Convex Optimization and Modeling

Convex sets

Second lecture, 21.04.2010

Jun.-Prof. Matthias Hein

Convex Sets:

- affine and convex sets
- cones
- operations that preserve convexity
- generalized inequalities
- separating and supporting hyperplane theorems
- extreme points fundamental theorem of linear programming

Why are convex sets important ?

The domain of a convex function has to be convex

$$f(\theta x + (1-\theta)y) \leq \theta f(x) + (1-\theta) f(y), \quad \forall \theta \in [0,1].$$

Definition 1. A set $C \subset \mathbb{R}^n$ is affine if for any $x_1, x_2 \in C$ and $\theta \in \mathbb{R}$ we have

$$\theta x_1 + (1 - \theta) x_2 \in C.$$

A set is **affine** if the line through every two points inside the set is contained in the set.

Affine set: subspace with some offset,

$$C = x_0 + V = \{x_0 + v \mid v \in V\},\$$

where V is a subspace of \mathbb{R}^n .

Affine dimension of an affine set: dimension of the subspace V.

Definition 2. The *affine hull* of a set of points x_1, \ldots, x_k is defined as,

aff
$$C = \left\{ \sum_{i=1}^{k} \theta_i x_i \mid \sum_{i=1}^{k} \theta_i = 1 \right\}.$$

Important note: If the affine hull of a set of points is not equal to \mathbb{R}^n the interior of an affine set is always empty.

Definition 3. The *relative interior* relint C of the set C is defined as,

relint
$$C = \{x \in C \mid B(x,r) \cap aff C \subseteq C \text{ for some } r > 0\},\$$

where $B(x,r) = \{y \in \mathbb{R}^n \mid ||x - y|| \leq r\}$ is the ball of radius r around x with respect to some norm on \mathbb{R}^n . The **relative boundary** of C is the set $\overline{C} \setminus relint C$.

Convex sets: A convex set *C* is a set such that every line segment connecting any two points in *C* is again contained in *C*. **Definition 4.** A set *C* is **convex** if for any $x_1, x_2 \in C$ and for any θ with $0 < \theta < 1$ we have

$$\theta x_1 + (1 - \theta) x_2 \in C.$$

 \implies Every affine set is clearly convex.

Definition 5. A point $z = \sum_{i=1}^{k} \theta_i x_i$ where $\sum_{i=1}^{k} \theta_i = 1$ and $\theta_i \ge 0$ is a **convex combination** of x_1, \ldots, x_k . The **convex hull** of a set C is defined as

conv
$$C = \left\{ \sum_{i=1}^{k} \theta_{i} x_{i} \mid x_{1}, \dots, x_{k} \in C, \ \theta_{i} \ge 0, \ \sum_{i=1}^{k} \theta_{i} = 1, \ k \in \mathbb{N} \right\}.$$

The convex combination can be seen as the weighted average of the points.

- The convex hull $\operatorname{conv} C$ of a set C is convex. It is the smallest convex set containing C.
- extension to continuous weights

$$\operatorname{conv} C = \Big\{ \int_C x \, p(x) \, dx \ \Big| \ p(x) \ge 0, \ \int_C p(x) \, dx = 1 \Big\}.$$

Note: $\int_C xp(x) dx = \mathbb{E}[X].$

Discrete version: use an atomic measure, where $P(X = x_i) = p_i$.

Left: Convex set, Middle: Not Convex, Right: Not Convex.

Left: convex hull of a set of points, Right: convex hull of a non-convex set.

Cones

Definition 6. A set C is called a **cone** if for every $x \in C$ and $\theta \geq 0$ we have $\theta x \in C$. A set C is a **convex cone** if it is convex and a cone, which means that for any $x_1, x_2 \in C$ and $\theta_1, \theta_2 \geq 0$ we have

 $\theta_1 x_1 + \theta_2 x_2 \in C.$

Note: a cone always contains the origin in \mathbb{R}^n .

Definition 7. The conic hull of a set C is defined as

$$\Big\{\sum_{i=1}^k \theta_i x_i \ \Big| \ x_1, \dots, x_k \in C, \theta_i \ge 0, \ k \in \mathbb{N}\Big\}.$$

- The conic hull is the smallest convex cone containing C.
- A cone is convex if and only if it contains all conic combinations of its elements.

Definition 8. A polyhedron P is the set

$$P = \{x \mid \langle a_j, x \rangle \le b_j, \ j = 1, \dots, m, \quad \langle c_i, x \rangle = d_i, \ i = 1, \dots, p\}.$$

• more compact form of a polyhedron P:

$$P = \{x \mid Ax \preceq b, \ Cx = d\}.$$

where \leq indicates componentwise inequality and the *j*-th row of A is a_j and the *i*-th row of C is c_i .

