Convex Optimization and Modeling

Convex sets

Second lecture, 21.04.2010
Jun.-Prof. Matthias Hein

Convex Sets:

- affine and convex sets
- cones
- operations that preserve convexity
- generalized inequalities
- separating and supporting hyperplane theorems
- extreme points - fundamental theorem of linear programming

Why are convex sets important ?

The domain of a convex function has to be convex

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y), \quad \forall \theta \in[0,1] .
$$

Affine Structure

Definition 1. A set $C \subset \mathbb{R}^{n}$ is affine if for any $x_{1}, x_{2} \in C$ and $\theta \in \mathbb{R}$ we have

$$
\theta x_{1}+(1-\theta) x_{2} \in C .
$$

A set is affine if the line through every two points inside the set is contained in the set.

Affine set: subspace with some offset,

$$
C=x_{0}+V=\left\{x_{0}+v \mid v \in V\right\}
$$

where V is a subspace of \mathbb{R}^{n}.

Affine dimension of an affine set: dimension of the subspace V.

Affine Structure II

Definition 2. The affine hull of a set of points x_{1}, \ldots, x_{k} is defined as,

$$
a f f C=\left\{\sum_{i=1}^{k} \theta_{i} x_{i} \mid \sum_{i=1}^{k} \theta_{i}=1\right\} .
$$

Important note: If the affine hull of a set of points is not equal to \mathbb{R}^{n} the interior of an affine set is always empty.

Definition 3. The relative interior relint C of the set C is defined as,

$$
\text { relint } C=\{x \in C \mid B(x, r) \cap \text { aff } C \subseteq C \text { for some } r>0\} \text {, }
$$

where $B(x, r)=\left\{y \in \mathbb{R}^{n} \mid\|x-y\| \leq r\right\}$ is the ball of radius r around x with respect to some norm on \mathbb{R}^{n}. The relative boundary of C is the set $\bar{C} \backslash$ relint C.

Convex sets: A convex set C is a set such that every line segment connecting any two points in C is again contained in C.
Definition 4. A set C is convex if for any $x_{1}, x_{2} \in C$ and for any θ with $0 \leq \theta \leq 1$ we have

$$
\theta x_{1}+(1-\theta) x_{2} \in C .
$$

\Longrightarrow Every affine set is clearly convex.

Definition 5. A point $z=\sum_{i=1}^{k} \theta_{i} x_{i}$ where $\sum_{i=1}^{k} \theta_{i}=1$ and $\theta_{i} \geq 0$ is a convex combination of x_{1}, \ldots, x_{k}. The convex hull of a set C is defined as

$$
\operatorname{conv} C=\left\{\sum_{i=1}^{k} \theta_{i} x_{i} \mid x_{1}, \ldots, x_{k} \in C, \theta_{i} \geq 0, \sum_{i=1}^{k} \theta_{i}=1, k \in \mathbb{N}\right\}
$$

The convex combination can be seen as the weighted average of the points.

- The convex hull conv C of a set C is convex. It is the smallest convex set containing C.
- extension to continuous weights

$$
\operatorname{conv} C=\left\{\int_{C} x p(x) d x \mid p(x) \geq 0, \int_{C} p(x) d x=1\right\} .
$$

Note: $\int_{C} x p(x) d x=\mathbb{E}[X]$.
Discrete version: use an atomic measure, where $\mathrm{P}\left(X=x_{i}\right)=p_{i}$.

Convex Sets III

Left: Convex set, Middle: Not Convex, Right: Not Convex.

Left: convex hull of a set of points, Right: convex hull of a non-convex set.

Definition 6. A set C is called a cone if for every $x \in C$ and $\theta \geq 0$ we have $\theta x \in C$. A set C is a convex cone if it is convex and a cone, which means that for any $x_{1}, x_{2} \in C$ and $\theta_{1}, \theta_{2} \geq 0$ we have

$$
\theta_{1} x_{1}+\theta_{2} x_{2} \in C .
$$

Note: a cone always contains the origin in \mathbb{R}^{n}.

Definition 7. The conic hull of a set C is defined as

$$
\left\{\sum_{i=1}^{k} \theta_{i} x_{i} \mid x_{1}, \ldots, x_{k} \in C, \theta_{i} \geq 0, k \in \mathbb{N}\right\} .
$$

- The conic hull is the smallest convex cone containing C.
- A cone is convex if and only if it contains all conic combinations of its elements.

