Convex Optimization and Modeling

Convex functions

Third lecture, 28.04.2010
Jun.-Prof. Matthias Hein

Convex Functions:

- basic definitions, properties and some examples
- differentiability and subdifferential
- operations that preserve convexity
- conjugate function
- quasi-convex functions

Convex Functions:

Definition 1. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if $\operatorname{dom} f$ is a convex set and if for all $x, y \in \operatorname{dom} f$, and $\lambda \in \mathbb{R}$ with $0 \leq \lambda \leq 1$, we have

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

A function is strictly convex if the inequality is strict if $x \neq y$.

Further definitions:

- A function is concave if and only if $-f$ is convex,
- A function is strictly concave if and only if $-f$ is strictly convex.
- An affine function is convex and concave.

Extended value formalism: A convex function f with $\operatorname{domain} \operatorname{dom} f$ can be extended to \mathbb{R}^{n} via

$$
f(x)=\left\{\begin{array}{cc}
f(x) & x \in \operatorname{dom} f \\
\infty & x \notin \operatorname{dom} f
\end{array}\right.
$$

In the extended value formalism one defines:

$$
\infty+x=\infty, \quad \infty+\infty=\infty .
$$

Definition 2. The indicator function I_{C} of a convex set C is defined as

$$
I_{C}(x)=\left\{\begin{array}{cc}
0 & x \in C \\
\infty & x \notin C .
\end{array}\right.
$$

Proposition 1. Let f be differentiable and $\operatorname{dom} f \subseteq \mathbb{R}^{n}$ an open set. Then f is convex if and only if $\operatorname{dom} f$ is convex and

$$
f(y) \geq f(x)+\left\langle\left.\nabla f\right|_{x}, y-x\right\rangle, \quad \forall y, x \in \operatorname{dom} f .
$$

Proposition 2. Let f be differentiable and $\operatorname{dom} f \subseteq \mathbb{R}^{n}$ an open set. Then f is convex if and only if $\operatorname{dom} f$ is convex and

$$
f(y) \geq f(x)+\left\langle\left.\nabla f\right|_{x}, y-x\right\rangle, \quad \forall y, x \in \operatorname{dom} f .
$$

Proof:

Suppose that f is convex and differentiable, then

$$
\begin{aligned}
& f(x+\lambda(y-x)) \leq \lambda f(y)+(1-\lambda) f(x)=\lambda(f(y)-f(x))+f(x) \\
& \Longrightarrow \quad \frac{f(x+\lambda(y-x))-f(x)}{\lambda} \leq f(y)-f(x), \quad \forall 0 \leq \lambda \leq 1,
\end{aligned}
$$

where we have used that since f is convex, $z=x+\lambda(y-x) \in \operatorname{dom} f$. Taking the limit $\lambda \rightarrow 0$ we obtain

$$
f(y) \geq f(x)+\left\langle\left.\nabla f\right|_{x}, y-x\right\rangle
$$

where we use that for $g(\lambda)=f(x+\lambda(y-x))$ we have $\left.\frac{d g}{d \lambda}\right|_{\lambda=0}=\left\langle\left.\nabla f\right|_{x}, y-x\right\rangle$.

Proof (continued): In the other direction, let us consider $z=\lambda x+(1-\lambda) y$ which lies in the domain of f by assumption. Then,

$$
f(x) \geq f(z)+\left\langle\left.\nabla f\right|_{z},(z-x)\right\rangle, \quad \text { and } \quad f(y) \geq f(z)+\left\langle\left.\nabla f\right|_{z},(z-y)\right\rangle .
$$

Multiplying the first equation with λ and with $1-\lambda$ the second one and adding both yields,

$$
\begin{aligned}
\lambda f(x)+(1-\lambda) f(y) & \geq f(z)+\left\langle\left.\nabla f\right|_{z}, z-\lambda x-(1-\lambda) y\right\rangle \\
& =f(z)=f(\lambda x+(1-\lambda) y)
\end{aligned}
$$

Second-order condition:

