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Program of today

Convex Functions:

• basic definitions, properties and some examples

• differentiability and subdifferential

• operations that preserve convexity

• conjugate function

• quasi-convex functions
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Convex Functions

Convex Functions:

Definition 1. A function f : R
n → R is convex if dom f is a convex set

and if for all x, y ∈ dom f , and λ ∈ R with 0 ≤ λ ≤ 1, we have

f
(

λx + (1 − λ)y
)

≤ λ f(x) + (1 − λ) f(y).

A function is strictly convex if the inequality is strict if x 6= y.

Further definitions:

• A function is concave if and only if −f is convex,

• A function is strictly concave if and only if −f is strictly convex.

• An affine function is convex and concave.
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Convex Functions II

Extended value formalism: A convex function f with domain dom f can

be extended to R
n via

f(x) =

{

f(x) x ∈ dom f ,

∞ x 6∈ dom f .

In the extended value formalism one defines:

∞ + x = ∞, ∞ + ∞ = ∞.

Definition 2. The indicator function IC of a convex set C is defined as

IC(x) =

{

0 x ∈ C

∞ x 6∈ C.
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First-Order condition - Illustration

Proposition 1. Let f be differentiable and dom f ⊆ R
n an open set. Then f

is convex if and only if dom f is convex and

f(y) ≥ f(x) + 〈∇f |x, y − x〉 , ∀y, x ∈ dom f.
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First-Order condition

Proposition 2. Let f be differentiable and dom f ⊆ R
n an open set. Then f

is convex if and only if dom f is convex and

f(y) ≥ f(x) + 〈∇f |x, y − x〉 , ∀y, x ∈ dom f.

Proof:

Suppose that f is convex and differentiable, then

f
(

x + λ (y − x)
)

≤ λ f(y) + (1 − λ) f(x) = λ(f(y) − f(x)) + f(x)

=⇒
f
(

x + λ (y − x)
)

− f(x)

λ
≤ f(y) − f(x), ∀ 0 ≤ λ ≤ 1,

where we have used that since f is convex, z = x + λ(y − x) ∈ dom f . Taking

the limit λ → 0 we obtain

f(y) ≥ f(x) + 〈∇f |x, y − x〉 ,

where we use that for g(λ) = f(x+λ(y−x)) we have dg
dλ

∣

∣

∣

λ=0
= 〈∇f |x, y − x〉 .
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First-Order condition II

Proof (continued): In the other direction, let us consider

z = λx + (1 − λ)y which lies in the domain of f by assumption. Then,

f(x) ≥ f(z) + 〈∇f |z , (z − x)〉 , and f(y) ≥ f(z) + 〈∇f |z, (z − y)〉.

Multiplying the first equation with λ and with 1 − λ the second one and

adding both yields,

λ f(x) + (1 − λ) f(y) ≥ f(z) + 〈∇f |z, z − λx − (1 − λ)y〉

= f(z) = f(λx + (1 − λ)y)
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Second-order condition

Second-order condition:

Proposition 3. Let f be a twice continuously, differentiable function with

open domain dom f . Then f is convex if and only if dom f is a convex set

and the Hessian of f is positive semi-definite.

Proof: Suppose that f is convex and its domain dom f is convex and open.

From the first-order condition,

f(y) ≥ f(x) + 〈∇f |x, y − x〉 .

Using Taylor’s theorem there exists θ with 0 ≤ θ ≤ 1 such that,

f(y) = f(x) + 〈∇f |x, y − x〉 +
1

2
〈y − x,Hf(x + θ(y − x)) (y − x)〉 .

Combining both results we have: 1
2 〈y − x,Hf(x + θ(y − x)) (y − x)〉 ≥ 0.

Now, x, y are arbitrary =⇒ Hf is positive semi-definite on dom f .
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Second-order condition II

Proof (continued): Conversely: if Hf � 0, then by Taylor’s theorem:

1

2
〈y − x,Hf(x + θ(y − x))(y − x)〉 ≥ 0,

for all y, x ∈ dom f and thus

f(y) ≥ f(x) + 〈∇f |x, y − x〉 , ∀x, y ∈ dom f

which by the first order condition implies that f is convex.

Remarks:

• A quadratic function f : R
n → R with dom f = R

n, defined as

f(x) = c + 〈w, x〉 +
1

2
〈x,Qx〉 ,

is convex if and only if Q � 0, since Hf = Q for all x.