Definition 8. A polyhedron P is the set

$$
P=\left\{x \mid\left\langle a_{j}, x\right\rangle \leq b_{j}, j=1, \ldots, m, \quad\left\langle c_{i}, x\right\rangle=d_{i}, i=1, \ldots, p\right\} .
$$

- more compact form of a polyhedron P :

$$
P=\{x \mid A x \preceq b, C x=d\} .
$$

where \preceq indicates componentwise inequality and the j-th row of A is a_{j} and the i-th row of C is c_{i}.

Definition 9. Let x_{0}, \ldots, x_{k} be $k+1$ points and assume that $x_{1}-x_{0}, \ldots, x_{k}-x_{0}$ are linearly independent. Then the simplex determined by them is given by

$$
C=\operatorname{conv}\left\{x_{0}, \ldots, x_{k}\right\}=\left\{\sum_{i=0}^{k} \theta_{i} x_{i} \mid \theta \succeq 0, \mathbf{1}^{T} \theta=1\right\} .
$$

Examples of convex sets

Polyhedron

k-Simplex

- 1-simplex: line segment,
- 2-simplex: triangle,
- 3-simplex: tetrahedron.

A 3 -simplex in \mathbb{R}^{3}.

The positive semidefinite cone
The symbol S^{n} denotes the set of symmetric $n \times n$ matrices,

$$
S^{n}=\left\{X \in \mathbb{R}^{n \times n} \mid X=X^{T}\right\},
$$

The set of positive semi-definite matrices S_{+}^{n},

$$
S_{+}^{n}=\left\{X \in S^{n} \mid X \succeq 0\right\},
$$

where $X \succeq 0 \quad \Longleftrightarrow \quad \forall w \in \mathbb{R}^{n}, \quad\langle w, X w\rangle \geq 0$.

The set of positive-definite matrices S_{++}^{n},

$$
S_{++}^{n}=\left\{X \in S^{n} \mid X \succ 0\right\}
$$

where $X \succ 0 \quad \Longleftrightarrow \quad \forall w \in \mathbb{R}^{n}, w \neq 0, \quad\langle w, X w\rangle>0$.

Note: S_{+}^{n} is a convex cone but not S_{++}^{n}.

Definition 10. An affine function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has the form $f(x)=A x+b$ with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$.
Definition 11. The perspective function $P: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ with domain $\operatorname{dom} P=\mathbb{R}^{n} \times \mathbb{R}_{++}$is defined as $P(z, t)=\frac{z}{t}$.
Definition 12. A linear fractional function is a composition of the perspective with an affine function. Let $g: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{m+1}$ be affine,

$$
g(x)=\binom{A}{c^{T}} x+\binom{b}{d},
$$

where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, d \in \mathbb{R}$ and $c \in \mathbb{R}^{n}$. The function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $f=P \circ g$, that is

$$
f(x)=\frac{A x+b}{c^{T} x+d},
$$

with domain $\operatorname{dom} f=\left\{x \mid c^{T} x+d>0\right\}$ is linear fractional.

Pin-hole camera interpretation of the perspective function:

Important example for a linear fractional function:
Let X and Y be random variables on $\{1, \ldots, n\}$ and $\{1, \ldots, m\}$. and denote by $p_{i j}=\mathrm{P}(X=i, Y=j)$ the probability that $X=i$ and $Y=j$. The conditional probability

$$
f_{i j}=\mathrm{P}(X=i \mid Y=j)=\frac{p_{i j}}{\sum_{i=1}^{n} p_{i j}} .
$$

is a linear-fractional function of $p_{i j}$. Given a convex set of probabilities on X and Y also the conditional probabilities will be convex.

Collection of operations that conserve convexity:
Theorem 1. - Let $\left\{C_{\alpha}\right\}_{\alpha \in I}$ be an arbitrary set of convex sets, then their intersection $\cap_{\alpha \in I} C_{\alpha}$ is convex.

- The closure and relative interior of a convex set are convex.
- Let $S \subseteq \mathbb{R}^{n}$ be a convex set and f an affine function, then the image of S under f, The image of a convex set S under an affine function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$,

$$
f(S)=\left\{f(x) \in \mathbb{R}^{m} \mid x \in S\right\}
$$

is convex. Similarly, the pre-image of a convex set S under an affine function $f: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$,

$$
f^{-1}(S)=\left\{x \in \mathbb{R}^{k} \mid f(x) \in S\right\}
$$

is convex.
Prominent examples: scaling, translation and projection.

