Exercise 5-Convex, concave, quasiconvex and quasiconcave functions

a. (3 Points) Exercise 3.16a)-c) Determine for each function all the classes (convex, concave, quasiconvex, quasiconcave) to which it belongs.
b. (2 Points) Exercise 3.19a.
c. (2 Bonus Points) Exercise 3.13. (use the hint !). The Kullback-Leibler divergence $K L(p \| q)$ is a classical measure of "distance" between two probability measures p and q. In the exercise it is used in a more general form for strictly positive measures on \mathbb{R}_{++}^{n}. Let $u, v \in \mathbb{R}_{++}^{n}$ (that means $\left.u_{i}>0, \forall i=1, \ldots, n\right)$

$$
K L(u \| v)=\sum_{i=1}^{n}\left[u_{i} \log \left(\frac{u_{i}}{v_{i}}\right)-u_{i}+v_{i}\right] .
$$

The KL-divergence is a special case of the so called Bregman-divergences which have recently attracted some interest.

Solution:

a. - $f(x)=e^{x}-1$ on \mathbb{R}. We have $\frac{\partial^{2} f}{\partial x^{2}}=e^{x}>0$ for all $x \in \mathbb{R}$ and thus f is strictly convex and quasiconvex but not concave. It is however also quasiconcave.

- $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ on $\mathbb{R}_{+}+^{2}$. The Hessian of f is

$$
H f\left(x_{1}, x_{2}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

This matrix has eigenvalues 1 and -1 and thus is indefinite. Therefore f is neither convex nor concave. The function is not quasiconvex as $(1,0)$ and $(0,1)$ are contained in each sublevel set but $\left(\frac{1}{2}, \frac{1}{2}\right)$ only if the level is larger than $\frac{1}{4}$. The superlevelsets are convex (see Exercise 4) and thus f is quasiconcave.

- $f\left(x_{1}, x_{2}\right)=\frac{1}{x_{1} x_{2}}$ on $\mathbb{R}_{+}+{ }^{2}$ has Hessian,

$$
H f\left(x_{1}, x_{2}\right)=\frac{1}{x_{1} x_{2}}\left(\begin{array}{cc}
\frac{2}{x_{1}^{2}} & -\frac{1}{x_{1} x_{2}} \\
-\frac{1}{x_{1} x_{2}} & \frac{1}{x_{2}^{2}}
\end{array}\right) .
$$

The determinant $\operatorname{det} H f=\frac{4}{x_{1}^{2} x_{2}^{2}}+\frac{1}{x_{1}^{2} x_{2}^{2}}=\frac{5}{x_{1}^{2} x_{2}^{2}}$ is equal to the product of the eigenvalues and is positive. Thus both eigenvalues have the same sign and as the trace is also positive - they are both positive and $H f$ is positive-definite. Thus f is strictly convex and quasiconvex but not concave or quasiconcave.
b. The function $\left.f(x)=\sum_{i=1}^{r} \alpha_{i} x_{[i}\right]$, where $\alpha_{1} \geq \alpha_{2} \geq \ldots \geq \alpha_{r} \geq 0$ and $x_{[s]}$ is the s-th largest component of the vector x. We have,

$$
\begin{aligned}
f(x) & \left.\left.\left.=\sum_{i=1}^{r} \alpha_{i} x_{[} i\right]=\alpha_{r} \sum_{i=1}^{r} x_{[i}\right]+\sum_{i=1}^{r}\left(\alpha_{i}-\alpha_{r}\right) x_{[} i\right] \\
& \left.\left.=\alpha_{r} \sum_{i=1}^{r} x_{[} i\right]+\left(\alpha_{r-1}-\alpha_{r}\right) \sum_{i=1}^{r-1} x_{[i}\right]+\ldots+\left(\alpha_{1}-\alpha_{2}\right) \sum_{i=1}^{1} x_{[i]} .
\end{aligned}
$$

As $\left.\sum_{i=1}^{k} x_{[} i\right]$ is convex in x and f is a non-negative linear combination of these functions, f is convex.
c. The hint said that

$$
K L(u \| v)=f(u)-f(v)-\left\langle\left.\nabla f\right|_{v}, u-v\right\rangle
$$

where $f(v)=\sum_{i=1}^{n} v_{i} \log v_{i}$ is the negative entropy of v. We have

$$
\frac{\partial}{\partial v_{k}} f=\log v_{k}+1, \quad \frac{\partial^{2}}{\partial v_{k} \partial v_{l}} f=\frac{1}{v_{l}} \delta_{l k} .
$$

