Exercise 1 - Dual norm

The algebraic dual $\left(\mathbb{R}^{n}\right)^{*}$ of the vector space \mathbb{R}^{n} is the set of all linear maps from \mathbb{R}^{n} to \mathbb{R}. Given that the vector space \mathbb{R}^{n} is equipped with a norm $\|\cdot\|$ one defines a dual norm on the dual space $\left(\mathbb{R}^{n}\right)^{*}$ as

$$
\|v\|^{*}=\sup _{u \in \mathbb{R}^{n}}\left\{\sum_{i=1}^{n} v_{i} u_{i} \mid\|u\| \leq 1\right\} .
$$

This is basically the operator norm of the linear map, $v: \mathbb{R}^{n} \rightarrow \mathbb{R}$, discussed in the lecture.
a. (2 Points) Derive the dual norm of the l_{1}-norm, $\|u\|_{1}=\sum_{i=1}^{n}\left|u_{i}\right|$.
b. (2 Points) Derive the dual norm of the l_{2}-norm, $\|u\|_{2}=\sqrt{\sum_{i=1}^{n} u_{i}^{2}}$.
c. (2 Points) Derive the dual norm of the l_{∞}-norm, $\|u\|_{\infty}=\max _{i=1, \ldots, n}\left|u_{i}\right|$.

Hint:

- first prove a lower bound for $\|v\|^{*}$ by plugging in a particular u, then prove an upper bound on $\|v\|^{*}$ and show that upper and lower bound agree,
- for b) you may use the Cauchy-Schwarz inequality

$$
|\langle u, v\rangle| \leq\|u\|_{2}\|v\|_{2}
$$

or in coordinates

$$
\left|\sum_{i=1}^{n} u_{i} v_{i}\right| \leq \sqrt{\sum_{i=1}^{n} u_{i}^{2}} \sqrt{\sum_{i=1}^{n} v_{i}^{2}}
$$

Solution:

a. For given $v \in \mathbb{R}^{n}$ with $v \neq 0$ use $u_{i}=\left\{\begin{array}{cc}0 \\ v_{i} /\left|v_{i}\right| & \text { if }\left|v_{i}\right| \neq \max _{i=1, \ldots, n}\left|v_{i}\right| \\ \text { else } .\end{array}\right.$, where in the case of a non-unique maximum we set an arbitrary component which achieves the maximum to the sign of the component. Note that $\|u\|_{1}=1$. Plugging this particular u into the definition of the dual norm we get

$$
\|v\|^{*} \geq \sum_{i=1}^{n} u_{i} v_{i}=\max _{i=1, \ldots, n}\left|v_{i}\right|
$$

Moreover, using

$$
\sum_{i=1}^{n} u_{i} v_{i} \leq \sum_{i=1}^{n}\left|u_{i} v_{i}\right| \leq \sum_{i=1}^{n}\left|u_{i}\right| \sup _{j=1, \ldots, n}\left|v_{j}\right| \leq\|u\|_{1} \max _{j=1, \ldots, n}\left|v_{j}\right| .
$$

we have

$$
\|v\|^{*} \leq \max _{j=1, \ldots, n}\left|v_{j}\right| .
$$

and thus $\|v\|^{*}=\|v\|_{\infty}$.
b. For given $v \in \mathbb{R}^{n}$ with $v \neq 0$ use $u_{i}=v_{i} /\|v\|$. Note that $\|u\|_{2}=1$. Plugging this particular u into the definition of the dual norm we get

$$
\|v\|^{*} \geq \sum_{i=1}^{n} u_{i} v_{i}=\frac{1}{\|v\|} \sum_{i=1}^{n} v_{i}^{2}=\|v\|_{2}
$$

Moreover, using Cauchy-Schwarz yields

$$
\sum_{i=1}^{n} u_{i} v_{i} \leq \sqrt{\sum_{i=1}^{n} u_{i}^{2}} \sqrt{\sum_{i=1}^{n} v_{i}^{2}}=\|u\|_{2}\|v\|_{2}
$$