Proposition 3. Let f be a twice continuously, differentiable function with open domain $\operatorname{dom} f$. Then f is convex if and only if $\operatorname{dom} f$ is a convex set and the Hessian of f is positive semi-definite.
Proof: Suppose that f is convex and its domain $\operatorname{dom} f$ is convex and open. From the first-order condition,

$$
f(y) \geq f(x)+\left\langle\left.\nabla f\right|_{x}, y-x\right\rangle
$$

Using Taylor's theorem there exists θ with $0 \leq \theta \leq 1$ such that,

$$
f(y)=f(x)+\left\langle\left.\nabla f\right|_{x}, y-x\right\rangle+\frac{1}{2}\langle y-x, H f(x+\theta(y-x))(y-x)\rangle .
$$

Combining both results we have: $\frac{1}{2}\langle y-x, H f(x+\theta(y-x))(y-x)\rangle \geq 0$. Now, x, y are arbitrary $\Longrightarrow H f$ is positive semi-definite on $\operatorname{dom} f$.

Proof (continued): Conversely: if $H f \succeq 0$, then by Taylor's theorem:

$$
\frac{1}{2}\langle y-x, H f(x+\theta(y-x))(y-x)\rangle \geq 0
$$

for all $y, x \in \operatorname{dom} f$ and thus

$$
f(y) \geq f(x)+\left\langle\left.\nabla f\right|_{x}, y-x\right\rangle, \quad \forall x, y \in \operatorname{dom} f
$$

which by the first order condition implies that f is convex.

Remarks:

- A quadratic function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $\operatorname{dom} f=\mathbb{R}^{n}$, defined as

$$
f(x)=c+\langle w, x\rangle+\frac{1}{2}\langle x, Q x\rangle,
$$

is convex if and only if $Q \succeq 0$, since $H f=Q$ for all x.

- If $H f \succ 0, \forall x \in \operatorname{dom} f$, then f is strictly convex. However, the converse does not hold (example $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{4}$).

Examples

Examples of convex functions on \mathbb{R}

- exponential: $e^{\alpha x}$ is convex on \mathbb{R} for any $\alpha \in \mathbb{R}$,

$$
f^{\prime \prime}(x)=\alpha^{2} e^{\alpha x}>0, \quad \forall x \in \mathbb{R}
$$

- powers: x^{α} is convex on \mathbb{R}_{++}for $\alpha \geq 1$ and $\alpha \leq 0$ and concave otherwise,

$$
f^{\prime \prime}(x)=(\alpha-1) \alpha x^{\alpha-2} \geq 0, \quad \forall x>0
$$

- powers of absolute value: $|x|^{p}$ for $p \geq 1$ is convex on \mathbb{R},

$$
\Rightarrow \operatorname{sum} \text { of } f_{1}(x)=\left\{\begin{array}{ll}
(-x)^{p} & \text { for } x \leq 0 \\
0 & x>0
\end{array} \text { and } f_{2}(x)= \begin{cases}0 & \text { for } x \leq 0 \\
x^{p} & x>0\end{cases}\right.
$$

- logarithm: $f(x)=\log x$ is concave on \mathbb{R}_{++}since $f^{\prime \prime}(x)=-x^{-2}<0$ for $x>0$,

Functions on convex subsets of \mathbb{R}^{n}

- norm: every norm on \mathbb{R}^{n} is convex (triangle-inequality+homogenity),

$$
\|\lambda x+(1-\lambda) y\| \leq\|\lambda x\|+\|(1-\lambda) y\| \leq \lambda\|x\|+(1-\lambda)\|y\|,
$$

- max: $f(x)=\max _{i=1, \ldots, n} x_{i}$ is convex on \mathbb{R}^{n},
- log-sum-exp: $f(x)=\log \left(\sum_{i=1}^{n} e^{x_{i}}\right)$ is convex on \mathbb{R}^{n}, (differentiable approximation of the max function)
- geometric mean: $f(x)=\left(\prod_{i=1}^{n} x_{i}\right)^{\frac{1}{n}}$ is concave,
- \log-determinant: $f(X)=\log \operatorname{det} X$ is concave on $\operatorname{dom} f=S_{++}^{n}$,

