Convex Optimization and Modeling

Convex functions

Third lecture, 28.04.2010

Jun.-Prof. Matthias Hein

Convex Functions:

- basic definitions, properties and some examples
- differentiability and subdifferential
- operations that preserve convexity
- conjugate function
- quasi-convex functions

Convex Functions:

Definition 1. A function $f : \mathbb{R}^n \to \mathbb{R}$ is **convex** if dom f is a convex set and if for all $x, y \in \text{dom } f$, and $\lambda \in \mathbb{R}$ with $0 \le \lambda \le 1$, we have

$$f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda) f(y).$$

A function is strictly convex if the inequality is strict if $x \neq y$.

Further definitions:

- A function is **concave** if and only if -f is convex,
- A function is strictly concave if and only if -f is strictly convex.
- An affine function is convex and concave.

Extended value formalism: A convex function f with domain dom f can be extended to \mathbb{R}^n via

$$f(x) = \begin{cases} f(x) & x \in \text{dom } f, \\ \infty & x \notin \text{dom } f. \end{cases}$$

In the extended value formalism one defines:

$$\infty + x = \infty, \quad \infty + \infty = \infty.$$

Definition 2. The *indicator function* I_C of a convex set C is defined as

$$I_C(x) = \begin{cases} 0 & x \in C \\ \infty & x \notin C. \end{cases}$$

Proposition 1. Let f be differentiable and dom $f \subseteq \mathbb{R}^n$ an open set. Then f is convex if and only if dom f is convex and

 $f(y) \ge f(x) + \langle \nabla f|_x, y - x \rangle, \quad \forall y, x \in \operatorname{dom} f.$

Proposition 2. Let f be differentiable and dom $f \subseteq \mathbb{R}^n$ an open set. Then f is convex if and only if dom f is convex and

 $f(y) \ge f(x) + \langle \nabla f|_x, y - x \rangle, \quad \forall y, x \in \operatorname{dom} f.$

Proof:

Suppose that f is convex and differentiable, then

$$f(x + \lambda (y - x)) \leq \lambda f(y) + (1 - \lambda) f(x) = \lambda (f(y) - f(x)) + f(x)$$

$$\implies \frac{f(x + \lambda (y - x)) - f(x)}{\lambda} \leq f(y) - f(x), \quad \forall 0 \leq \lambda \leq 1,$$

where we have used that since f is convex, $z = x + \lambda(y - x) \in \text{dom } f$. Taking the limit $\lambda \to 0$ we obtain

$$f(y) \ge f(x) + \langle \nabla f|_x, y - x \rangle,$$

where we use that for $g(\lambda) = f(x + \lambda(y - x))$ we have $\frac{dg}{d\lambda}\Big|_{\lambda=0} = \langle \nabla f |_x, y - x \rangle$.

Proof (continued): In the other direction, let us consider $z = \lambda x + (1 - \lambda)y$ which lies in the domain of f by assumption. Then,

 $f(x) \ge f(z) + \langle \nabla f|_z, (z-x) \rangle$, and $f(y) \ge f(z) + \langle \nabla f|_z, (z-y) \rangle$.

Multiplying the first equation with λ and with $1 - \lambda$ the second one and adding both yields,

$$\lambda f(x) + (1 - \lambda) f(y) \ge f(z) + \langle \nabla f|_z, z - \lambda x - (1 - \lambda)y \rangle$$
$$= f(z) = f(\lambda x + (1 - \lambda)y)$$

Second-order condition:

Proposition 3. Let f be a twice continuously, differentiable function with open domain dom f. Then f is convex if and only if dom f is a convex set and the Hessian of f is positive semi-definite.

Proof: Suppose that f is convex and its domain dom f is convex and open. From the first-order condition,

$$f(y) \ge f(x) + \langle \nabla f |_x, y - x \rangle.$$

Using Taylor's theorem there exists θ with $0 \le \theta \le 1$ such that,

$$f(y) = f(x) + \langle \nabla f|_x, y - x \rangle + \frac{1}{2} \langle y - x, Hf(x + \theta(y - x)) (y - x) \rangle.$$

Combining both results we have: $\frac{1}{2} \langle y - x, Hf(x + \theta(y - x))(y - x) \rangle \ge 0$. Now, x, y are arbitrary $\Longrightarrow Hf$ is positive semi-definite on dom f.

