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Program of today

MACHINE LEARNING

Convex Functions:
e basic definitions, properties and some examples
e differentiability and subdifferential
e operations that preserve convexity
e conjugate function

e quasi-convex functions
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Convex Functions:

Definition 1. A function f : R™ — R is convex if dom f is a convex set
and if for all x,y € dom f, and A € R with 0 < X\ <1, we have

frz+1=XNy) < Af(x)+ (1= fy).

A function is strictly convex if the inequality is strict if x - y.

Further definitions:
e A function is concave if and only if — f is convex,
e A function is strictly concave if and only if — f is strictly convex.

e An affine function is convex and concave.
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Extended value formalism: A convex function f with domain dom f can

be extended to R"™ via

f(x) x € dom f,
fa)={
oo x &domf.
In the extended value formalism one defines:
o0+ =00, OO+ 00 =0Q.

Definition 2. The indicator function Io of a convex set C' 1is defined as

0 xzeC

IC(:E):{ o z¢C.
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Proposition 1. Let f be differentiable and dom f C R"™ an open set. Then f

15 convex if and only i+f dom f s convexr and

fly) > f(x) +(Vflz,y —x), Vy,x & dom f.

J(Ww)
\
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Proposition 2. Let f be differentiable and dom f C R"™ an open set. Then f

15 convex if and only i+f dom f s convexr and

fly) > flx) +(Vflz,y—x), Vy,x cdomf.

Proof:

Suppose that f is convex and differentiable, then

fla+Aly—2) < Afy)+ 1 =A) fx) = Af(y) — f(2) + f(=)

flz+X(y—2)) — f(z)
A

where we have used that since f is convex, z = x + A(y — x) € dom f. Taking

Sf(y)_f(m)a \V/OS)‘SL

the limit A — 0 we obtain

fy) = flx) + (Vley — ),

where we use that for g(\) = f(x + A(y —x)) we have g—g\ T (Vi lzy—2x).
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Proof (continued): In the other direction, let us consider

z =Xz + (1 — A)y which lies in the domain of f by assumption. Then,

f(@) = f(z) +(V[l:,(z —2)), and f(y) = f(z) +(Vf]z (2 — )
Multiplying the first equation with A and with 1 — X\ the second one and

adding both yields,

Af(@) + (1 =A) fly) = f(2) +(Vflz 2 = Az = (1= Ny

f
flz) = fhz+ (1 =Ny
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Second-order condition:

Proposition 3. Let f be a twice continuously, differentiable function with
open domain dom f. Then f is convex if and only if dom [ s a conver sel

and the Hessian of f is positive semi-definite.

Proof: Suppose that f is convex and its domain dom f is convex and open.

From the first-order condition,

fly) = f(x) +(Vfle,y — ).

Using Taylor’s theorem there exists € with 0 < 6 <1 such that,

1

fly)=f@) +(Vfley —2) + 5y — 2, Hf(z +0(y —2)) (y — 2)).

Combining both results we have: 3 (y — z, H f(z + 0(y — z)) (y — x)) > 0.

Now, x,y are arbitrary = H f is positive semi-definite on dom f.
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Proof (continued): Conversely: if Hf > 0, then by Taylor’s theorem:

1

S = Hf(z+0(y - )y —2)) >0,

for all y,x € dom f and thus

fy) = f@) +{Vflexy —x), Va,yedomf
which by the first order condition implies that f is convex.
Remarks:
e A quadratic function f : R"™ — R with dom f = R", defined as

f@) =+ (w,2) + 5 {2, Qa)

is convex if and only if () > 0, since H f = () for all .

e If Hf - 0, Vx € dom f, then f is strictly convex. However, the converse
does not hold (example f : R — R, f(z) = z%).
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Examples

Examples of convex functions on R

e exponential: e*? is convex on R for any a € R,

f(x) = a%e*™ >0, VaeR.

e powers: % is convex on Ry, for > 1 and a < 0 and concave otherwise,

() = (@ — Daz®%>0, Vz>0.