• If Hf ≻ 0, ∀x ∈ dom f , then f is strictly convex. However, the converse

does not hold (example f : R → R, f(x) = x4).
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Examples

Examples of convex functions on R

• exponential: eαx is convex on R for any α ∈ R,

f ′′(x) = α2eαx > 0, ∀x ∈ R.

• powers: xα is convex on R++ for α ≥ 1 and α ≤ 0 and concave otherwise,

f ′′(x) = (α − 1)α xα−2 ≥ 0, ∀x > 0.

• powers of absolute value: |x|p for p ≥ 1 is convex on R,

⇒ sum of f1(x) =

{

(−x)p for x ≤ 0

0 x > 0
and f2(x) =

{

0 for x ≤ 0

xp x > 0

• logarithm: f(x) = log x is concave on R++ since f ′′(x) = −x−2 < 0 for

x > 0,

negative entropy: log on R with extension to = 0 with = 0 is
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Examples II

Functions on convex subsets of R
n

• norm: every norm on R
n is convex (triangle-inequality+homogenity),

‖λx + (1 − λ)y‖ ≤ ‖λx‖ + ‖(1 − λ)y‖ ≤ λ ‖x‖ + (1 − λ) ‖y‖ ,

• max: f(x) = maxi=1,...,n xi is convex on R
n,

• log-sum-exp: f(x) = log(
∑n

i=1 exi) is convex on R
n, (differentiable

approximation of the max function)

• geometric mean: f(x) =
(

∏n
i=1 xi

)
1

n

is concave,

• log-determinant: f(X) = log det X is concave on dom f = Sn
++,
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Examples III

Proof that the geometric mean is concave: The Hessian of the

geometric mean,

∂2f

∂xk∂xj

=
(

n
∏

i=1

xi

)
1

n

[ 1

n2

1

xjxk

−
1

n

1

x2
j

δjk

]

.

Now, we have a look a the quadratic form

n
∑

j,k=1

vjvk

∂2f

∂xk∂xj

=
1

n2

(

n
∏

i=1

xi

)
1

n

[

n
∑

j=1

vj

xj

n
∑

k=1

vk

xk

− n

n
∑

j=1

v2
j

x2
j

]

≤ 0,

where we used Cauchy-Schwarz inequality to the vector ai = ( vi

xi
) and b = 1,

(

n
∑

j=1

vj

xj

)2
=

(

n
∑

j=1

vj

xj

1
)2

= 〈a, b〉2 ≤ ‖a‖2 ‖b‖2 =
n

∑

j=1

v2
j

x2
j

n
∑

j=1

12 = n

n
∑

j=1

v2
j

x2
j

.
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Examples IV

Proof that the log-determinant is concave:

Consider the line X + tV in Sn
++, that means

X + tV ≻ 0,

for t small where V ∈ Sn. Then

g(t) = f(X + tV ) = log det(X + tV ) = log det(X
1

2 (1+ tX− 1

2 V X− 1

2 )X
1

2 )

= log det X + log det(1+ tX− 1

2 V X− 1

2 ) = log detX +
n

∑

i=1

log(1 + tλi),

where λi are the eigenvalues of the symmetric matrix X− 1

2 V X− 1

2 . Thus,

g′(t) =

n
∑

i=1

λi

1 + tλi

, g′′(t) = −

n
∑

i=1

λ2
i

(1 + tλi)2
⇒ g′′(0) ≤ 0.
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Continuity and Differentiability

Lemma 1. Let f : R → R be convex. Then for every x, y, z ∈ int dom f with

x < y < z we have

f(y) − f(x)

y − x
≤

f(z) − f(x)

z − x
≤

f(z) − f(y)

z − y
.

Proof. We express y as a convex combination of x and z,

y =
z − y

z − x
x +

y − x

z − x
z,

Then

f(y) ≤
z − y

z − x
f(x) +

y − x

z − x
f(z).

Thus f(y) − f(x) ≤ y−x
z−x

(f(z) − f(x)) which yields f(y)−f(x)
y−x

≤ f(z)−f(x)
z−x

. 2

The lemma shows that f(y)−f(x)
y−x

is monotonically increasing for fixed y or x.
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Continuity and Differentiability II

Proposition 4. Let f : R
n → R be a convex function, then f is

continuous in relint C.

Proof:

• x0 ∈ relint C. Wlog let x0 be the origin,

• ei = corners of the ‖·‖∞-cube (of suff. small radius r)

• every vector x in the the cube: x =
∑m

i=1 λiei with
∑m

i=1 λi = 1,

f(x) = f
(

m
∑

i=1

λiei

)

≤
m

∑

i=1

λif(ei) ≤ M, where M = max
i=1,...,2m

f(ei).