Proof that the geometric mean is concave: The Hessian of the geometric mean,

$$
\frac{\partial^{2} f}{\partial x_{k} \partial x_{j}}=\left(\prod_{i=1}^{n} x_{i}\right)^{\frac{1}{n}}\left[\frac{1}{n^{2}} \frac{1}{x_{j} x_{k}}-\frac{1}{n} \frac{1}{x_{j}^{2}} \delta_{j k}\right] .
$$

Now, we have a look a the quadratic form

$$
\sum_{j, k=1}^{n} v_{j} v_{k} \frac{\partial^{2} f}{\partial x_{k} \partial x_{j}}=\frac{1}{n^{2}}\left(\prod_{i=1}^{n} x_{i}\right)^{\frac{1}{n}}\left[\sum_{j=1}^{n} \frac{v_{j}}{x_{j}} \sum_{k=1}^{n} \frac{v_{k}}{x_{k}}-n \sum_{j=1}^{n} \frac{v_{j}^{2}}{x_{j}^{2}}\right] \leq 0
$$

where we used Cauchy-Schwarz inequality to the vector $a_{i}=\left(\frac{v_{i}}{x_{i}}\right)$ and $b=\mathbf{1}$,

$$
\left(\sum_{j=1}^{n} \frac{v_{j}}{x_{j}}\right)^{2}=\left(\sum_{j=1}^{n} \frac{v_{j}}{x_{j}} 1\right)^{2}=\langle a, b\rangle^{2} \leq\|a\|^{2}\|b\|^{2}=\sum_{j=1}^{n} \frac{v_{j}^{2}}{x_{j}^{2}} \sum_{j=1}^{n} 1^{2}=n \sum_{j=1}^{n} \frac{v_{j}^{2}}{x_{j}^{2}} .
$$

Examples IV

Proof that the log-determinant is concave:
Consider the line $X+t V$ in S_{++}^{n}, that means

$$
X+t V \succ 0,
$$

for t small where $V \in S^{n}$. Then

$$
\begin{aligned}
g(t) & =f(X+t V)=\log \operatorname{det}(X+t V)=\log \operatorname{det}\left(X^{\frac{1}{2}}\left(\mathbb{1}+t X^{-\frac{1}{2}} V X^{-\frac{1}{2}}\right) X^{\frac{1}{2}}\right) \\
& =\log \operatorname{det} X+\log \operatorname{det}\left(\mathbb{1}+t X^{-\frac{1}{2}} V X^{-\frac{1}{2}}\right)=\log \operatorname{det} X+\sum_{i=1}^{n} \log \left(1+t \lambda_{i}\right),
\end{aligned}
$$

where λ_{i} are the eigenvalues of the symmetric matrix $X^{-\frac{1}{2}} V X^{-\frac{1}{2}}$. Thus,

$$
g^{\prime}(t)=\sum_{i=1}^{n} \frac{\lambda_{i}}{1+t \lambda_{i}}, \quad g^{\prime \prime}(t)=-\sum_{i=1}^{n} \frac{\lambda_{i}^{2}}{\left(1+t \lambda_{i}\right)^{2}} \quad \Rightarrow \quad g^{\prime \prime}(0) \leq 0 .
$$

Lemma 1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be convex. Then for every $x, y, z \in \operatorname{int} \operatorname{dom} f$ with $x<y<z$ we have

$$
\frac{f(y)-f(x)}{y-x} \leq \frac{f(z)-f(x)}{z-x} \leq \frac{f(z)-f(y)}{z-y}
$$

Proof. We express y as a convex combination of x and z,

$$
y=\frac{z-y}{z-x} x+\frac{y-x}{z-x} z,
$$

Then

$$
f(y) \leq \frac{z-y}{z-x} f(x)+\frac{y-x}{z-x} f(z) .
$$

Thus $f(y)-f(x) \leq \frac{y-x}{z-x}(f(z)-f(x))$ which yields $\frac{f(y)-f(x)}{y-x} \leq \frac{f(z)-f(x)}{z-x}$.