Thus we have

$$
\|v\|^{*} \leq\|v\|_{2}
$$

and thus $\|v\|^{*}=\|v\|_{2}$.
c. For given $v \in \mathbb{R}^{n}$ use $u_{i}=\left\{\begin{array}{cc}\operatorname{sign} v_{i}=v_{i} /\left|v_{i}\right| & v_{i} \neq 0 \\ 0 & v_{i}=0 .\end{array}\right.$. Note that $\|u\|_{\infty}=1$. Plugging this particular u into the definition of the dual norm we get

$$
\|v\|^{*} \geq \sum_{i=1}^{n} u_{i} v_{i}=\sum_{i=1}^{n}\left|v_{i}\right|
$$

Moreover, using

$$
\sum_{i=1}^{n} u_{i} v_{i} \leq \sum_{i=1}^{n}\left|u_{i} v_{i}\right| \leq \max _{j=1, \ldots, n}\left|u_{j}\right| \sum_{i=1}^{n}\left|v_{i}\right| \leq\|u\|_{\infty} \sum_{i=1}^{n}\left|v_{i}\right| .
$$

we have

$$
\|v\|^{*} \leq \sum_{i=1}^{n}\left|v_{i}\right| .
$$

and thus $\|v\|^{*}=\|v\|_{1}$.

Exercise 2-Reminder of Linear Algebra and Analysis

a. (3 Points) Proof the assertion from the lecture that every real, symmetric matrix A has the decomposition

$$
A=Q \Lambda Q^{T}
$$

where Q is an orthogonal matrix and Λ is a diagonal matrix having the eigenvalues on the diagonal.
b. (3 Points) The distance of a point x to a set C is defined as

$$
d(x, C)=\inf \{\|x-y\| \mid y \in C\}
$$

Let C be closed. Prove that the distance $d(x, C)$ is realized by an element of C that means $\exists z \in C$ such that $d(x, C)=d(x, z)$.

Solution:

a. The eigenvectors q_{i} (without loss of generality we assume that $\left\|q_{i}\right\|=1$) of a symmetric matrix are real,

$$
\lambda_{i}=\lambda_{i}\left\|q_{i}\right\|^{2}=\left\langle q_{i}, A q_{i}\right\rangle=\left\langle A^{T} q_{i}, q_{i}\right\rangle=\overline{\lambda_{i}}\left\|q_{i}\right\|^{2}=\overline{\lambda_{i}}
$$

and thus λ_{i} is real.
Moreover, the eigenvectors are orthogonal to each other

$$
\lambda_{i}\left\langle q_{i}, q_{j}\right\rangle=\left\langle A q_{i}, q_{j}\right\rangle=\left\langle q_{i}, A^{T} q_{j}\right\rangle=\left\langle q_{i}, A q_{j}\right\rangle=\lambda_{j}\left\langle q_{i}, q_{j}\right\rangle .
$$

Thus $\left(\lambda_{i}-\lambda_{j}\right)\left\langle q_{i}, q_{j}\right\rangle=0$. Thus, if $\lambda_{i} \neq \lambda_{j}$ we have $\left\langle q_{i}, q_{j}\right\rangle=0$. If an eigenvalue has a multiplicity larger than 1 we use an orthonormal basis of the resulting eigenspace.
All eigenvectors plus an orthnormal basis of the kernel (or null space) of A thus provide a basis of \mathbb{R}^{n}. Now, it is a standard result in linear algebra that the representation of a matrix A in another basis is given by

$$
A=S B S^{-1}
$$

where S contains as columns the new basis vectors represented in terms of the old basis and $B_{i j}=\left\langle q_{i}, A q_{j}\right\rangle$ are the components with respect to the new basis. In our case $S=Q$ and since Q is an orthogonal matrix we have $Q^{-1}=Q^{T}$. Moreover, $B_{i j}=\left\langle q_{i}, A q_{j}\right\rangle=\lambda_{j} \delta_{i j}$, where $\delta_{i j}=\left\{\begin{array}{cc}1 & \text { if } i=j \\ 0 & \text { else }\end{array}\right.$. Thus $A=Q \Lambda Q^{T}$.
b. The function $y \rightarrow\|x-y\|$ for fixed x is clearly continuous. Pick an arbitrary $w \in C$, then in order to compute the distance $d(x, C)$ it is sufficient to minimize over the set $\{y \in$ $C \mid\|x-y\| \leq\|x-w\|\}$, which is closed and bounded and therefore compact. A continuous function attains its minimum on a compact set and thus there exists a $z \in C$ such that $d(x, z)=d(x, C)$.