• Let g(t) = f
(

x0 + t x−x0

‖x−x0‖

)

⇒ g(t) ≤ M for |t| ≤ r and g(t) is convex.

−
M − g(0)

r
≤

g(−r) − g(0)

0 − r
≤

g(‖x − x0‖) − g(0)

‖x − x0‖ − 0
≤

g(r) − g(0)

r − 0
≤

M − g(0)

r
.

Thus we get |f(x) − f(x0)| ≤
M−f(x0)

r
‖x − x0‖.
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Continuity and Differentiability III

The scalar case: The left- and right derivative at x are defined as

f−(x) = lim
h→0

f(x) − f(x − h)

h
, f+(x) = lim

h→0

f(x + h) − f(x)

h
.

Theorem 1. Let f : R → R be a convex function. Then,

• f−(x) ≤ f+(x) for all x ∈ int dom f ,

• f−(x) and f+(x) are finite in the interior of dom f ,

• if x, z ∈ dom f and x < z then f+(x) ≤ f−(z),

• the functions f− and f+ are monotonically increasing,

• f− (f+) is left (right)-continuous in the interior of dom f ,

Corollary 1. The directional derivatives limh→0
f(x+hv)−f(x)

h
of a convex

function f : R
n → R exist for all x ∈ relint dom f .
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Epigraph

Epigraph

Definition 3. The graph of a function f : R
n → R is defined as,

{(x, f(x)) | x ∈ dom f} ⊆ R
n+1.

The epigraph of a function f : R
n → R is defined as

epi f = {(x, t) | x ∈ dom f, t ≥ f(x)} ⊆ R
n+1.

Proposition 5. A function f is convex if and only if the epigraph of f is a

convex set.

Proof. “⇒”, Suppose that f is convex and let (x, t) and (y, s) be points in

the epigraph, that is t ≥ f(x) and s ≥ f(y). Then

λt + (1 − λ)s ≥ λf(x) + (1 − λ)f(y) ≥ f(λx + (1 − λ)y).

and together with the domain of f being convex the epigraph is a convex set.

2 16



Subdifferential

Subgradient and Subdifferential: Let f : R
n → R be convex.

Definition 4. A vector v is a subgradient of f at x if

f(z) ≥ f(x) + 〈v, z − x〉 , ∀ z ∈ R
n.

The subdifferential ∂f(x) of f at x is the set of all subgradients of f at x.
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Subdifferential II

Subdifferential as supporting hyperplane of the epigraph
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Subdifferential III

Examples

• f(x) = |x|, ∂f(x) =



















−1 if x < 0,

[−1, 1] if x = 0,

1 if x > 0.

.

• f(x) = ‖x‖2, ∂f(x) =







x
‖x‖ , if x 6= 0,

{u ∈ R
n | ‖u‖ ≤ 1}, if x = 0.

.

This follows by Cauchy-Schwarz,

‖x‖2 ≥ 〈u, x〉 = 0 + 〈u, x − 0〉 ,

for ‖u‖2 ≤ 1.
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Subdifferential IV

Properties of the subdifferential

• The subdifferential ∂f(x) is a closed convex set,

• If f is differentiable, ∂f(x) = {∇f(x)},

• f(x) =
∑k

i=1 αifi(x) with f : R
n → R,

=⇒ ∂f(x) = α1∂f1(x) + . . . + αk∂fk(x).

• chain rule f(x) = g(Ax + b),

∂f(x) = AT ∂g(Ax + b).

• The subdifferential ∂f is non-empty in the relative interior of dom f .
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(Sub)level sets

Sublevel sets

Definition 5. The α-sublevel set of a function f : R
n → R is defined as

Lα = {x ∈ dom f | f(x) ≤ α}.

Proposition 6. The sublevel set of a convex function is convex.

Proof. Suppose x, y ∈ Lα that is f(x) ≤ α and f(y) ≤ α, then

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) ≤ α,

and thus λx + (1 − λ)y ∈ Lα for each 0 ≤ λ ≤ 1. 2

The converse is in general false =⇒ sublevel sets do not characterize convex

functions.
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Jensen’s inequality

Jensen’s inequality and extensions

The inequality for a convex function can be extended:

f
(

n
∑

i=1

λixi

)

≤

n
∑

i=1

λif(xi) (Jensen’s inequality),

where
∑n

i=1 λi = 1 and x1, . . . , xn ∈ dom f .