Definition 9. Let x_0, \ldots, x_k be k + 1 points and assume that $x_1 - x_0, \ldots, x_k - x_0$ are linearly independent. Then the **simplex** determined by them is given by

$$C = \operatorname{conv}\{x_0, \dots, x_k\} = \Big\{ \sum_{i=0}^k \theta_i x_i \mid \theta \succeq 0, \ \mathbf{1}^T \theta = 1 \Big\}.$$

Polyhedron

k-Simplex

A 3-simplex in \mathbb{R}^3 .

- 1-simplex: line segment,
- 2-simplex: triangle,
- 3-simplex: tetrahedron.

The positive semidefinite cone

The symbol S^n denotes the set of symmetric $n \times n$ matrices,

$$S^n = \{ X \in \mathbb{R}^{n \times n} \mid X = X^T \},\$$

The set of **positive semi-definite matrices** S_{+}^{n} ,

$$S^n_+ = \{ X \in S^n \mid X \succeq 0 \},\$$

where $X \succeq 0 \iff \forall w \in \mathbb{R}^n, \langle w, Xw \rangle \ge 0.$

The set of **positive-definite matrices** S_{++}^n ,

$$S_{++}^n = \{ X \in S^n \mid X \succ 0 \},\$$

where $X \succ 0 \quad \Longleftrightarrow \quad \forall w \in \mathbb{R}^n, w \neq 0, \quad \langle w, Xw \rangle > 0.$

Note: S_{+}^{n} is a convex cone but not S_{++}^{n} .

Definition 10. An affine function $f : \mathbb{R}^n \to \mathbb{R}^m$ has the form f(x) = Ax + b with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

Definition 11. The perspective function $P : \mathbb{R}^{n+1} \to \mathbb{R}^n$ with domain dom $P = \mathbb{R}^n \times \mathbb{R}_{++}$ is defined as $P(z,t) = \frac{z}{t}$.

Definition 12. A linear fractional function is a composition of the perspective with an affine function. Let $g : \mathbb{R}^{n+1} \to \mathbb{R}^{m+1}$ be affine,

$$g(x) = \begin{pmatrix} A \\ c^T \end{pmatrix} x + \begin{pmatrix} b \\ d \end{pmatrix},$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $d \in \mathbb{R}$ and $c \in \mathbb{R}^n$. The function $f : \mathbb{R}^n \to \mathbb{R}^m$ given by $f = P \circ g$, that is

$$f(x) = \frac{Ax+b}{c^T x+d},$$

with domain dom $f = \{x | c^T x + d > 0\}$ is **linear fractional**.

Pin-hole camera interpretation of the perspective function:

Important example for a linear fractional function:

Let X and Y be random variables on $\{1, \ldots, n\}$ and $\{1, \ldots, m\}$. and denote by $p_{ij} = P(X = i, Y = j)$ the probability that X = i and Y = j. The **conditional probability**

$$f_{ij} = P(X = i | Y = j) = \frac{p_{ij}}{\sum_{i=1}^{n} p_{ij}}.$$

is a linear-fractional function of p_{ij} . Given a convex set of probabilities on X and Y also the conditional probabilities will be convex.

Collection of operations that conserve convexity:

- **Theorem 1.** Let $\{C_{\alpha}\}_{\alpha \in I}$ be an arbitrary set of convex sets, then their *intersection* $\cap_{\alpha \in I} C_{\alpha}$ *is convex.*
 - The closure and relative interior of a convex set are convex.
 - Let S ⊆ ℝⁿ be a convex set and f an affine function, then the image of S under f, The **image of a convex set** S **under an affine function** f: ℝⁿ → ℝ^m,

$$f(S) = \{ f(x) \in \mathbb{R}^m \mid x \in S \},\$$

is convex. Similarly, the pre-image of a convex set S under an affine function $f : \mathbb{R}^k \to \mathbb{R}^n$,

$$f^{-1}(S) = \{ x \in \mathbb{R}^k \mid f(x) \in S \},\$$

is convex.

Prominent examples: scaling, translation and projection.

A more indirect example of the image of an affine function: The cartesian or direct product $C_1 \times C_2$ of two convex sets $C_1 \subseteq \mathbb{R}^n, C_2 \subseteq \mathbb{R}^m$ (turned into a vector space) is convex

$$\lambda\left(x_1, x_2\right) + (1-\lambda)\left(y_1, y_2\right) = \left(\lambda x_1 + (1-\lambda)x_2, \ \lambda y_1 + (1-\lambda)y_2\right) \in C_1 \times C_2.$$

Then the function $f : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ defined as $f(x_1, x_2) = x_1 + x_2$ preserves convexity, therefore **the sum** $C_1 + C_2$ defined as

$$C_1 + C_2 = \{x + y \mid x \in C_1, y \in C_2\}$$

is convex.

