Solution Exercise Sheet 2-21.4.2010

Exercise 3-Convex sets

a. (7 Points) Solve 2.12 in BV.

Solution:

- The set $\{x \mid \alpha \leq\langle x, w\rangle \leq \beta\}$ for $w \in \mathbb{R}^{n}$ is the intersection of two half-spaces and therefore convex,
- A rectangle is a polyhedron or alternatively the intersection of four half-spaces,
- Intersection of two half spaces,
- For one point the set

$$
\left\{x \mid\left\|x-x_{0}\right\|_{2} \leq\|x-y\|_{2}\right\}
$$

is convex

$$
\left\|x-x_{0}\right\|_{2} \leq\|x-y\|_{2} \quad \Leftrightarrow \quad\left\langle x, x_{0}-y\right\rangle \leq \frac{1}{2}\left(\|y\|^{2}-\left\|x_{0}\right\|^{2}\right)
$$

since it is a linear half-space. One can rewrite

$$
\left\{x \mid\left\|x-x_{0}\right\|_{2} \leq\|x-y\|_{2}, \forall y \in S\right\}=\bigcap_{y \in S}\left\{x \mid\left\|x-x_{0}\right\|_{2} \leq\|x-y\|_{2}\right\}
$$

Since the intersection of convex sets is convex we are done.

- This set is generally not convex. A simple counterexample is the following: take S as a half-circle (centered at the origin, the "left part" of the circle) and T as the line starting at the origin. Then the ends of the half-circle are clearly in the set but the line connecting them touches the origin which is element of T.
- Let $M=\left\{x \mid x+S_{2} \subset S_{1}\right\}$ where S_{1} is convex and S_{2} arbitrary. Let $x, y \in M$, then we have

$$
x+w \in S_{1}, \forall w \in S_{2} \text { and } y+w \in S_{1}, \forall w \in S_{2},
$$

Then we have

$$
\lambda x+(1-\lambda) y+w=\lambda(x+w)+(1-\lambda)(y+w) .
$$

By the first assertion we know that $x+w$ and $y+w$ are in S_{1} for all $w \in S_{2}$. But S_{1} is convex and therefore a convex combination of points is again in S_{1}. Thus M is convex.

- The set $\{x \mid\|x-a\| \leq \theta\|x-b\|\}$ can be rewritten as

$$
\|x-a\|^{2} \leq \theta^{2}\|x-b\|^{2} \quad \Longleftrightarrow \quad\|x\|^{2}-2\langle x, a\rangle+\|a\|^{2} \leq \theta^{2}\|x\|^{2}-2 \theta^{2}\langle x, b\rangle+\theta^{2}\|b\|^{2}
$$

which leads to the quadratic inequality

$$
\left(1-\theta^{2}\right)\|x\|^{2}-2\left\langle x, a-\theta^{2} b\right\rangle+\|a\|^{2}-\theta^{2}\|b\|^{2} \leq 0
$$

Now we do a quadratic extension,

$$
\left\|\sqrt{1-\theta^{2}} x-\frac{a-\theta^{2} b}{\sqrt{1-\theta^{2}}}\right\|^{2}-\frac{\left\|a-\theta^{2} b\right\|^{2}}{1-\theta^{2}}+\|a\|^{2}-\theta^{2}\|b\|^{2} \leq 0
$$

The division by $1-\theta^{2}$ which is positive by assumption yields,

$$
\left\|x-\frac{a-\theta^{2} b}{1-\theta^{2}}\right\|^{2} \leq \frac{\left\|a-\theta^{2} b\right\|^{2}}{\left(1-\theta^{2}\right)^{2}}+\frac{\theta^{2}\|b\|^{2}-\|a\|^{2}}{1-\theta^{2}} .
$$

This defines a ball in \mathbb{R}^{n} which is clearly convex. Note, that the ball is non-empty since the set contains at least a.

Exercise 4 - Supporting Hyperplane

(4 Points) Exercise 2.24 in BV.

Solution:

a. The set $C=\left\{x \in \mathbb{R}_{+}^{2} \mid x_{1} x_{2} \geq 1\right\}$ is closed and convex. A closed convex set can be equally written as the intersection of all half-spaces which contain it. The half-spaces are generated by the supporting hyper-planes of all boundary points. The normal vector at a boundary point $\left(x_{1}, \frac{1}{x_{1}}\right)$ (note that at a boundary point $\left.x_{1} x_{2}=1\right)$ is given as $\left(\frac{1}{x_{1}^{2}}, 1\right)$ and the supporting hyperplane at this point is ,

$$
\left\{\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2} \left\lvert\, \frac{1}{x_{1}^{2}} y_{1}+y_{2}-\frac{2}{x_{1}}=0\right.\right\}
$$

Thus we can write C as,

$$
C=\bigcap_{x_{1}>0}\left\{\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2} \left\lvert\, \frac{1}{x_{1}^{2}} y_{1}+y_{2}-\frac{2}{x_{1}} \geq 0\right.\right\}
$$

b. The supporting hyperplane has normal vector n at point x with $\|x\|=\infty$,

$$
n_{i}= \begin{cases}<0, & \text { if } x_{i}=1 \\ 0, & \text { if }-1<x_{i}<1, \\ >0, & \text { if } x_{i}=-1\end{cases}
$$

Exercise 5 - Polyhedral Approximation

(2 Points) Exercise 2.25 in BV.

Solution:

a. The boundary points x_{1}, \ldots, x_{k} are in C as C is closed. We have $P_{\text {inner }} \subseteq C$ since the convex hull of of any elements of C is always contained in C.
b. $P_{\text {outer }}$ is an intersection of half-spaces where each half-space contains C and thus also the intersection.