Extension to probability measures on a convex domain S:

f
(

∫

S

x p(x)dx
)

≤

∫

S

p(x)f(x)dx ⇐⇒ f(E[X]) ≤ Ef(X)

Application of Jensen’s inequality with some special convex functions yields

interesting other inequalities, e.g. Hölder’s inequality

n
∑

i=1

xiyi ≤ ‖x‖p ‖y‖q , where p > 1 and
1

p
+

1

q
= 1.
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Operations that conserve convexity

Operations that conserve convexity

• Weighted sum: Let fi, i = 1, . . . , n be convex, then
∑n

i=1 wifi(x) is

convex again if wi ≥ 0, i = 1, . . . , n. This can be extended to an integral

formulation g(x) =
∫

S
w(y)f(y, x).

• Composition with an affine mapping: f : R
n → R, A ∈ R

n×m and

b ∈ R
n. Define

g(x) = f(Ax + b), where dom g = {x |Ax + b ∈ dom f}.

Then if f is convex, also g is convex.

• Pointwise Maximum and Supremum: If f1, f2 are convex, then

f(x) = max{f1(x), f2(x)},

is convex. Extension to pointwise supremum: Let f(x, y) be convex

for each y ∈ S, then g(x) = supy∈S f(x, y) is convex.
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Operations that conserve convexity II

• Composition: Let h : R
k → R and g : R

n → R
k and f = h ◦ g : R

n → R,

f(x) = h(g(x)), dom f = {x ∈ dom g | g(x) ∈ domh}.

Suppose: h and g are twice continuously differentiable and n = 1,

f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x),

Thus for f ′′(x) ≥ 0 that means f is convex if

h is convex and nondecreasing g is convex,

h is convex and nonincreasing g is concave.

• Minimization: If f is convex in (x, y) and C is a convex, nonempty set,

g(x) = inf
y∈C

f(x, y), is convex if g(x) > −∞ for some x.
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Operations that conserve convexity III

Usage of these rules: Pointwise maximum: the sum of the r largest

components. Let x ∈ R
n and x[1] ≥ x[2] ≥ . . . ≥ x[n]. Then

f(x) =

r
∑

i=1

x[i],

is convex since f is the maximum of all linear combinations of r components.
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Operations that conserve convexity III

Usage of these rules: Pointwise maximum: the sum of the r largest

components. Let x ∈ R
n and x[1] ≥ x[2] ≥ . . . ≥ x[n]. Then

f(x) =

r
∑

i=1

x[i],

is convex since f is the maximum of all linear combinations of r components.

Maximal eigenvalue of a symmetric matrix: f(X) = λmax(X), since

f(X) = sup{〈y,Xy〉 | ‖y‖ = 1}.
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Operations that conserve convexity III

Usage of these rules: Pointwise maximum: the sum of the r largest

components. Let x ∈ R
n and x[1] ≥ x[2] ≥ . . . ≥ x[n]. Then

f(x) =

r
∑

i=1

x[i],

is convex since f is the maximum of all linear combinations of r components.

Maximal eigenvalue of a symmetric matrix: f(X) = λmax(X), since

f(X) = sup{〈y,Xy〉 | ‖y‖ = 1}.

Proposition 9. For every x ∈ int dom f we have

f(x) = sup{g(x) | g affine , g(z) ≤ f(z) for all z}.

In the interior of dom f , f is the supremum of all affine functions which

globally underestimate f .
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The conjugate function

The conjugate function

Definition 6. Let f : R
n → R. The function f∗ : R

n → R defined as

f∗(y) = sup
x∈dom f

(

〈y, x〉 − f(x)
)

,

is the conjugate of the function f . The domain of f∗ consists of y ∈ R
n

such f∗(y) < ∞.

Remarks:

• f∗ is convex since it is the pointwise supremum of a set of affine

functions. This holds independently of the fact that f is convex or not,

• the conjugate function is also known as the Legendre-Fenchel

transform,

• the conjugate of the conjugate function is denoted by f∗∗.
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The conjugate function II

Why the name “conjugate” ?

Let f ∈ C2(Rn) with a positive-definite Hessian and convex, then

g(x) = 〈y, x〉 − f(x), ∇g = y −∇f, Hg = −Hf,

and we know by convexity of f that g has a unique maximum x∗ at which

holds: y = ∇f . Moreover,

f∗(y) = g(x∗) = 〈y, x∗〉 − f(x∗).

and thus ∇f∗|y = x∗ =⇒ conjugation interchanges derivative and position. If

f has a slope of y at x, then f∗ has slope of x at y.