Collection of operations that conserve convexity (continued):

Theorem 2. • If $C \subseteq \text{dom } P$ is convex, then its **image**

 $P(C) = \{P(x) | x \in C\}$ is convex. The pre-image of a convex set under the perspective function is also convex. If $C \subseteq \mathbb{R}^n$ is convex, then

$$P^{-1}(C) = \{ (x,t) \in \mathbb{R}^{n+1} \mid x/t \in C, \quad t > 0 \},\$$

is convex.

Using the result about the perspective and affine function, it follows immediately that the image of a convex set C under a linear fractional function f is convex given that C lies in the domain of f (that means c^Tx + d > 0 for all x ∈ C).

A proper cone

Definition 13. A cone $K \subseteq \mathbb{R}^n$ is called a **proper cone** if the following holds

- K is convex,
- K is closed,
- K has nonempty interior (K is solid),
- K is pointed, that is it contains no line or equivalently $x \in K$ and $-x \in K$ imply x = 0.

Note: The last property excludes \mathbb{R}^n , the last and second last excludes hyperplanes and half-spaces.

Definition 14. A proper cone K defines a generalized inequality which is a partial ordering on \mathbb{R}^n ,

$$x \preceq_K y \iff y - x \in K.$$

A strict partial ordering can be defined via

$$x \prec_K y \iff y - x \in \operatorname{int} K.$$

Examples:

- $K = \{x \in \mathbb{R}^n \mid x_i \ge 0, i = 1, ..., n\}$, (positive orthant) generalized inequality \preceq_K : componentwise inequality,
- for the set of symmetric matrices S^n , $K = S^n_+$ the set of positive semi-definite matrices,

$$A \preceq_K B \iff B - A \in S^n_+$$

Definition 15. A *partial order* \leq over a set A is a binary relation on A, which fulfills for all $a, b, c \in A$,

- reflexivity: $a \leq a$,
- antisymmetry: $a \leq b$ and $b \leq a \Rightarrow a = b$,
- transitivity: $a \leq b$ and $b \leq c \Rightarrow a \leq c$.

A set with a partial order is called **partially ordered set** or **poset**.

A generalized inequality induces a partial order and fulfills additionally

- preserved under addition, $x \preceq_K y$ and $u \preceq_K v \Rightarrow x + u \preceq_K y + v$,
- preserved under scaling, $x \preceq_K y \Rightarrow \alpha x \preceq_K \alpha y$,
- preserved under limits, $x_t \preceq_K y_t \Rightarrow x \preceq_K y$, where $x = \lim_{t \to \infty} x_t$, $y = \lim_{t \to \infty} y_t$.

Minimum and minimal element

In a partial order not any two elements of a set can be compared !

Definition 16. If for every $y \in C$, we have $x \preceq_K y$, then we say that x is the **minimum element** of C with respect to the generalized inequality \preceq_K (the maximum element can be defined analogously).

 $C \subseteq \{x\} + K.$

If for every $y \in C$ we have $y \preceq_K x$ only if y = x, then we say that x is a **minimal element** of C with respect to the generalized inequality.

$$(x - K) \cap C = \{x\}.$$

Minimum and minimal element

Left: The minimum of a convex set, Right: A minimal element of a convex set.

Theorem 3. Let C_1 and C_2 be two nonempty and disjoint convex subsets of \mathbb{R}^n , then there exists a hyperplane that separates them:

 $\exists a \in \mathbb{R}^n \text{ such that } \langle a, x_1 \rangle \leq \langle a, x_2 \rangle \quad \forall x_1 \in C_1, x_2 \in C_2.$

Theorem 4. Let C_1 and C_2 be two nonempty and disjoint convex subsets of \mathbb{R}^n , then there exists a hyperplane that separates them:

 $\exists a \in \mathbb{R}^n \text{ such that } \langle a, x_1 \rangle \leq \langle a, x_2 \rangle \quad \forall x_1 \in C_1, x_2 \in C_2.$

• C_1 be compact, C_2 cld, convex and disj. and $(c_1, c_2) = \underset{x \in C_1, y \in C_2}{\operatorname{arg min}} \|x - y\|$,

- Define $w = c_2 c_1$ and $b = \frac{\|c_2\|^2 \|c_1\|^2}{2}$ and the function $f(x) = \langle w, x \rangle + b = \langle c_2 c_1, x \frac{1}{2}(c_2 + c_1) \rangle.$
- to show: f is negative on C_1 and positive on C_2 .
- Suppose there exists a point z on C_2 such that f(z) < 0. Now

$$f(z) = \langle c_2 - c_1, z - c_2 \rangle + \frac{1}{2} \| c_2 - c_1 \|^2 < 0 \implies \langle c_2 - c_1, z - c_2 \rangle < 0,$$
$$\frac{\partial}{\partial t} \| c_2 + t(z - c_2) - c_1 \|^2 \Big|_{t=0} = 2 \langle z - c_2, c_2 - c_1 \rangle < 0,$$
thus $t \ll 1$, $\| c_2 + t(z - c_2) - c_1 \| \le \| c_2 - c_1 \|$ and $c_2 + t(z - c_2) \in C_2 \Rightarrow 4$

The construction of the separating hyerplane of two convex sets.