The lemma shows that $\frac{f(y)-f(x)}{y-x}$ is monotonically increasing for fixed y or x.

Proposition 4. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function, then f is continuous in relint C.

Proof:

- $x_{0} \in \operatorname{relint} C$. Wlog let x_{0} be the origin,
- $e_{i}=$ corners of the $\|\cdot\|_{\infty}$-cube (of suff. small radius r)
- every vector x in the the cube: $x=\sum_{i=1}^{m} \lambda_{i} e_{i}$ with $\sum_{i=1}^{m} \lambda_{i}=1$,

$$
f(x)=f\left(\sum_{i=1}^{m} \lambda_{i} e_{i}\right) \leq \sum_{i=1}^{m} \lambda_{i} f\left(e_{i}\right) \leq M, \quad \text { where } M=\max _{i=1, \ldots, 2^{m}} f\left(e_{i}\right) .
$$

- Let $g(t)=f\left(x_{0}+t \frac{x-x_{0}}{\left\|x-x_{0}\right\|}\right) \Rightarrow g(t) \leq M$ for $|t| \leq r$ and $g(t)$ is convex.

$$
-\frac{M-g(0)}{r} \leq \frac{g(-r)-g(0)}{0-r} \leq \frac{g\left(\left\|x-x_{0}\right\|\right)-g(0)}{\left\|x-x_{0}\right\|-0} \leq \frac{g(r)-g(0)}{r-0} \leq \frac{M-g(0)}{r}
$$

Thus we get $\left|f(x)-f\left(x_{0}\right)\right| \leq \frac{M-f\left(x_{0}\right)}{r}\left\|x-x_{0}\right\|$.

The scalar case: The left- and right derivative at x are defined as

$$
f_{-}(x)=\lim _{h \rightarrow 0} \frac{f(x)-f(x-h)}{h}, \quad f_{+}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

Theorem 1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a convex function. Then,

- $f_{-}(x) \leq f_{+}(x)$ for all $x \in \operatorname{int} \operatorname{dom} f$,
- $f_{-}(x)$ and $f_{+}(x)$ are finite in the interior of $\operatorname{dom} f$,
- if $x, z \in \operatorname{dom} f$ and $x<z$ then $f_{+}(x) \leq f_{-}(z)$,
- the functions f_{-}and f_{+}are monotonically increasing,
- $f_{-}\left(f_{+}\right)$is left (right)-continuous in the interior of $\operatorname{dom} f$,

Corollary 1. The directional derivatives $\lim _{h \rightarrow 0} \frac{f(x+h v)-f(x)}{h}$ of a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ exist for all $x \in$ relint $\operatorname{dom} f$.

Epigraph

Definition 3. The graph of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined as,

$$
\{(x, f(x)) \mid x \in \operatorname{dom} f\} \subseteq \mathbb{R}^{n+1}
$$

The epigraph of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined as

$$
\text { epi } f=\{(x, t) \mid x \in \operatorname{dom} f, \quad t \geq f(x)\} \subseteq \mathbb{R}^{n+1}
$$

Proposition 5. A function f is convex if and only if the epigraph of f is a convex set.

Proof. " \Rightarrow ", Suppose that f is convex and let (x, t) and (y, s) be points in the epigraph, that is $t \geq f(x)$ and $s \geq f(y)$. Then

$$
\lambda t+(1-\lambda) s \geq \lambda f(x)+(1-\lambda) f(y) \geq f(\lambda x+(1-\lambda) y) .
$$

and together with the domain of f being convex the epigraph is a convex set.

Subdifferential

Subgradient and Subdifferential: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex.
Definition 4. A vector v is a subgradient of f at x if

$$
f(z) \geq f(x)+\langle v, z-x\rangle, \quad \forall z \in \mathbb{R}^{n}
$$

The subdifferential $\partial f(x)$ of f at x is the set of all subgradients of f at x.

