Convex Optimization and Modeling

Exercise 1 - Dual norm

The algebraic dual V^{*} of the vector space V is the set of all linear maps from V to \mathbb{R}. Given that the vector space $V=\mathbb{R}^{n}$ is equipped with a norm $\|\cdot\|$ one defines a dual norm on the dual space $\left(\mathbb{R}^{n}\right)^{*}$ as

$$
\|v\|^{*}=\sup _{u \in \mathbb{R}^{n}}\left\{\sum_{i=1}^{n} v_{i} u_{i} \mid\|u\| \leq 1\right\} .
$$

This is basically the operator norm of the linear map, $v: \mathbb{R}^{n} \rightarrow \mathbb{R}$, discussed in the lecture.
a. (2 Points) Derive the dual norm of the l_{1}-norm, $\|u\|_{1}=\sum_{i=1}^{n}\left|u_{i}\right|$.
b. (2 Points) Derive the dual norm of the l_{2}-norm, $\|u\|_{2}=\sqrt{\sum_{i=1}^{n} u_{i}^{2}}$.
c. (2 Points) Derive the dual norm of the l_{∞}-norm, $\|u\|_{\infty}=\max _{i=1, \ldots, n}\left|u_{i}\right|$.

Hint:

- first prove a lower bound for $\|v\|^{*}$ by plugging in a particular u, then prove an upper bound on $\|v\|^{*}$ and show that upper and lower bound agree,
- for b) you may use the Cauchy-Schwarz inequality

$$
|\langle u, v\rangle| \leq\|u\|_{2}\|v\|_{2},
$$

or in components

$$
\left|\sum_{i=1}^{n} u_{i} v_{i}\right| \leq \sqrt{\sum_{i=1}^{n} u_{i}^{2}} \sqrt{\sum_{i=1}^{n} v_{i}^{2}}
$$

Exercise 2-Reminder of Linear Algebra and Analysis

a. (3 Points) Proof the assertion from the lecture that every real, symmetric matrix A has the decomposition

$$
A=Q \Lambda Q^{T}
$$

where Q is an orthogonal matrix and Λ is a diagonal matrix having the eigenvalues on the diagonal.
b. (3 Points) The distance of a point x to a set C is defined as

$$
d(x, C)=\inf \{\|x-y\| \mid y \in C\} .
$$

Let C be closed. Prove that the distance $d(x, C)$ is realized by an element of C that means $\exists z \in C$ such that $d(x, C)=d(x, z)$.