Since the domain of $K L$ is on \mathbb{R}_{++}^{n} (which is convex) we conclude that the Hessian of f is positive definite (diagonal matrix with positive entries). From the first order condition of a differentiable convex function we derive

$$
f(u) \geq f(v)+\left\langle\left.\nabla f\right|_{v}, u-v\right\rangle
$$

which implies $K L(u \| v) \geq 0$. Moreover, since f is strictly convex we have in the above inequality only equality if $u=v$ and thus

$$
K L(u \| v)=0 \quad \text { if and only if } u=v
$$

Exercise 7-Subdifferential

- (4 Points) Derive the subdifferential of the general graph-based total variation energy functional,

$$
F(f)=\sum_{i, j=1}^{n} w_{i j}\left|f_{i}-f_{j}\right|
$$

where $w \in \mathbb{R}^{n \times n}$ are the non-negative weights of a graph with n nodes and $f \in \mathbb{R}^{n}$ is a function on the nodes.

- (2 Points) Derive the subdifferential of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $f(x)=\|x\|_{\infty}$.

Hints:

- for a) it might be helpful to first derive the subdifferential of the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, $f(x, y)=|x-y|$ using the chain rule introduced in the lecture.
- for b) make a case distinction if $x=0$ or $x \neq 0$. For $x=0$ the dual norm introduced in Exercise 1 is helpful and for $x \neq 0$ the direct use of the definition is required.

Solution:

- In the lecture the following rules were introduced for convex functions f. For $f(x)=g(A x+b)$ we have

$$
\partial f(x)=A^{T} \partial g(A x+b)
$$

and for $f(x)=\sum_{i=1}^{r} \alpha_{i} f_{i}(x)$ where all f_{i} are convex we have,

$$
\partial f(x)=\sum_{i=1}^{r} \alpha_{i} \partial f_{i}(x)
$$

Using the hint we have $f(x, y)=|x-y|=\left|\left(\begin{array}{ll}1 & -1\end{array}\right)\binom{x}{y}\right|$ and thus,

$$
\partial f(x, y)=\binom{1}{-1} \operatorname{sign}(x-y)
$$

where we use the set-valued mapping,

$$
\operatorname{sign}(x)= \begin{cases}-1, & \text { if } x<0 \\ {[-1,1],} & \text { if } x=0 \\ 1, & \text { if } x>0\end{cases}
$$

Thus we get in total for $F(f)=\sum_{i, j=1}^{n} w_{i j}\left|f_{i}-f_{j}\right|$,

$$
\partial F(f)=\sum_{i, j=1}^{n} w_{i j}\left(e_{i}-e_{j}\right) \operatorname{sign}\left(f_{i}-f_{j}\right)
$$

where e_{i} is the i-th unit vector in \mathbb{R}^{n}. In components, we get

$$
\begin{aligned}
\partial F(f)_{r} & =\sum_{j=1}^{n} w_{r j} \operatorname{sign}\left(f_{r}-f_{j}\right)-\sum_{i=1}^{n} w_{i r} \operatorname{sign}\left(f_{i}-f_{r}\right) \\
& =\sum_{j=1}^{n} w_{r j}\left(\operatorname{sign}\left(f_{r}-f_{j}\right)-\operatorname{sign}\left(f_{j}-f_{r}\right)\right) \\
& =2 \sum_{j=1}^{n} w_{r j} u_{i j}
\end{aligned}
$$

where $u_{i j}=-u_{j i}$ and

$$
u_{i j}=\operatorname{sign}\left(f_{i}-f_{j}\right)
$$

Note, that this is not the same as,

$$
\partial F(f)_{r}=2 \sum_{j=1}^{n} w_{r j} \operatorname{sign}\left(f_{r}-f_{j}\right)
$$

as in the later expression the set-valued part need not be anti-symmetric.