Proof (continued): Conversely: if $Hf \succeq 0$, then by Taylor's theorem:

$$\frac{1}{2} \langle y - x, Hf(x + \theta(y - x))(y - x) \rangle \ge 0,$$

for all $y, x \in \operatorname{dom} f$ and thus

$$f(y) \ge f(x) + \langle \nabla f|_x, y - x \rangle, \quad \forall x, y \in \operatorname{dom} f$$

which by the first order condition implies that f is convex. **Remarks:**

• A quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ with dom $f = \mathbb{R}^n$, defined as

$$f(x) = c + \langle w, x \rangle + \frac{1}{2} \langle x, Qx \rangle,$$

is convex if and only if $Q \succeq 0$, since Hf = Q for all x.

• If $Hf \succ 0$, $\forall x \in \text{dom } f$, then f is strictly convex. However, the converse does not hold (example $f : \mathbb{R} \to \mathbb{R}, f(x) = x^4$).

Examples of convex functions on ${\mathbb R}$

• exponential: $e^{\alpha x}$ is convex on \mathbb{R} for any $\alpha \in \mathbb{R}$,

$$f''(x) = \alpha^2 e^{\alpha x} > 0, \quad \forall x \in \mathbb{R}.$$

• powers: x^{α} is convex on \mathbb{R}_{++} for $\alpha \geq 1$ and $\alpha \leq 0$ and concave otherwise,

$$f''(x) = (\alpha - 1)\alpha x^{\alpha - 2} \ge 0, \quad \forall x > 0.$$

• powers of absolute value: $|x|^p$ for $p \ge 1$ is convex on \mathbb{R} ,

$$\Rightarrow \text{ sum of } f_1(x) = \begin{cases} (-x)^p & \text{for } x \le 0\\ 0 & x > 0 \end{cases} \quad \text{and } f_2(x) = \begin{cases} 0 & \text{for } x \le 0\\ x^p & x > 0 \end{cases}$$

• logarithm: $f(x) = \log x$ is concave on \mathbb{R}_{++} since $f''(x) = -x^{-2} < 0$ for x > 0,

Functions on convex subsets of \mathbb{R}^n

• norm: every norm on \mathbb{R}^n is convex (triangle-inequality+homogenity),

$$|\lambda x + (1 - \lambda)y|| \le ||\lambda x|| + ||(1 - \lambda)y|| \le \lambda ||x|| + (1 - \lambda) ||y||,$$

- max: $f(x) = \max_{i=1,\dots,n} x_i$ is convex on \mathbb{R}^n ,
- log-sum-exp: $f(x) = \log(\sum_{i=1}^{n} e^{x_i})$ is convex on \mathbb{R}^n , (differentiable approximation of the max function)
- geometric mean: $f(x) = \left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}}$ is concave,
- log-determinant: $f(X) = \log \det X$ is concave on dom $f = S_{++}^n$,

Proof that the geometric mean is concave: The Hessian of the geometric mean,

$$\frac{\partial^2 f}{\partial x_k \partial x_j} = \left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}} \left[\frac{1}{n^2} \frac{1}{x_j x_k} - \frac{1}{n} \frac{1}{x_j^2} \delta_{jk}\right].$$

Now, we have a look a the quadratic form

$$\sum_{j,k=1}^{n} v_j v_k \frac{\partial^2 f}{\partial x_k \partial x_j} = \frac{1}{n^2} \Big(\prod_{i=1}^{n} x_i \Big)^{\frac{1}{n}} \Big[\sum_{j=1}^{n} \frac{v_j}{x_j} \sum_{k=1}^{n} \frac{v_k}{x_k} - n \sum_{j=1}^{n} \frac{v_j^2}{x_j^2} \Big] \le 0,$$

where we used Cauchy-Schwarz inequality to the vector $a_i = (\frac{v_i}{x_i})$ and $b = \mathbf{1}$,

$$\left(\sum_{j=1}^{n} \frac{v_j}{x_j}\right)^2 = \left(\sum_{j=1}^{n} \frac{v_j}{x_j} 1\right)^2 = \langle a, b \rangle^2 \le \|a\|^2 \|b\|^2 = \sum_{j=1}^{n} \frac{v_j^2}{x_j^2} \sum_{j=1}^{n} 1^2 = n \sum_{j=1}^{n} \frac{v_j^2}{x_j^2}.$$

Proof that the log-determinant is concave: Consider the line X + tV in S_{++}^n , that means

