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Exercise 17 - Relaxations of integer programming problems

There are two ways to get a lower bound for the optimal value of a combinatorial optimization
problem. First, the dual problem is always convex and provides a lower bound for p∗ by weak
duality. Second, one relaxes the constraints e.g. instead of x ∈ {0, 1} one allows x ∈ [0, 1] and
derives a continuous optimization problem (which might even be convex).

a. (4 Points) Exercise 5.13

b. (4 Points) Exercise 5.39

Hints:

• 5.13.a) note that the resulting Lagrangian is non-convex and thus ∇xL is not sufficient for a
global optimum.

• 5.13.b) optimize over the dual variables for the equality constraints in order to see equivalence
of both dual problems.

• 5.39: Any rank-one matrix X can be written as X = uvT for some vectors u, v.

Exercise 18 - Differentiable approximation of l1-norm mini-
mization

This exercise discusses a common technique where one replaces a non-smooth objective function
with a smoothed version. The critical question is how good the solution of the smoothed version
is with respect to the original problem.

a. (4 Points) Exercise 6.4

Hints:

• For 6.4a) you can use the following steps

– Derive the (necessary and sufficient) condition for a minimum of

min
x∈Rn

m∑
i=1

φ
(
〈ai, x〉 − bi

)
,

where φ(u) =
√
u2 + ε.

– Derive the dual problem of

min
x∈Rn, y∈Rm

‖y‖1

subject to: Ax− b = y,

where A ∈ Rm×n and b ∈ Rm. You need Hölders inequality with p = 1 and q =∞.

– Derive from the first step a dual feasible point and use that to derive a lower bound on
p∗.
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