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Exercise 1 - Dual norm

The algebraic dual (Rn)∗ of the vector space Rn is the set of all linear maps from Rn to R. Given
that the vector space Rn is equipped with a norm ‖·‖ one defines a dual norm on the dual space
(Rn)∗ as

‖v‖∗ = sup
u∈Rn

{ n∑
i=1

viui

∣∣ ‖u‖ ≤ 1
}
.

This is basically the operator norm of the linear map, v : Rn → R, discussed in the lecture.

a. (2 Points) Derive the dual norm of the l1-norm, ‖u‖1 =
∑n

i=1 |ui|.

b. (2 Points) Derive the dual norm of the l2-norm, ‖u‖2 =
√∑n

i=1 u
2
i .

c. (2 Points) Derive the dual norm of the l∞-norm, ‖u‖∞ = maxi=1,...,n |ui|.

Hint:

• first prove a lower bound for ‖v‖∗ by plugging in a particular u, then prove an upper bound
on ‖v‖∗ and show that upper and lower bound agree,

• for b) you may use the Cauchy-Schwarz inequality

| 〈u, v〉 | ≤ ‖u‖2 ‖v‖2 ,

or in coordinates

|
n∑

i=1

uivi| ≤

√√√√ n∑
i=1

u2
i

√√√√ n∑
i=1

v2
i .

Solution:

a. For given v ∈ Rn with v 6= 0 use ui =
{

0 if |vi| 6= maxi=1,...,n |vi|
vi/|vi| else . , where in the case

of a non-unique maximum we set an arbitrary component which achieves the maximum to
the sign of the component. Note that ‖u‖1 = 1. Plugging this particular u into the definition
of the dual norm we get

‖v‖∗ ≥
n∑

i=1

uivi = max
i=1,...,n

|vi|.

Moreover, using

n∑
i=1

uivi ≤
n∑

i=1

|uivi| ≤
n∑

i=1

|ui| sup
j=1,...,n

|vj | ≤ ‖u‖1 max
j=1,...,n

|vj |.

we have
‖v‖∗ ≤ max

j=1,...,n
|vj |.

and thus ‖v‖∗ = ‖v‖∞.
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b. For given v ∈ Rn with v 6= 0 use ui = vi/ ‖v‖. Note that ‖u‖2 = 1. Plugging this particular
u into the definition of the dual norm we get

‖v‖∗ ≥
n∑

i=1

uivi =
1
‖v‖

n∑
i=1

v2
i = ‖v‖2 .

Moreover, using Cauchy-Schwarz yields

n∑
i=1

uivi ≤

√√√√ n∑
i=1

u2
i

√√√√ n∑
i=1

v2
i = ‖u‖2 ‖v‖2 .

Thus we have
‖v‖∗ ≤ ‖v‖2 .

and thus ‖v‖∗ = ‖v‖2.

c. For given v ∈ Rn use ui =
{

sign vi = vi/|vi| vi 6= 0
0 vi = 0. . Note that ‖u‖∞ = 1. Plugging this

particular u into the definition of the dual norm we get

‖v‖∗ ≥
n∑

i=1

uivi =
n∑

i=1

|vi|.

Moreover, using

n∑
i=1

uivi ≤
n∑

i=1

|uivi| ≤ max
j=1,...,n

|uj |
n∑

i=1

|vi| ≤ ‖u‖∞
n∑

i=1

|vi|.

we have

‖v‖∗ ≤
n∑

i=1

|vi|.

and thus ‖v‖∗ = ‖v‖1.

Exercise 2 - Reminder of Linear Algebra and Analysis

a. (3 Points) Proof the assertion from the lecture that every real, symmetric matrix A has the
decomposition

A = QΛQT ,

where Q is an orthogonal matrix and Λ is a diagonal matrix having the eigenvalues on the
diagonal.

b. (3 Points) The distance of a point x to a set C is defined as

d(x,C) = inf
{
‖x− y‖

∣∣ y ∈ C}.
Let C be closed. Prove that the distance d(x,C) is realized by an element of C that means
∃z ∈ C such that d(x,C) = d(x, z).

Solution:

a. The eigenvectors qi (without loss of generality we assume that ‖qi‖ = 1) of a symmetric
matrix are real,

λi = λi ‖qi‖2 = 〈qi, Aqi〉 =
〈
AT qi, qi

〉
= λi ‖qi‖2 = λi.
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and thus λi is real.
Moreover, the eigenvectors are orthogonal to each other

λi 〈qi, qj〉 = 〈Aqi, qj〉 =
〈
qi, A

T qj
〉

= 〈qi, Aqj〉 = λj 〈qi, qj〉 .

Thus (λi − λj) 〈qi, qj〉 = 0. Thus, if λi 6= λj we have 〈qi, qj〉 = 0. If an eigenvalue has a
multiplicity larger than 1 we use an orthonormal basis of the resulting eigenspace.

All eigenvectors plus an orthnormal basis of the kernel (or null space) of A thus provide a
basis of Rn. Now, it is a standard result in linear algebra that the representation of a matrix
A in another basis is given by

A = SBS−1,

where S contains as columns the new basis vectors represented in terms of the old basis and
Bij = 〈qi, Aqj〉 are the components with respect to the new basis. In our case S = Q and
since Q is an orthogonal matrix we have Q−1 = QT . Moreover, Bij = 〈qi, Aqj〉 = λjδij ,

where δij =
{ 1 if i = j

0 else . Thus A = QΛQT .

b. The function y → ‖x− y‖ for fixed x is clearly continuous. Pick an arbitrary w ∈ C,
then in order to compute the distance d(x,C) it is sufficient to minimize over the set {y ∈
C | ‖x− y‖ ≤ ‖x− w‖}, which is closed and bounded and therefore compact. A continuous
function attains its minimum on a compact set and thus there exists a z ∈ C such that
d(x, z) = d(x,C).
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