e powers of absolute value: |z|P for p > 1 is convex on R,

(—x)P for z <0 0 forx<0
= sum of fi(x) = and fo(z) =
0 x>0 P x>0
e logarithm: f(z) = logx is concave on R, ; since f"(x) = —272 < 0 for

x > 0,
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Functions on convex subsets of R"

e norm: every norm on R" is convex (triangle-inequality+homogenity),

1Az + (1= Ayl < [[Az] +[[(T =Nyl < Mfz]] + (T =) [[y]]

e max: f(r) = max;—1 ., ; is convex on R",

e log-sum-exp: f(x) =log(> ", €") is convex on R", (differentiable

approximation of the max function)
1

e geometric mean: f(x) = (H?Zl :1:7,) " is concave,

o log-determinant: f(X) = logdet X is concave on dom f = S7_,



‘EM UNIVERSI“I’AT Examples III

i i DES
e SAARLANDES
MACHINV\E(V LEARNING

Proof that the geometric mean is concave: The Hessian of the

geometric mean,

mn
a2f (H )%[
— XI; — ——505k|-
2 ) 27]
" ner;Tp N

ﬁxkaxj

Now, we have a look a the quadratic form

- o% f vj ”032-
> g = (I17) [ L 232 -n 3 5 <0
7,k=1 g=1 j=1 J
where we used Cauchy-Schwarz inequality to the vector a; = (;—1) and b =1,
n v 9 n v 9 2 n n 2
| | 2 2 11702
(XY = (21 = b <ol =3 5 Y=
L L =17 =1 =1 Y3

Jj=1 Jj=1
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Proof that the log-determinant is concave:
Consider the line X + ¢V in S, that means

X +tV =0,
for ¢ small where V € S™. Then

(1 +tX 2VX 2)X3)

N

g(t) = f(X +tV) =logdet(X +tV) = logdet(X

= log det X + log det(1 + tX_%VX_%) = logdet X + Zlog(l + i),
i=1

where )\; are the eigenvalues of the symmetric matrix X 3V X3, Thus,

/ t — 2 !/ t — 1 !/ < )
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Lemma 1. Let f : R — R be convex. Then for every x,y, z € int dom f with

r <y <z we have

fly) = 1@) _ fE) = 1@) _ f) = 1)

Yy — T Z— z—1

Proof. We express y as a convex combination of x and z,

z — — X
?Jx_|_y
z—T Z2—T

Yy = 2

Then

fy) < Z—Lf@)+ Z==1(2).

<z — X <z — X

Thus f(y) — f(x) < L=2(f(2) — f(x)) which yields {U=12) < JE/@) - g

< Z—X

8

The lemma shows that £ (y):f (2) g monotonically increasing for fixed y or x.
Yy—x
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Proposition 4. Let f : R" — R be a convex function, then [ 1s

continuous 1n relint C.
Proof:

e 1o € relint C. Wlog let ¢ be the origin,
e e; = corners of the ||-||, -cube (of suff. small radius r)

e every vector z in the the cube: z =", \je; with > " A\ = 1,

f(x) = f(i)\i@) < f:)\if(ei) < M, where M = max f(e;).
i=1 i=1

1=1,...,2™

|z —zo]|

o Let g(t) = f(:co + tm) = ¢(t) < M for [t| < r and g(t) is convex.

M — g(0)

_ < 91 = 9(0) _ gllz = 2of) = 9(0) _
r 0—r |z — xg]| = O r—0 r

Thus we get |f(z) — f(xo)| < 2=LE0) |12 — 2],

r
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The scalar case: The left- and right derivative at x are defined as

) i L@ S ) T h) = ()

h—0 h h—0 h

Theorem 1. Let f : R — R be a convex function. Then,
o [ (x) < fi(x) for all x € intdom f,
e f_(x) and fi(x) are finite in the interior of dom f,
o ifx,z€dom f and x < z then fi(x) < f_(2),
e the functions f_ and fi are monotonically increasing,

o f_ (fy) is left (right)-continuous in the interior of dom f,

Corollary 1. The directional derivatives limj_.q 2 (x+h2)_f @) of 4 convex

function f : R™ — R exist for all x € relint dom f.
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Epigraph
Definition 3. The graph of a function f : R" — R s defined as,

{(z,f(x)) | z € dom f} C R"".
The epigraph of a function f : R™ — R is defined as
epi f = {(z,t) |z €dom f, t> f(z)} C R,

Proposition 5. A function f is convex if and only if the epigraph of f is a

convex set.