 $X + tV \succ 0,$

for t small where $V \in S^n$. Then

$$g(t) = f(X + tV) = \log \det(X + tV) = \log \det(X^{\frac{1}{2}}(\mathbb{1} + tX^{-\frac{1}{2}}VX^{-\frac{1}{2}})X^{\frac{1}{2}})$$
$$= \log \det X + \log \det(\mathbb{1} + tX^{-\frac{1}{2}}VX^{-\frac{1}{2}}) = \log \det X + \sum_{i=1}^{n} \log(1 + t\lambda_i),$$

where λ_i are the eigenvalues of the symmetric matrix $X^{-\frac{1}{2}}VX^{-\frac{1}{2}}$. Thus,

$$g'(t) = \sum_{i=1}^{n} \frac{\lambda_i}{1 + t\lambda_i}, \qquad g''(t) = -\sum_{i=1}^{n} \frac{\lambda_i^2}{(1 + t\lambda_i)^2} \quad \Rightarrow \quad g''(0) \le 0.$$

Lemma 1. Let $f : \mathbb{R} \to \mathbb{R}$ be convex. Then for every $x, y, z \in \text{int dom } f$ with x < y < z we have

$$\frac{f(y) - f(x)}{y - x} \le \frac{f(z) - f(x)}{z - x} \le \frac{f(z) - f(y)}{z - y}.$$

Proof. We express y as a convex combination of x and z,

$$y = \frac{z - y}{z - x}x + \frac{y - x}{z - x}z,$$

Then

$$f(y) \le \frac{z-y}{z-x}f(x) + \frac{y-x}{z-x}f(z).$$

Thus $f(y) - f(x) \le \frac{y-x}{z-x}(f(z) - f(x))$ which yields $\frac{f(y)-f(x)}{y-x} \le \frac{f(z)-f(x)}{z-x}$.

The lemma shows that $\frac{f(y)-f(x)}{y-x}$ is monotonically increasing for fixed y or x.

Proposition 4. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex function, then f is continuous in relint C.

Proof:

- $x_0 \in \operatorname{relint} C$. Wlog let x_0 be the origin,
- $e_i = \text{corners of the } \|\cdot\|_{\infty} \text{-cube (of suff. small radius } r)$
- every vector x in the the cube: $x = \sum_{i=1}^{m} \lambda_i e_i$ with $\sum_{i=1}^{m} \lambda_i = 1$,

$$f(x) = f\left(\sum_{i=1}^{m} \lambda_i e_i\right) \le \sum_{i=1}^{m} \lambda_i f(e_i) \le M, \quad \text{where } M = \max_{i=1,\dots,2^m} f(e_i).$$

• Let
$$g(t) = f\left(x_0 + t \frac{x - x_0}{\|x - x_0\|}\right) \Rightarrow g(t) \le M$$
 for $|t| \le r$ and $g(t)$ is convex.

$$-\frac{M-g(0)}{r} \le \frac{g(-r)-g(0)}{0-r} \le \frac{g(\|x-x_0\|)-g(0)}{\|x-x_0\|-0} \le \frac{g(r)-g(0)}{r-0} \le \frac{M-g(0)}{r}$$

Thus we get $|f(x) - f(x_0)| \le \frac{M - f(x_0)}{r} ||x - x_0||.$

The scalar case: The left- and right derivative at x are defined as

$$f_{-}(x) = \lim_{h \to 0} \frac{f(x) - f(x - h)}{h}, \qquad f_{+}(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}.$$

Theorem 1. Let $f : \mathbb{R} \to \mathbb{R}$ be a convex function. Then,

•
$$f_{-}(x) \leq f_{+}(x)$$
 for all $x \in \operatorname{int} \operatorname{dom} f$,

- $f_{-}(x)$ and $f_{+}(x)$ are finite in the interior of dom f,
- if $x, z \in \text{dom } f$ and x < z then $f_+(x) \le f_-(z)$,
- the functions f_{-} and f_{+} are monotonically increasing,
- $f_{-}(f_{+})$ is left (right)-continuous in the interior of dom f,

Corollary 1. The directional derivatives $\lim_{h\to 0} \frac{f(x+hv)-f(x)}{h}$ of a convex function $f: \mathbb{R}^n \to \mathbb{R}$ exist for all $x \in \text{relint dom } f$.