Proof continued

- general case: take $S = C_1 C_2$ and $\{0\}$ $(C_1 \cap C_2 = \emptyset \Rightarrow \{0\} \notin S)$,
- we assume $\{0\} \in \overline{S} \Rightarrow 0 \in \partial S$,
- If S has empty interior \Rightarrow S contained in hyperplane through origin,
- S non-empty interior: consider $S_{-\varepsilon} = \{z \mid B(z,\varepsilon) \subset S\}$ which is convex and $\{0\} \notin S_{-\varepsilon}$,
- \Rightarrow separating hyperplane a_{ε} which strictly separates 0 from $\overline{S_{-\varepsilon}}$.
- assume that $||a_{\varepsilon}|| = 1$. The bounded sequence a_{ε} contains a convergent subsequence with limit a'.
- Since $\langle a_{\varepsilon}, z \rangle > 0$ for all $z \in S_{-\varepsilon}$, we have that $\langle a', z \rangle > 0$ for all $z \in \text{int } S$ and $\langle a', z \rangle \ge 0$ for all $z \in S$ and thus $\langle a', x_1 \rangle \ge \langle a', x_2 \rangle$.

Corollary 1 (Strict Separating Hyperplane Theorem). Let C_1 and C_2 be two nonempty and disjoint convex subsets of \mathbb{R}^n such that C_1 is closed and C_2 is compact, then there exists a hyperplane that strictly separates them:

 $\exists a \in \mathbb{R}^n, b \in \mathbb{R}, such that \langle a, x_1 \rangle < b < \langle a, x_2 \rangle \quad \forall x_1 \in C_1, x_2 \in C_2.$

Proposition 1. A closed convex set is the intersection of all half-spaces that contain it.

Proof:

- S is the intersection of all half-spaces containing the closed convex set C,
- $x \in C \Rightarrow x \in S$.
- Assume $x \in S$ but $x \notin C$. By the strict separation theorem there exists a halfspace containing C but not x which implies that x cannot lie in S.

Theorem 5 (Supporting Hyperplane Theorem). Let C be a convex set in \mathbb{R}^n and x' a point that does not belong to the interior of C. Then there exists a vector $a \neq 0$ such that

$$\langle a, x \rangle \ge \langle a, x' \rangle, \quad \forall x \in C.$$

The supporting hyperplane of a (non-convex) set at x_0 .

Extreme Points:

Definition 17. Let C be a convex set. Then $x \in C$ is an *extreme point* if there exist no $y, z \in C$ with $y \neq x$ and $z \neq x$ such that for $0 < \alpha < 1$,

 $x = \alpha y + (1 - \alpha)z.$

Properties of extreme points:

Proposition 2. Let C be a nonempty, closed convex set in \mathbb{R}^n . Then C has at least one extreme point if and only if it does not contain a line, that is, a set L of the form $L = \{x + \alpha d \mid \alpha \in \mathbb{R}\}$ with $d \neq 0$.

The next theorem shows that extreme points are "generators" of convex sets. **Theorem 6** (Krein-Milman-Theorem). A convex and compact set C is equal to the convex hull of its extreme points.

Extreme points as minima of concave functions:

Proposition 3. Let C be a convex subset of \mathbb{R}^n and let C^* be the set of minima of a concave function $f : \mathbb{R}^n \to \mathbb{R}$ with dom f = C. Then

- If C^* contains a relative interior point of C, then f must be constant over $C \implies C^* = C$.
- If C is closed and contains at least one extreme point, and C^{*} is nonempty, then C^{*} contains some extreme point of C.

Basis for the simplex algorithm in Linear Programming Proposition 4. Let P be a polyhedral subset of \mathbb{R}^n . If P has the form

 $P = \{x \mid \langle a_j, x \rangle \le b_j, \quad j = 1, \dots, r\},\$

where $a_j \in \mathbb{R}^n$ and $b_j \in \mathbb{R}$, then a vector $v \in P$ is an extreme point if and only if the set

$$\{a_j \mid \langle a_j, v \rangle = b_j, \quad j = 1, \dots, r\},\$$

contains n linearly independent vectors.

Proposition 5 (Fundamental Theorem of Linear Programming). Let P be a polyhedral set that has at least one extreme point. Then, if a linear function attains a minimum over P, it attains a minimum at some extreme point of P.