Theorem 2. If epi f is closed and convex, then f = f∗∗.

In particular: if f is convex and dom f = R
n or if f is convex and continuous

then f∗∗ = f .
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The conjugate function III

Examples:

• The conjugate of an affine function f : R
n → R with f(x) = 〈w, x〉 + b is

given as

f∗(y) = sup
x∈Rn

〈y, x〉−〈w, x〉− b = sup
x∈Rn

〈y − w, x〉− b =

{

−b if y = w,

∞ else.
.

• Let f : R
n → R with f(x) = 1

2 〈x,Qx〉 where Q ∈ Sn
++, then

f∗(y) =
1

2

〈

y,Q−1y
〉

.

Note, that y = ∇f = Qx∗, so that x∗ = Q−1y, then

f∗(y) =
〈

y,Q−1y
〉

− 1
2

〈

y,Q−1y
〉

= 1
2

〈

y,Q−1y
〉

.
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Conjugate Function II

Figure 1: A function f together with the value of the conjugate function f∗

at y.
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Quasiconvex functions

Quasiconvex functions

Definition 7. A function f : R
n → R is called quasiconvex if its domain

and all sublevel sets,

Lα = {x ∈ dom f | f(x) ≤ α},

for α ∈ R are convex. A function is quasiconcave if −f is quasiconvex. A

function that is both quasiconvex and quasiconcave is called quasilinear.

Any convex function is quasiconvex but the converse does not hold.

30



Quasiconvex functions II

Properties of quasiconvex functions:

• Jensen’s inequality for quasiconvex functions

f(λx + (1 − λ)y) ≤ max{f(x), f(y)}.

• A continuous function f : R → R is quasiconvex if and only if at least

one of the following conditions holds

1. f is nondecreasing or f is nonincreasing,

2. ∃c ∈ dom f s.th. for t ≤ c, f is nonincreas. and for t ≥ c, f is

nondecreas.

3. First-order condition: Suppose f : R
n → R is differentiable. Then f is

quasiconvex if and only if dom f is convex and for all x, y ∈ dom f

f(y) ≤ f(x) ⇒ 〈∇f |x, y − x〉 ≤ 0.

4. for a quasicvx function ∇f = 0 at x∗ does not imply that x∗ is a

global minimum of f . 31



Quasiconvex functions III
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Quasiconvex functions IV

Representation via family of convex functions:

Seek a family of convex functions φt : R
n → R, indexed by t ∈ R, with

f(x) ≤ t =⇒ φt(x) ≤ 0,

the t-sublevel set of the quasiconvex function f is the 0-sublevel set of the

convex function φt. Thus φt must satisfy

φt(x) ≤ 0 =⇒ φs(x) ≤ 0, for s ≥ t,

e.g. this holds if φt(x) is a non-increasing function of t for all x.

Such representation always exists, with

φt(x) =

{

0 if f(x) ≤ t

∞ otherwise
.

Optimization: need for a family with nice properties e.g. differentiability.

33


	{
ormalsize Program of today}
	{
ormalsize Convex Functions}
	{
ormalsize Convex Functions II}
	{
ormalsize First-Order condition - Illustration}
	{
ormalsize First-Order condition}
	{
ormalsize First-Order condition II}
	{
ormalsize Second-order condition}
	{
ormalsize Second-order condition II}
	{
ormalsize Examples}
	{
ormalsize Examples II}
	{
ormalsize Examples III}
	{
ormalsize Examples IV}
	{
ormalsize Continuity and Differentiability}
	{
ormalsize Continuity and Differentiability II}
	{
ormalsize Continuity and Differentiability III}
	{
ormalsize Epigraph}
	{
ormalsize Subdifferential}
	{
ormalsize Subdifferential II}
	{
ormalsize Subdifferential III}
	{
ormalsize Subdifferential IV}
	{
ormalsize (Sub)level
sets}
	{
ormalsize Jensen's inequality}
	{
ormalsize Operations that conserve convexity}
	{
ormalsize Operations that conserve convexity II}
	{
ormalsize Operations that conserve convexity III}
	{
ormalsize Operations that conserve convexity III}
	{
ormalsize Operations that conserve convexity III}

	{
ormalsize The conjugate function}
	{
ormalsize The conjugate function II}
	{
ormalsize The conjugate function III}
	{
ormalsize Conjugate Function II}
	{
ormalsize Quasiconvex functions}
	{
ormalsize Quasiconvex functions II}
	{
ormalsize Quasiconvex functions III}
	{
ormalsize Quasiconvex functions IV}