Epigraph

Epigraph

Definition 3. The graph of a function $f : \mathbb{R}^n \to \mathbb{R}$ is defined as,

 $\{(x, f(x)) \mid x \in \operatorname{dom} f\} \subseteq \mathbb{R}^{n+1}.$

The **epigraph** of a function $f : \mathbb{R}^n \to \mathbb{R}$ is defined as

$$epi f = \{(x,t) \mid x \in \text{dom } f, \quad t \ge f(x)\} \subseteq \mathbb{R}^{n+1}.$$

Proposition 5. A function f is convex if and only if the epigraph of f is a convex set.

Proof. " \Rightarrow ", Suppose that f is convex and let (x, t) and (y, s) be points in the epigraph, that is $t \ge f(x)$ and $s \ge f(y)$. Then

$$\lambda t + (1 - \lambda)s \ge \lambda f(x) + (1 - \lambda)f(y) \ge f(\lambda x + (1 - \lambda)y).$$

and together with the domain of f being convex the epigraph is a convex set.

Subgradient and Subdifferential: Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex. **Definition 4.** A vector v is a **subgradient** of f at x if

 $f(z) \ge f(x) + \langle v, z - x \rangle, \qquad \forall z \in \mathbb{R}^n.$

The subdifferential $\partial f(x)$ of f at x is the set of all subgradients of f at x.

Subdifferential as supporting hyperplane of the epigraph

',

Examples

•
$$f(x) = |x|, \quad \partial f(x) = \begin{cases} -1 & \text{if } x < 0, \\ [-1,1] & \text{if } x = 0, \\ 1 & \text{if } x > 0. \end{cases}$$

• $f(x) = ||x||_2, \quad \partial f(x) = \begin{cases} \frac{x}{||x||}, & \text{if } x \neq 0 \\ \{u \in \mathbb{R}^n \mid ||u|| \le 1\}, & \text{if } x = 0 \end{cases}$

This follows by Cauchy-Schwarz,

$$||x||_2 \ge \langle u, x \rangle = 0 + \langle u, x - 0 \rangle,$$

for $||u||_2 \le 1$.

Properties of the subdifferential

- The subdifferential $\partial f(x)$ is a closed convex set,
- If f is differentiable, $\partial f(x) = \{\nabla f(x)\},\$
- $f(x) = \sum_{i=1}^{k} \alpha_i f_i(x)$ with $f : \mathbb{R}^n \to \mathbb{R}$,

$$\Longrightarrow \partial f(x) = \alpha_1 \partial f_1(x) + \ldots + \alpha_k \partial f_k(x).$$

• chain rule
$$f(x) = g(Ax + b)$$
,

$$\partial f(x) = A^T \partial g(Ax + b).$$

• The subdifferential ∂f is non-empty in the relative interior of dom f.

Sublevel sets

Definition 5. The α -sublevel set of a function $f : \mathbb{R}^n \to \mathbb{R}$ is defined as

$$L_{\alpha} = \{ x \in \operatorname{dom} f \mid f(x) \le \alpha \}.$$

Proposition 6. The sublevel set of a convex function is convex.

Proof. Suppose $x, y \in L_{\alpha}$ that is $f(x) \leq \alpha$ and $f(y) \leq \alpha$, then

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) \le \alpha,$$

and thus $\lambda x + (1 - \lambda)y \in L_{\alpha}$ for each $0 \leq \lambda \leq 1$.

The converse is in general false \implies sublevel sets do not characterize convex functions.

Jensen's inequality and extensions

The inequality for a convex function can be extended:

$$f\left(\sum_{i=1}^{n}\lambda_{i}x_{i}\right) \leq \sum_{i=1}^{n}\lambda_{i}f(x_{i})$$
 (Jensen's inequality),

where $\sum_{i=1}^{n} \lambda_i = 1$ and $x_1, \ldots, x_n \in \text{dom } f$.

