Exercise 6 - Convex, concave, quasiconvex and quasiconcave functions

a. (3 Points) Exercise 3.16a)-c) Determine for each function all the classes (convex, concave, quasiconvex, quasiconcave) to which it belongs.
b. (2 Points) Exercise 3.19a.
c. (2 Bonus Points) Exercise 3.13. (use the hint !). The Kullback-Leibler divergence $K L(p \| q)$ is a classical measure of "distance" between two probability measures p and q. In the exercise it is used in a more general form for strictly positive measures on \mathbb{R}_{++}^{n}. Let $u, v \in \mathbb{R}_{++}^{n}$ (that means $\left.u_{i}>0, \forall i=1, \ldots, n\right)$

$$
K L(u \| v)=\sum_{i=1}^{n}\left[u_{i} \log \left(\frac{u_{i}}{v_{i}}\right)-u_{i}+v_{i}\right] .
$$

The KL-divergence is a special case of the so called Bregman-divergences which have recently attracted some interest.

Exercise 7-Subdifferential

- (4 Points) Derive the subdifferential of the general graph-based total variation energy functional,

$$
F(f)=\sum_{i, j=1}^{n} w_{i j}\left|f_{i}-f_{j}\right|
$$

where $w \in \mathbb{R}^{n \times n}$ are the non-negative weights of a graph with n nodes and $f \in \mathbb{R}^{n}$ is a function on the nodes.

- (2 Points) Derive the subdifferential of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $f(x)=\|x\|_{\infty}$.

Hints:

- for a) it might be helpful to first derive the subdifferential of the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, $f(x, y)=|x-y|$ using the chain rule introduced in the lecture.
- for b) make a case distinction if $x=0$ or $x \neq 0$. For $x=0$ the dual norm introduced in Exercise 1 is helpful and for $x \neq 0$ the direct use of the definition is required.