Proof. “=", Suppose that f is convex and let (z,%) and (y, s) be points in
the epigraph, that is ¢ > f(x) and s > f(y). Then

AL+ (1=A)s 2 Af(x) + (1 =N f(y) = f(Az + (1= N)y).

and together with the domain of f being convex the epigraph is a convex set.

[—
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Subgradient and Subdifferential: Let f : R™ — R be convex.

Definition 4. A vector v is a subgradient of f at x if
f(z) 2 f(@)+ (v,z—x), VzeR"™

The subdifferential Of (x) of f at x is the set of all subgradients of f at x.

- a
I - Lo
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Subdifferential as supporting hyperplane of the epigraph

\

epl [
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Examples
)
—1 if x <0,
o flx)=lz|, Of(x)=4q [-1,1] ifz=0, .
\ 1 it z > 0.
(
L if x # 0,

o f(2)=|lzlly, Of(x)={ T '
P =l = e < 1), 2=

This follows by Cauchy-Schwarz,
H$H2 > <u7$> =0+ <u,a3 — O> ;

for ||ull, < 1.
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Properties of the subdifferential

o The subdifferential 8f(xz) is a closed convex set,
o If f is differentiable, 8f(z) = {V f(z)},
o f(x) =37 oifi(x) with f: R" - R,
— Of (%) = a10f1(2) + ... + O fu(2).
e chain rule f(z) = g(Ax +b),
Of(x) = AT0g(Ax + b).

e The subdifferential Of is non-empty in the relative interior of dom f.

YN
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Sublevel sets

Definition 5. The a-sublevel set of a function f : R"™ — R s defined as

Lo={z €domf | f(z) < a}.

Proposition 6. The sublevel set of a convex function is convex.

Proof. Suppose x,y € L, that is f(z) < a and f(y) < a, then
fAz+(1=Ny) <Af(z)+ (1 -A)[f(y) <o

and thus Az + (1 — \)y € L, for each 0 < )\ < 1. H

The converse is in general false = sublevel sets do not characterize convex

functions.



Mni®  UNIVERSITAT

b2y o Jensen’s inequality

SAARLANDES

Jensen’s inequality and extensions

The inequality for a convex function can be extended:
n n
f(z )\i:ci) < Z Nif(x;) (Jensen’s inequality),
i=1 i=1

where " ; \; =1 and z1,...,2, € dom f.

Extension to probability measures on a convex domain .S

1( [ op@is) < [ p@)f@iz = FEX) < EFX)

Application of Jensen’s inequality with some special convex functions yields

interesting other inequalities, e.g. Holder’s inequality

n

I 1
inyi <|lzl,lyll,,  wherep>1 and 5 + i 1.
i=1

'2 XD )
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Operations that conserve convexity

e Weighted sum: Let f;, i =1,...,n be convex, then > " ; w;fi(x) is
convex again if wi >0, ¢7=1,...,n. This can be extended to an integral

formulation ¢g(z) = [ w g W

o Composition with an affine mapping: f:R*" - R, AeR"™ and
b € R". Define

g(x) = f(Ax +b), where domg = {x| Az + b € dom f}.

Then if f is convex, also g is convex.

e Pointwise Maximum and Supremum: If f, fo are convex, then

f(x) = max{ fi(z), f2(x)},

is convex. Extension to pointwise supremum: Let f(x,y) be convex

for each y € S, then g(x) = sup,cg f(z,y) is convex.

Yy O
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f(x) = h(g(x)), dom f = {x € domg|g(x) € domh}.

Suppose: h and g are twice continuously differentiable and n = 1,

f'(x) = 1"(g(x))g'(2)* + K (9(x))g" (),

Thus for f”(x) > 0 that means f is convex if

h is convex and nondecreasing g is convex,
h is convex and nonincreasing g is concave.

e Minimization: If f is convex in (x,y) and C is a convex, nonempty set,

g(x) = ingf(:c,y), is convex if g(x) > —oo for some .
ye

LEARNING
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Usage of these rules: Pointwise maximum: the sum of the r largest

components. Let x € R" and T = X = - 2 Ty Then

1=1

is convex since f is the maximum of all linear combinations of » components.

oy ™
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Usage of these rules: Pointwise maximum: the sum of the r largest

components. Let x € R" and T = X = - 2 Ty Then
T
i=1

is convex since f is the maximum of all linear combinations of » components.