Subdifferential as supporting hyperplane of the epigraph

Examples

- $f(x)=|x|, \quad \partial f(x)= \begin{cases}-1 & \text { if } x<0, \\ {[-1,1]} & \text { if } x=0, \\ 1 & \text { if } x>0 .\end{cases}$
- $f(x)=\|x\|_{2}, \quad \partial f(x)=\left\{\begin{array}{ll}\frac{x}{\|x\|}, & \text { if } x \neq 0, \\ \left\{u \in \mathbb{R}^{n} \mid\|u\| \leq 1\right\}, & \text { if } x=0 .\end{array}\right.$.

This follows by Cauchy-Schwarz,

$$
\|x\|_{2} \geq\langle u, x\rangle=0+\langle u, x-0\rangle,
$$

for $\|u\|_{2} \leq 1$.

Subdifferential IV

Properties of the subdifferential

- The subdifferential $\partial f(x)$ is a closed convex set,
- If f is differentiable, $\partial f(x)=\{\nabla f(x)\}$,
- $f(x)=\sum_{i=1}^{k} \alpha_{i} f_{i}(x)$ with $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
\Longrightarrow \partial f(x)=\alpha_{1} \partial f_{1}(x)+\ldots+\alpha_{k} \partial f_{k}(x) .
$$

- chain rule $f(x)=g(A x+b)$,

$$
\partial f(x)=A^{T} \partial g(A x+b)
$$

- The subdifferential ∂f is non-empty in the relative interior of $\operatorname{dom} f$.

Sublevel sets

Definition 5. The α-sublevel set of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined as

$$
L_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\} .
$$

Proposition 6. The sublevel set of a convex function is convex.
Proof. Suppose $x, y \in L_{\alpha}$ that is $f(x) \leq \alpha$ and $f(y) \leq \alpha$, then

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) \leq \alpha,
$$

and thus $\lambda x+(1-\lambda) y \in L_{\alpha}$ for each $0 \leq \lambda \leq 1$.

The converse is in general false \Longrightarrow sublevel sets do not characterize convex functions.

Jensen's inequality and extensions
The inequality for a convex function can be extended:

$$
f\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right) \leq \sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right) \quad \text { (Jensen's inequality) }
$$

where $\sum_{i=1}^{n} \lambda_{i}=1$ and $x_{1}, \ldots, x_{n} \in \operatorname{dom} f$.
Extension to probability measures on a convex domain S :

$$
f\left(\int_{S} x p(x) d x\right) \leq \int_{S} p(x) f(x) d x \quad \Longleftrightarrow \quad f(\mathbb{E}[X]) \leq \mathbb{E} f(X)
$$

Application of Jensen's inequality with some special convex functions yields interesting other inequalities, e.g. Hölder's inequality

$$
\sum_{i=1}^{n} x_{i} y_{i} \leq\|x\|_{p}\|y\|_{q}, \quad \text { where } p>1 \text { and } \frac{1}{p}+\frac{1}{q}=1
$$

Operations that conserve convexity

- Weighted sum: Let $f_{i}, i=1, \ldots, n$ be convex, then $\sum_{i=1}^{n} w_{i} f_{i}(x)$ is convex again if $w_{i} \geq 0, i=1, \ldots, n$. This can be extended to an integral formulation $g(x)=\int_{S} w(y) f(y, x)$.
- Composition with an affine mapping: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^{n}$. Define

$$
g(x)=f(A x+b), \text { where } \operatorname{dom} g=\{x \mid A x+b \in \operatorname{dom} f\} .
$$

Then if f is convex, also g is convex.

- Pointwise Maximum and Supremum: If f_{1}, f_{2} are convex, then

$$
f(x)=\max \left\{f_{1}(x), f_{2}(x)\right\}
$$

is convex. Extension to pointwise supremum: Let $f(x, y)$ be convex for each $y \in S$, then $g(x)=\sup _{y \in S} f(x, y)$ is convex.

