Convex Optimization and Modeling

Exercise 21 - Implementation of the barrier method

a. (3 Points) Implement the equality constrained Newton method as NewtonEq.m
b. (2 Points) Solve the following convex optimization problem. The objective is the same as on sheet 9 .

$$
f\left(x_{1}, x_{2}\right)=e^{x_{1}+3 x_{2}-0.1}+e^{x_{1}-3 x_{2}-0.1}+e^{-x_{1}+0.1} .
$$

But now we have an equality constraint:

$$
x_{1}-x_{2}=1 .
$$

Plot the sequence of points (using the plotting routine provided in Newton.m).
Use as stopping criterion: $\lambda^{2}(x)<10^{-8}$.
Use for stepsize selection: $\sigma=0.2, \beta=0.5$.
c. (3 Points) Implement the barrier method using the equality constrained Newton method as inner loop. Save as Barrier.m.
d. (2 Points) Solve the following convex optimization problem. The objective is the same as in exercise 10.

$$
f\left(x_{1}, x_{2}\right)=e^{x_{1}+3 x_{2}-0.1}+e^{x_{1}-3 x_{2}-0.1}+e^{-x_{1}+0.1} .
$$

But now we have box-constraints:

$$
\|x-c\|_{\infty} \leq 1
$$

where $c=\binom{1}{1}$ and an equality constraint:

$$
x_{1}-x_{2}=1 .
$$

Plot the central path (using the plotting routine provided in Newton.m). Same parameters as above.

Send the matlab-code and all plots (as png-files) to Shyam Rangapuram, email: r.shyamsundar@gmail.com.