Extension to probability measures on a convex domain S:

$$f\left(\int_{S} x \, p(x) dx\right) \leq \int_{S} p(x) f(x) dx \iff f(\mathbb{E}[X]) \leq \mathbb{E}f(X)$$

Application of Jensen's inequality with some special convex functions yields interesting other inequalities, e.g. Hölder's inequality

$$\sum_{i=1}^{n} x_i y_i \le \|x\|_p \, \|y\|_q \,, \quad \text{where } p > 1 \text{ and } \frac{1}{p} + \frac{1}{q} = 1.$$

Operations that conserve convexity

- Weighted sum: Let f_i , i = 1, ..., n be convex, then $\sum_{i=1}^n w_i f_i(x)$ is convex again if $w_i \ge 0$, i = 1, ..., n. This can be extended to an integral formulation $g(x) = \int_S w(y) f(y, x)$.
- Composition with an affine mapping: $f : \mathbb{R}^n \to \mathbb{R}, A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^n$. Define

$$g(x) = f(Ax + b), \text{ where } \operatorname{dom} g = \{x \mid Ax + b \in \operatorname{dom} f\}.$$

Then if f is convex, also g is convex.

• Pointwise Maximum and Supremum: If f_1, f_2 are convex, then

$$f(x) = \max\{f_1(x), f_2(x)\},\$$

is convex. Extension to **pointwise supremum:** Let f(x, y) be convex for each $y \in S$, then $g(x) = \sup_{y \in S} f(x, y)$ is convex.

• **Composition:** Let $h : \mathbb{R}^k \to \mathbb{R}$ and $g : \mathbb{R}^n \to \mathbb{R}^k$ and $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$,

 $f(x) = h(g(x)), \qquad \mathrm{dom}\, f = \{x \in \mathrm{dom}\, g \,|\, g(x) \in \mathrm{dom}\, h\}.$

Suppose: h and g are twice continuously differentiable and n = 1,

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x),$$

Thus for $f''(x) \ge 0$ that means f is convex if

- h is convex and nondecreasing g is convex,
- h is convex and nonincreasing g is concave.
- Minimization: If f is convex in (x, y) and C is a convex, nonempty set,

$$g(x) = \inf_{y \in C} f(x, y)$$
, is convex if $g(x) > -\infty$ for some x.

Usage of these rules: Pointwise maximum: the sum of the *r* largest components. Let $x \in \mathbb{R}^n$ and $x_{[1]} \ge x_{[2]} \ge \ldots \ge x_{[n]}$. Then

$$f(x) = \sum_{i=1}^{r} x_{[i]},$$

is convex since f is the maximum of all linear combinations of r components.

Usage of these rules: Pointwise maximum: the sum of the *r* largest components. Let $x \in \mathbb{R}^n$ and $x_{[1]} \ge x_{[2]} \ge \ldots \ge x_{[n]}$. Then

$$f(x) = \sum_{i=1}^{r} x_{[i]},$$

is convex since f is the maximum of all linear combinations of r components.

Maximal eigenvalue of a symmetric matrix: $f(X) = \lambda_{\max}(X)$, since

$$f(X) = \sup\{\langle y, Xy \rangle \mid ||y|| = 1\}.$$

Usage of these rules: Pointwise maximum: the sum of the *r* largest components. Let $x \in \mathbb{R}^n$ and $x_{[1]} \ge x_{[2]} \ge \ldots \ge x_{[n]}$. Then

$$f(x) = \sum_{i=1}^{r} x_{[i]},$$

is convex since f is the maximum of all linear combinations of r components.

Maximal eigenvalue of a symmetric matrix: $f(X) = \lambda_{\max}(X)$, since

$$f(X) = \sup\{\langle y, Xy \rangle \mid ||y|| = 1\}.$$

Proposition 9. For every $x \in \operatorname{int} \operatorname{dom} f$ we have

$$f(x) = \sup\{g(x) \mid g \text{ affine }, g(z) \leq f(z) \text{ for all } z\}.$$

In the interior of dom f, f is the supremum of all affine functions which globally underestimate f.

The conjugate function

Definition 6. Let $f : \mathbb{R}^n \to \mathbb{R}$. The function $f^* : \mathbb{R}^n \to \mathbb{R}$ defined as

$$f^*(y) = \sup_{x \in \operatorname{dom} f} \left(\langle y, x \rangle - f(x) \right),$$

is the **conjugate** of the function f. The domain of f^* consists of $y \in \mathbb{R}^n$ such $f^*(y) < \infty$.

Remarks:

- f^* is convex since it is the pointwise supremum of a set of affine functions. This holds independently of the fact that f is convex or not,
- the conjugate function is also known as the **Legendre-Fenchel transform**,
- the conjugate of the conjugate function is denoted by f^{**} .

Why the name "conjugate" ?

