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Exercise 24 - Proximity Operator

Prove the two statements in the lecture about the proximity operator proxf defined as

proxf x = arg min
y∈Rn

f(y) +
1
2
‖x− y‖2 .

a. (2 Points) x∗ = proxf x∗ if and only if x∗ is a minimizer of f . This means the set of fixed
points of proxf is equal to the set of minimizers of f .

b. (3 Points) The proximity operator is non-expansive,∥∥proxf x− proxf y
∥∥ ≤ ‖x− y‖ .

Hint:

• In both cases use the optimality condition of the minimization problem. For the second
problem use the same steps as for the projection onto convex sets.

Solution:

a. Suppose y∗ is a minimizer of f . Then for all y ∈ Rn,

f(y∗) = f(y∗) +
1
2
‖y∗ − y∗‖2 ≤ f(y) +

1
2
‖y∗ − y‖ ,

and thus proxf y∗ = y∗ if y∗ is a minimizer of f .

The optimality condition reads,

0 ∈ ∂f(proxf x) + proxf x− x.

Thus if proxf x = x, then 0 ∈ ∂f(proxf x) and thus proxf x is a minimizer of f .

b. From the optimality condition we get,

x− proxf x ∈ ∂f(proxf x).

Using the first-order condition we get,

f(proxf y) ≥ f(proxf x) +
〈
∂f(proxf x),proxf y − proxf x

〉
= f(proxf x) +

〈
x− proxf x,proxf y − proxf x

〉
.

In the same way we get,

f(proxf x) ≥ f(proxf y) +
〈
y − proxf y,proxf x− proxf y

〉
.

Adding both equations from the other one we get,

0 ≥
〈
x− y + proxf y − proxf x, proxf y − proxf x

〉
=
〈
x− y,proxf y − proxf x

〉
+
∥∥proxf y − proxf x

∥∥2
,

In total, we get∥∥proxf y − proxf x
∥∥2 ≤

〈
x− y,proxf y − proxf x

〉
≤ ‖x− y‖

∥∥proxf y − proxf x
∥∥ ,
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which yields the desired result.

One can also derive a stronger result as follows,

0 ≥ 2
〈
x− y,proxf y − proxf x

〉
+ 2

∥∥proxf y − proxf x
∥∥2

‖x− y‖2 ≥ ‖x− y‖2 + 2
〈
x− y,proxf y − proxf x

〉
+ 2

∥∥proxf y − proxf x
∥∥2

‖x− y‖2 ≥
∥∥(x− proxf x)− (y − proxf y)

∥∥2 +
∥∥proxf y − proxf x

∥∥2

Exercise 25 - Total Variation for general graphs

The goal of this exercise is to implement the total variation denoising scheme for general graphs
developed in the lecture.

a. (3 Points) Prove that ‖A‖2 ≤ 4 maxr
∑n
j=1 w

2
rj .

b. (1 Point) Show that (AT f)ij = wij(fi − fj).

c. (7 Points) Implement the total variation method as introduced in the lecture as

f=TotalVariation(MAXITER,epsT,Y,W,lambda)

where Y, f ∈ Rnm are the input and output images represented as a vectors (use reshape),
W ∈ Rmn×mn encodes the weights between the pixels, and lambda is the regularization
parameter. Use the box constraints C = [0, 1]n.

• use (f(xk) − f(xk+1))/f(xk) < 10−5 = epsT as stopping criterion or number of steps
larger than MAXITER = 1000,

• Analyze the dependence of the number of required iterations on the employed regular-
ization parameter λ.

• Which λ yields the best results in terms of reconstruction error and which in terms of
visual appearance ?

Hints:

• make sure that all the matrices you use have sparse format (generate them with the command
sparse). You can obtain the row and column indices, and the values of the non-zero entries
of a sparse matrix via: [ix,jx,val]=sparse(W).

Send the matlab-code and all plots (as png-files) to Shyam Rangapuram, email: r.shyamsundar@gmail.com.

Solution:

• The proof mainly uses Cauchy-Schwarz together with upper-bounding a sum of positive terms

‖Aα‖22 = 4
n∑
i=1

( n∑
j=1

wijαij

)2

≤ 4
n∑
i=1

n∑
j=1

w2
ij

n∑
j=1

α2
ij

≤ 4 max
r=1,...,n

w2
rj

n∑
i,j=1

α2
ij = 4 max

r=1,...,n
w2
rj ‖α‖

2
2 .

Thus with ‖A‖22,2 = supα
‖Aα‖22
‖α‖22

≤ 4 maxr=1,...,n w
2
rj .
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• The definition of the transpose (or more general the adjoint) operator is

〈Aα, f〉RV =
〈
α,AT f

〉
RE , ∀α ∈ RE , f ∈ RV .

Thus,

〈Aα, f〉RV = 2
n∑

i,j=1

wijαijfi =
n∑

i,j=1

wijαijfi −
n∑

i,j=1

wijαjifi

=
n∑

i,j=1

wijαijfi −
n∑

j,i=1

wjiαijfj

=
n∑

i,j=1

αij wij(fi − fj).

Thus (AT f) = wij(fi − fj).

• The number of required iterations increases with increasing λ. This has a theoretical backup
as the Lipschitz-constant of Ψ is

L = 4λ2 max
r=1,...,n

w2
rj .

Thus the Lipschitz constant increases quadratically and we have the bound,

f(x(k))− p∗ ≤ 2L
(k + 1)2

∥∥∥x(0) − x∗
∥∥∥2

,

where the approximation guarantee decreases with increasing L and thus it can be expected
that one stops earlier (even though the stopping criterion is not directly linked to this con-
dition).
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