj sign(fr − fj),

as in the later expression the set-valued part need not be anti-symmetric.

• The subdifferential of f(x) = ‖x‖ at x = 0 can be deduced from ‖x‖ = sup‖u‖∗≤1 〈u, x〉 and
the definition ‖y‖ ≥ ‖0‖+ 〈∂f |0, (y − 0)〉 = 〈∂f |0, y〉. Thus at x = 0 we have

∂f |0 = {u ∈ Rn
∣∣ ‖u‖∗ ≤ 1}.

For the infinity norm the dual norm is the 1-norm. Thus we have using the definition from
Exercise 1,

∂ ‖·‖∞ (0) = {u ∈ Rn
∣∣ ‖u‖1 ≤ 1}.

Now for x 6= 0, the definition of ∂f(x) requires for all y ∈ Rn,

‖y‖ − ‖x‖ ≥ 〈∂f(x), y − x〉 .

In particular for y = (1 + λ)x, we have

λ ‖x‖ ≥ λ 〈∂f(x), x〉 .

For λ > 0 we have ‖x‖ ≥ 〈∂f(x), x〉 and for λ < 0 we get ‖x‖ ≤ 〈∂f(x), x〉 and thus we
conclude

‖x‖ = 〈∂f(x), x〉 .
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Plugging this result into the definining property of ∂f(x) we obtain

‖y‖ ≥ 〈∂f(x), y〉 , ∀ y ∈ Rn,

from which we deduce using the result at x = 0, that ∂f(x) ⊂ {u ∈ Rn
∣∣ ‖u‖∗ ≤ 1}.

However, using
〈u, v〉 ≤ ‖u‖ ‖v‖∗ ,

we can achieve 〈u, v〉 = ‖u‖ if and only if ‖v‖∗ = 1 and thus we have finally,

∂f(x) = {u ∈ Rn
∣∣ 〈u, x〉 = ‖x‖ and ‖u‖∗ = 1}.

From Exercise 1 one we know that 〈u, x〉 = ‖x‖∞ if and only if u =
∑

i∈R(x) λiv
(i), where

v(i)
s =

{
sign(xs), if s = i,
0, else.

and R(x) = {i
∣∣ |xi| = ‖x‖∞} and λi ≥ 0 and

∑
i∈R(x) λi = 1. Note that

∥∥v(i)
∥∥

1
= 1 and

thus for x 6= 0,
∂ ‖·‖∞ (x) = conv{v(i)

∣∣ i ∈ R(x)}.

Related to the infinity-norm one can show that given that f(x) = maxi=1,...,n fi(x), where
all fi are convex, one has

∂f(x) = conv
(⋃
{∂fk(x)

∣∣ fk(x) = f(x)}
)
.

The inclusion in one direction can be shown as follows. Denote by R(x) the “active” set at
x, that is R(x) = {i | fi(x) = f(x)}. Then for all z ∈ dom f and for any λi ≥ 0, i = 1, . . . , n
with

∑
i∈R(x) λ = 1,

f(z) ≥
∑

i∈R(x)

λifi(z) ≥
∑

i∈R(x)

(
λifi(x) + 〈∂fi(x), z − x〉

)
= f(x) +

∑
i∈R(x)

λi 〈∂fi(x), z − x〉 ,

Thus it follows that conv
⋃
{∂fk(x)

∣∣ fk(x) = f(x)} ⊂ ∂f(x).

In general, one can state that it is much easier to verify that a certain vector v is a subgradient
of f than the identification of the whole subdifferential.
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