Let $f \in C^2(\mathbb{R}^n)$ with a positive-definite Hessian and convex, then

$$g(x) = \langle y, x \rangle - f(x), \quad \nabla g = y - \nabla f, \quad Hg = -Hf,$$

and we know by convexity of f that g has a unique maximum x^* at which holds: $y = \nabla f$. Moreover,

$$f^*(y) = g(x^*) = \langle y, x^* \rangle - f(x^*).$$

and thus $\nabla f^*|_y = x^* \Longrightarrow$ conjugation interchanges derivative and position. If f has a slope of y at x, then f^* has slope of x at y.

Theorem 2. If epi f is closed and convex, then $f = f^{**}$. In particular: if f is convex and dom $f = \mathbb{R}^n$ or if f is convex and continuous then $f^{**} = f$.

Examples:

• The conjugate of an affine function $f:\mathbb{R}^n\to\mathbb{R}$ with $f(x)=\langle w,x\rangle+b$ is given as

$$f^*(y) = \sup_{x \in \mathbb{R}^n} \langle y, x \rangle - \langle w, x \rangle - b = \sup_{x \in \mathbb{R}^n} \langle y - w, x \rangle - b = \begin{cases} -b & \text{if } y = w, \\ \infty & \text{else.} \end{cases}$$

• Let $f : \mathbb{R}^n \to \mathbb{R}$ with $f(x) = \frac{1}{2} \langle x, Qx \rangle$ where $Q \in S_{++}^n$, then

$$f^*(y) = \frac{1}{2} \left\langle y, Q^{-1}y \right\rangle$$

Note, that $y = \nabla f = Qx^*$, so that $x^* = Q^{-1}y$, then $f^*(y) = \langle y, Q^{-1}y \rangle - \frac{1}{2} \langle y, Q^{-1}y \rangle = \frac{1}{2} \langle y, Q^{-1}y \rangle.$

Figure 1: A function f together with the value of the conjugate function f^* at y.

Quasiconvex functions

Definition 7. A function $f : \mathbb{R}^n \to \mathbb{R}$ is called **quasiconvex** if its domain and all sublevel sets,

$$L_{\alpha} = \{ x \in \operatorname{dom} f \,|\, f(x) \le \alpha \},\$$

for $\alpha \in \mathbb{R}$ are convex. A function is **quasiconcave** if -f is quasiconvex. A function that is both quasiconvex and quasiconcave is called **quasilinear**.

Any convex function is quasiconvex but the converse does not hold.

Properties of quasiconvex functions:

• Jensen's inequality for quasiconvex functions

 $f(\lambda x + (1 - \lambda)y) \le \max\{f(x), f(y)\}.$

- A continuous function $f : \mathbb{R} \to \mathbb{R}$ is quasiconvex if and only if at least one of the following conditions holds
 - 1. f is nondecreasing or f is nonincreasing,
 - 2. $\exists c \in \text{dom } f \text{ s.th. for } t \leq c, f \text{ is nonincreas.}$ and for $t \geq c, f \text{ is nondecreas.}$
 - 3. First-order condition: Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable. Then f is quasiconvex if and only if dom f is convex and for all $x, y \in \text{dom } f$

$$f(y) \le f(x) \Rightarrow \langle \nabla f|_x, y - x \rangle \le 0.$$

4. for a quasicvx function $\nabla f = 0$ at x^* does not imply that x^* is a global minimum of f

Figure 3.9 A quasiconvex function on **R**. For each α , the α -sublevel set S_{α} is convex, *i.e.*, an interval. The sublevel set S_{α} is the interval [a, b]. The sublevel set S_{β} is the interval $(-\infty, c]$.

Representation via family of convex functions:

Seek a family of convex functions $\phi_t : \mathbb{R}^n \to \mathbb{R}$, indexed by $t \in \mathbb{R}$, with

$$f(x) \le t \implies \phi_t(x) \le 0,$$

the *t*-sublevel set of the quasiconvex function f is the 0-sublevel set of the convex function ϕ_t . Thus ϕ_t must satisfy

$$\phi_t(x) \le 0 \implies \phi_s(x) \le 0, \text{ for } s \ge t,$$

e.g. this holds if $\phi_t(x)$ is a non-increasing function of t for all x. Such representation always exists, with

$$\phi_t(x) = \begin{cases} 0 & \text{if } f(x) \le t \\ \infty & \text{otherwise} \end{cases}$$

Optimization: need for a family with nice properties e.g. differentiability.