- The subdifferential of $f(x)=\|x\|$ at $x=0$ can be deduced from $\|x\|=\sup _{\|u\|_{*} \leq 1}\langle u, x\rangle$ and the definition $\|y\| \geq\|0\|+\left\langle\left.\partial f\right|_{0},(y-0)\right\rangle=\left\langle\left.\partial f\right|_{0}, y\right\rangle$. Thus at $x=0$ we have

$$
\left.\partial f\right|_{0}=\left\{u \in \mathbb{R}^{n} \mid\|u\|_{*} \leq 1\right\}
$$

For the infinity norm the dual norm is the 1-norm. Thus we have using the definition from Exercise 1,

$$
\partial\|\cdot\|_{\infty}(0)=\left\{u \in \mathbb{R}^{n} \mid\|u\|_{1} \leq 1\right\}
$$

Now for $x \neq 0$, the definition of $\partial f(x)$ requires for all $y \in \mathbb{R}^{n}$,

$$
\|y\|-\|x\| \geq\langle\partial f(x), y-x\rangle
$$

In particular for $y=(1+\lambda) x$, we have

$$
\lambda\|x\| \geq \lambda\langle\partial f(x), x\rangle
$$

For $\lambda>0$ we have $\|x\| \geq\langle\partial f(x), x\rangle$ and for $\lambda<0$ we get $\|x\| \leq\langle\partial f(x), x\rangle$ and thus we conclude

$$
\|x\|=\langle\partial f(x), x\rangle
$$

Plugging this result into the definining property of $\partial f(x)$ we obtain

$$
\|y\| \geq\langle\partial f(x), y\rangle, \quad \forall y \in \mathbb{R}^{n}
$$

from which we deduce using the result at $x=0$, that $\partial f(x) \subset\left\{u \in \mathbb{R}^{n} \mid\|u\|_{*} \leq 1\right\}$. However, using

$$
\langle u, v\rangle \leq\|u\|\|v\|_{*}
$$

we can achieve $\langle u, v\rangle=\|u\|$ if and only if $\|v\|_{*}=1$ and thus we have finally,

$$
\partial f(x)=\left\{u \in \mathbb{R}^{n} \mid\langle u, x\rangle=\|x\| \text { and }\|u\|_{*}=1\right\} .
$$

From Exercise 1 one we know that $\langle u, x\rangle=\|x\|_{\infty}$ if and only if $u=\sum_{i \in R(x)} \lambda_{i} v^{(i)}$, where

$$
v_{s}^{(i)}= \begin{cases}\operatorname{sign}\left(x_{s}\right), & \text { if } s=i \\ 0, & \text { else }\end{cases}
$$

and $R(x)=\left\{i| | x_{i} \mid=\|x\|_{\infty}\right\}$ and $\lambda_{i} \geq 0$ and $\sum_{i \in R(x)} \lambda_{i}=1$. Note that $\left\|v^{(i)}\right\|_{1}=1$ and thus for $x \neq 0$,

$$
\partial\|\cdot\|_{\infty}(x)=\operatorname{conv}\left\{v^{(i)} \mid i \in R(x)\right\}
$$

Related to the infinity-norm one can show that given that $f(x)=\max _{i=1, \ldots, n} f_{i}(x)$, where all f_{i} are convex, one has

$$
\partial f(x)=\operatorname{conv}\left(\bigcup\left\{\partial f_{k}(x) \mid f_{k}(x)=f(x)\right\}\right)
$$

The inclusion in one direction can be shown as follows. Denote by $R(x)$ the "active" set at x, that is $R(x)=\left\{i \mid f_{i}(x)=f(x)\right\}$. Then for all $z \in \operatorname{dom} f$ and for any $\lambda_{i} \geq 0, i=1, \ldots, n$ with $\sum_{i \in R(x)} \lambda=1$,

$$
f(z) \geq \sum_{i \in R(x)} \lambda_{i} f_{i}(z) \geq \sum_{i \in R(x)}\left(\lambda_{i} f_{i}(x)+\left\langle\partial f_{i}(x), z-x\right\rangle\right)=f(x)+\sum_{i \in R(x)} \lambda_{i}\left\langle\partial f_{i}(x), z-x\right\rangle,
$$

Thus it follows that conv $\bigcup\left\{\partial f_{k}(x) \mid f_{k}(x)=f(x)\right\} \subset \partial f(x)$.
In general, one can state that it is much easier to verify that a certain vector v is a subgradient of f than the identification of the whole subdifferential.

