Convex Optimization and Modeling Jun -Prof. Matthias Hein

Solution of Exercise Sheet 3 - 28.4.2010

Exercise 5 - Convex, concave, quasiconvex and quasiconcave
functions

a. (3 Points) Exercise 3.16a)-c) Determine for each function all the classes (convex, concave,
quasiconvex, quasiconcave) to which it belongs.

b. (2 Points) Exercise 3.19a.

c. (2 Bonus Points) Exercise 3.13. (use the hint !). The Kullback-Leibler divergence K L(p||q)
is a classical measure of “distance” between two probability measures p and ¢. In the exercise
it is used in a more general form for strictly positive measures on R% | . Let u,v € R}, (that
means u; > 0,Vi=1,...,n)

KL(ul||lv) = i [ui log (%) —u; + vl}.

(2
1=

The KL-divergence is a special case of the so called Bregman-divergences which have
recently attracted some interest.

Solution:
2
a. o f(r)=e¢*—1onR. We have % =¢€” > 0 for all x € R and thus f is strictly convex
and quasiconvex but not concave. It is however also quasiconcave.
o f(x1,72) = v122 on R, +2. The Hessian of f is

H(21,25) = <(1) é) .

This matrix has eigenvalues 1 and —1 and thus is indefinite. Therefore f is neither
convex nor concave. The function is not quasiconvex as (1, O) and (0,1) are contained
in each sublevel set but (1, 1) only if the level is larger than . The superlevelsets are
convex (see Exercise 4) and thus f is quasiconcave.

o f(xy,29) = Illm on R, +? has Hessian,

1 Z
Hf(x1,22) = < L 301”2)-

T1 T x32

The determinant det H f = m24z2 12112 = ﬁ is equal to the product of the eigenvalues
12

1 172
and is positive. Thus both eigenvalues have the same sign and as the trace is also
positive - they are both positive and H f is positive-definite. Thus f is strictly convex
and quasiconvex but not concave or quasiconcave.

b. The function f(z) = ZZ 1 aqxpi], where ag > ap > ... > a, > 0 and zs] is the s-th largest
component of the vector . We have,

f(l’):ZOt7fE[ *057Z$ +Z i — O :E[Z
i=1
= arix[i] (r—1 — p Zx[z (a1 — g Zx[z
i=1



As ) x(i] is convex in x and f is a non-negative linear combination of these functions, f
is convex.

c. The hint said that
KL(ul|lv) = f(u) = f(v) = (Vflo,u—v),

where f(v) = Y"1, v;logv; is the negative entropy of v. We have
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Since the domain of K'L is on R’ (which is convex) we conclude that the Hessian of f is
positive definite (diagonal matrix with positive entries). From the first order condition of a
differentiable convex function we derive

fw) = f(0) +{Vflo,u—v).

which implies K L(u|lv) > 0. Moreover, since f is strictly convex we have in the above
inequality only equality if © = v and thus

KL(u|lv) =0 if and only if u = v.

Exercise 7 - Subdifferential

e (4 Points) Derive the subdifferential of the general graph-based total variation energy func-

tional,
n

F(f) =Y wylfi = fil,

ij=1

where w € R™ ™ are the non-negative weights of a graph with n nodes and f € R" is a
function on the nodes.

¢ (2 Points) Derive the subdifferential of f : R" — R with f(z) = ||z|| .

Hints:

e for a) it might be helpful to first derive the subdifferential of the function f : R? — R,
f(z,y) = |x — y| using the chain rule introduced in the lecture.

e for b) make a case distinction if + = 0 or  # 0. For z = 0 the dual norm introduced in
Exercise 1 is helpful and for « # 0 the direct use of the definition is required.

Solution:

e In the lecture the following rules were introduced for convex functions f. For f(z) = g(Az+b)
we have

0f (x) = ATg(Az +b),

and for f(z) = >"\_; a;fi(x) where all f; are convex we have,

of (z) = Za af;(x).



Using the hint we have f(z,y) = |z —y| = ’(1 -1) (5) and thus,

of (z,y) = (_11) sign(z — y).

where we use the set-valued mapping,

-1, if z <0,
sign(z) = ¢ [-1,1], ifx=0,
1, if x > 0.

Thus we get in total for F(f) = >0, wij|fi — fjl,
OF (f) = Z wjj(e; — ej) sign(fi — ),
i,j=1
where e; is the i-th unit vector in R". In components, we get

aF(f)r :Zwrj Sign(fr - f]) - Zwir Sign(fi - fr)
j=1 i—1

wy; (sign(f, — f;) — sign(f; — fr))

J

= g WrjWig,
Jj=1
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where u;; = —uj; and
uij = Slgl’l(fl — fj)

Note, that this is not the same as,
aF(f)r = 2Zwrj Sign(fr - fj),
j=1

as in the later expression the set-valued part need not be anti-symmetric.

The subdifferential of f(z) = ||z at z = 0 can be deduced from |[z| = supy, <1 (u,z) and
the definition ||y|| > ||0|| + (O f]o, (y — 0)) = (Oflo,y). Thus at z = 0 we have

0flo={ueR" [ Jlull, <1}.

For the infinity norm the dual norm is the 1-norm. Thus we have using the definition from
Exercise 1,
O lloc (0) = {w € R™ | [Jull, <1},

Now for x # 0, the definition of df(z) requires for all y € R™,
lyll = llzll = (0f(x),y —x).
In particular for y = (1 + A)x, we have
Mzl = A{0f(x),z) .

For A > 0 we have ||z|| > (0f(z),z) and for A < 0 we get ||z| < (Of(z),z) and thus we
conclude

]| = (0f(x),z).



Plugging this result into the definining property of df(z) we obtain

lyll > (0f(x),y), VyeR",

from which we deduce using the result at z = 0, that 9f(x) C {u € R | llull, < 1}.
However, using
(u,0) < lull[lv]l,

we can achieve (u,v) = ||lu| if and only if ||v||, = 1 and thus we have finally,
0f(x) = {u € R" | (u,z) = ||z|| and [ull, =1}.

From Exercise 1 one we know that (u,z) = [|z||,, if and only if u =}, p(, v | where

o) — sign(xs), if s =1,
s 0, else.

and R(z) = {i | |z;| = [|z[|o} and A; > 0 and > icr(x) Ni = 1. Note that ||v(i)H1 =1 and
thus for x # 0, ,

Ol (z) = conv{v(’) ‘ i € R(x)}.
Related to the infinity-norm one can show that given that f(x) = max;—1 ., fi(z), where
all f; are convex, one has

0f(z) = conv (| J{0fe(x) | fulx) = f(x)}).

.....

The inclusion in one direction can be shown as follows. Denote by R(z) the “active” set at
x, that is R(x) = {i | fi(z) = f(z)}. Then for all z € dom f and for any \; >0,i=1,...,n
with ZiER(w) A=1,

)= ) Nfilz) = Y (Nfil@) + 0fi(), 2 —x)) = fl@) + Y N (0fi(x),z ),
i€R(x) i€R(x) i€ER(x)
Thus it follows that conv [ J{0fk(z) | fr(z) = f(z)} C Of ().

In general, one can state that it is much easier to verify that a certain vector v is a subgradient
of f than the identification of the whole subdifferential.