- Composition: Let $h: \mathbb{R}^{k} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ and $f=h \circ g: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
f(x)=h(g(x)), \quad \operatorname{dom} f=\{x \in \operatorname{dom} g \mid g(x) \in \operatorname{dom} h\} .
$$

Suppose: h and g are twice continuously differentiable and $n=1$,

$$
f^{\prime \prime}(x)=h^{\prime \prime}(g(x)) g^{\prime}(x)^{2}+h^{\prime}(g(x)) g^{\prime \prime}(x)
$$

Thus for $f^{\prime \prime}(x) \geq 0$ that means f is convex if
h is convex and nondecreasing g is convex,
h is convex and nonincreasing g is concave.

- Minimization: If f is convex in (x, y) and C is a convex, nonempty set,

$$
g(x)=\inf _{y \in C} f(x, y), \text { is convex if } g(x)>-\infty \text { for some } x .
$$

Usage of these rules: Pointwise maximum: the sum of the r largest components. Let $x \in \mathbb{R}^{n}$ and $x_{[1]} \geq x_{[2]} \geq \ldots \geq x_{[n]}$. Then

$$
f(x)=\sum_{i=1}^{r} x_{[i]},
$$

is convex since f is the maximum of all linear combinations of r components.

Usage of these rules: Pointwise maximum: the sum of the r largest components. Let $x \in \mathbb{R}^{n}$ and $x_{[1]} \geq x_{[2]} \geq \ldots \geq x_{[n]}$. Then

$$
f(x)=\sum_{i=1}^{r} x_{[i]},
$$

is convex since f is the maximum of all linear combinations of r components.

Maximal eigenvalue of a symmetric matrix: $f(X)=\lambda_{\max }(X)$, since

$$
f(X)=\sup \{\langle y, X y\rangle \mid\|y\|=1\} .
$$

Usage of these rules: Pointwise maximum: the sum of the r largest components. Let $x \in \mathbb{R}^{n}$ and $x_{[1]} \geq x_{[2]} \geq \ldots \geq x_{[n]}$. Then

$$
f(x)=\sum_{i=1}^{r} x_{[i]}
$$

is convex since f is the maximum of all linear combinations of r components.

Maximal eigenvalue of a symmetric matrix: $f(X)=\lambda_{\max }(X)$, since

$$
f(X)=\sup \{\langle y, X y\rangle \mid\|y\|=1\}
$$

Proposition 9. For every $x \in \operatorname{int} \operatorname{dom} f$ we have

$$
f(x)=\sup \{g(x) \mid g \text { affine }, g(z) \leq f(z) \text { for all } z\}
$$

In the interior of $\operatorname{dom} f, f$ is the supremum of all affine functions which globally underestimate f.

The conjugate function

Definition 6. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. The function $f^{*}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined as

$$
f^{*}(y)=\sup _{x \in \operatorname{dom} f}(\langle y, x\rangle-f(x)),
$$

is the conjugate of the function f. The domain of f^{*} consists of $y \in \mathbb{R}^{n}$ such $f^{*}(y)<\infty$.

Remarks:

- f^{*} is convex since it is the pointwise supremum of a set of affine functions. This holds independently of the fact that f is convex or not,
- the conjugate function is also known as the Legendre-Fenchel transform,
- the conjugate of the conjugate function is denoted by $f^{* *}$.

Why the name "conjugate"?

Let $f \in C^{2}\left(\mathbb{R}^{n}\right)$ with a positive-definite Hessian and convex, then

$$
g(x)=\langle y, x\rangle-f(x), \quad \nabla g=y-\nabla f, \quad H g=-H f,
$$

and we know by convexity of f that g has a unique maximum x^{*} at which holds: $y=\nabla f$. Moreover,

$$
f^{*}(y)=g\left(x^{*}\right)=\left\langle y, x^{*}\right\rangle-f\left(x^{*}\right) .
$$

and thus $\left.\nabla f^{*}\right|_{y}=x^{*} \Longrightarrow$ conjugation interchanges derivative and position. If f has a slope of y at x, then f^{*} has slope of x at y.