Maximal eigenvalue of a symmetric matrix: f(X) = Apax(X), since

f(X) = sup{{y, Xy) | lyll = 1}.
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Usage of these rules: Pointwise maximum: the sum of the r largest

components. Let x € R" and T = X = - 2 Ty Then

1=1

is convex since f is the maximum of all linear combinations of » components.

Maximal eigenvalue of a symmetric matrix: f(X) = Apax(X), since

f(X) = sup{{y, Xy) | lyll = 1}.
Proposition 9. For every x € intdom f we have
f(x) =sup{g(z)| g affine ,g(z) < f(z) for all z}.

In the interior of dom f, f is the supremum of all affine functions which

globally underestimate f.
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The conjugate function

Definition 6. Let f : R" — R. The function f* : R"™ — R defined as

Fw)= sw (o) - f@),

xedom f

18 the conjugate of the function f. The domain of f* consists of y € R"
such f*(y) < oo.

Remarks:

e f* is convex since it is the pointwise supremum of a set of affine

functions. This holds independently of the fact that f is convex or not,

e the conjugate function is also known as the Legendre-Fenchel

transform,

e the conjugate of the conjugate function is denoted by f**.

' WAl
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Why the name “conjugate” 7

Let f € C?(R") with a positive-definite Hessian and convex, then

g(x) = (y,z) — f(x), Vg=y—-Vf, Hg=-Hf,

and we know by convexity of f that g has a unique maximum z* at which
holds: y = V f. Moreover,

 y) = g(@") = (y, 27) — f(=7).

and thus V f*|, = ¥ = conjugation interchanges derivative and position. If

f has a slope of y at x, then f* has slope of = at y.

Theorem 2. If epif is closed and convex, then f = f*.
In particular: if f is convex and dom f = R" or if f is convex and continuous

then f** = f.

)y P~
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Examples:

given as

« —b if y=w,
f(y) = sup (y,z) —(w,r) —b= sup (y —w,r)—b= .
rER™ rER™ oo else.

o Let f:R™ — R with f(z) = 4 (v, Qz) where Q € S, then

1

) =5 (y,Q y).

Note, that y = Vf = Qx*, so that z* = Q 'y, then
) =(wQ ') — 3% y) =5 (y,Q'y).
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"rlr Il-l-l' i 5
A A= )

Figure 1: A function f together with the value of the conjugate function f*
at y.

YN
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Quasiconvex functions
Definition 7. A function f : R"™ — R is called quasiconvex if its domain

and all sublevel sets,
Lo = {z € dom f| f(x) < a},

for a € R are convex. A function is quasiconcave if —f is quasiconvex. A

function that s both quasiconvex and quasiconcave is called quasilinear.

Any convex function is quasiconvex but the converse does not hold.

DM
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Quasiconvex functions II

Properties of quasiconvex functions:

e Jensen’s inequality for quasiconvex functions

fOz+ (1= Ny) <max{f(z), f(y)}.

e A continuous function f : R — R is quasiconvex if and only if at least

one of the following conditions holds

1.
2.

f is nondecreasing or f is nonincreasing,

Jc € dom f s.th. for t < ¢, f is nonincreas. and for ¢t > ¢, f is

nondecreas.

First-order condition: Suppose f : R™ — R is differentiable. Then f is

quasiconvex if and only if dom f is convex and for all z,y € dom f

fy) < flx) = (Vfle,y —z) <0.

for a quasicvx function Vf = 0 at ™ does not imply that x* is a
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a b rl‘
|

Figure 3.9 A quasiconvex function on R. For each a, the a-sublevel set S,
is convex, i.e., an interval. The sublevel set S, is the interval |a,b]. The
sublevel set Sz is the interval (—oc, .

)y
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Representation via family of convex functions:

Seek a family of convex functions ¢; : R™ — R, indexed by ¢t € R, with
flx) <t = ¢(x) <0,

the t-sublevel set of the quasiconvex function f is the 0-sublevel set of the

convex function ¢;. Thus ¢; must satisty
() <0 = ¢s(x) <0, fors>t,

e.g. this holds if ¢;(x) is a non-increasing function of ¢ for all x.

Such representation always exists, with
0 if f(z) <t
or(x) = S
oo otherwise

Optimization: need for a family with nice properties e.g. differentiability.

) O
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