Theorem 2. If epi f is closed and convex, then $f=f^{* *}$.
In particular: if f is convex and $\operatorname{dom} f=\mathbb{R}^{n}$ or if f is convex and continuous then $f^{* *}=f$.

Examples:

- The conjugate of an affine function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $f(x)=\langle w, x\rangle+b$ is given as

$$
f^{*}(y)=\sup _{x \in \mathbb{R}^{n}}\langle y, x\rangle-\langle w, x\rangle-b=\sup _{x \in \mathbb{R}^{n}}\langle y-w, x\rangle-b=\left\{\begin{array}{ll}
-b & \text { if } y=w, \\
\infty & \text { else. }
\end{array} .\right.
$$

- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $f(x)=\frac{1}{2}\langle x, Q x\rangle$ where $Q \in S_{++}^{n}$, then

$$
f^{*}(y)=\frac{1}{2}\left\langle y, Q^{-1} y\right\rangle .
$$

Note, that $y=\nabla f=Q x^{*}$, so that $x^{*}=Q^{-1} y$, then
$f^{*}(y)=\left\langle y, Q^{-1} y\right\rangle-\frac{1}{2}\left\langle y, Q^{-1} y\right\rangle=\frac{1}{2}\left\langle y, Q^{-1} y\right\rangle$.

Figure 1: A function f together with the value of the conjugate function f^{*} at y.

Quasiconvex functions

Definition 7. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called quasiconvex if its domain and all sublevel sets,

$$
L_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\},
$$

for $\alpha \in \mathbb{R}$ are convex. A function is quasiconcave if $-f$ is quasiconvex. A function that is both quasiconvex and quasiconcave is called quasilinear.

Any convex function is quasiconvex but the converse does not hold.

Properties of quasiconvex functions:

- Jensen's inequality for quasiconvex functions

$$
f(\lambda x+(1-\lambda) y) \leq \max \{f(x), f(y)\} .
$$

- A continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ is quasiconvex if and only if at least one of the following conditions holds

1. f is nondecreasing or f is nonincreasing,
2. $\exists c \in \operatorname{dom} f$ s.th. for $t \leq c, f$ is nonincreas. and for $t \geq c, f$ is nondecreas.
3. First-order condition: Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable. Then f is quasiconvex if and only if $\operatorname{dom} f$ is convex and for all $x, y \in \operatorname{dom} f$

$$
f(y) \leq f(x) \Rightarrow\left\langle\left.\nabla f\right|_{x}, y-x\right\rangle \leq 0 .
$$

4. for a quasicvx function $\nabla f=0$ at x^{*} does not imply that x^{*} is a clohol minimum of f

Figure 3.9 A quasiconvex function on \mathbf{R}. For each α, the α-sublevel set S_{α} is convex, i.e., an interval. The sublevel set S_{α} is the interval $[a, b]$. The sublevel set S_{β} is the interval $(-\infty, c]$.

Representation via family of convex functions:

Seek a family of convex functions $\phi_{t}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, indexed by $t \in \mathbb{R}$, with

$$
f(x) \leq t \quad \Longrightarrow \quad \phi_{t}(x) \leq 0,
$$

the t-sublevel set of the quasiconvex function f is the 0 -sublevel set of the convex function ϕ_{t}. Thus ϕ_{t} must satisfy

$$
\phi_{t}(x) \leq 0 \quad \Longrightarrow \quad \phi_{s}(x) \leq 0, \quad \text { for } s \geq t,
$$

e.g. this holds if $\phi_{t}(x)$ is a non-increasing function of t for all x. Such representation always exists, with

$$
\phi_{t}(x)=\left\{\begin{array}{ll}
0 & \text { if } f(x) \leq t \\
\infty & \text { otherwise }
\end{array} .\right.
$$

Optimization: need for a family with nice properties e.g. differentiability.