A more indirect example of the image of an affine function: The cartesian or direct product $C_{1} \times C_{2}$ of two convex sets
$C_{1} \subseteq \mathbb{R}^{n}, C_{2} \subseteq \mathbb{R}^{m}$ (turned into a vector space) is convex
$\lambda\left(x_{1}, x_{2}\right)+(1-\lambda)\left(y_{1}, y_{2}\right)=\left(\lambda x_{1}+(1-\lambda) x_{2}, \lambda y_{1}+(1-\lambda) y_{2}\right) \in C_{1} \times C_{2}$.

Then the function $f: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined as $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$ preserves convexity, therefore the sum $C_{1}+C_{2}$ defined as

$$
C_{1}+C_{2}=\left\{x+y \mid x \in C_{1}, y \in C_{2}\right\}
$$

is convex.

Collection of operations that conserve convexity (continued):
Theorem 2. - If $C \subseteq \operatorname{dom} P$ is convex, then its image
$P(C)=\{P(x) \mid x \in C\}$ is convex. The pre-image of a convex set under the perspective function is also convex. If $C \subseteq \mathbb{R}^{n}$ is convex, then

$$
P^{-1}(C)=\left\{(x, t) \in \mathbb{R}^{n+1} \mid x / t \in C, \quad t>0\right\},
$$

is convex.

- Using the result about the perspective and affine function, it follows immediately that the image of a convex set C under a linear fractional function f is convex given that C lies in the domain of f (that means $c^{T} x+d>0$ for all $x \in C$).

A proper cone

Definition 13. A cone $K \subseteq \mathbb{R}^{n}$ is called a proper cone if the following holds

- K is convex,
- K is closed,
- K has nonempty interior (K is solid),
- K is pointed, that is it contains no line or equivalently $x \in K$ and $-x \in K$ imply $x=0$.

Note: The last property excludes \mathbb{R}^{n}, the last and second last excludes hyperplanes and half-spaces.

Definition 14. A proper cone K defines a generalized inequality which is a partial ordering on \mathbb{R}^{n},

$$
x \preceq_{K} y \quad \Longleftrightarrow \quad y-x \in K .
$$

A strict partial ordering can be defined via

$$
x \prec_{K} y \quad \Longleftrightarrow \quad y-x \in \operatorname{int} K
$$

Examples:

- $K=\left\{x \in \mathbb{R}^{n} \mid x_{i} \geq 0, i=1, \ldots, n\right\}$, (positive orthant) generalized inequality \preceq_{K} : componentwise inequality,
- for the set of symmetric matrices $S^{n}, K=S_{+}^{n}$ the set of positive semi-definite matrices,

$$
A \preceq_{K} B \quad \Longleftrightarrow \quad B-A \in S_{+}^{n}
$$

Definition 15. A partial order \leq over a set A is a binary relation on A, which fulfills for all $a, b, c \in A$,

- reflexivity: $a \leq a$,
- antisymmetry: $a \leq b$ and $b \leq a \Rightarrow a=b$,
- transitivity: $a \leq b$ and $b \leq c \Rightarrow a \leq c$.
A set with a partial order is called partially ordered set or poset.

A generalized inequality induces a partial order and fulfills additionally

- preserved under addition, $x \preceq_{K} y$ and $u \preceq_{K} v \Rightarrow x+u \preceq_{K} y+v$,
- preserved under scaling, $\quad x \preceq_{K} y \Rightarrow \alpha x \preceq_{K} \alpha y$,
- preserved under limits, $\quad x_{t} \preceq_{K} y_{t} \quad \Rightarrow \quad x \preceq_{K} y$,
where $x=\lim _{t \rightarrow \infty} x_{t}, \quad y=\lim _{t \rightarrow \infty} y_{t}$.

Minimum and minimal element
In a partial order not any two elements of a set can be compared!

Definition 16. If for every $y \in C$, we have $x \preceq_{K} y$, then we say that x is the minimum element of C with respect to the generalized inequality \preceq_{K} (the maximum element can be defined analogously).

$$
C \subseteq\{x\}+K
$$

If for every $y \in C$ we have $y \preceq_{K} x$ only if $y=x$, then we say that x is a minimal element of C with respect to the generalized inequality.

$$
(x-K) \cap C=\{x\} .
$$

Minimum and minimal element

Left: The minimum of a convex set, Right: A minimal element of a convex set.

Theorem 3. Let C_{1} and C_{2} be two nonempty and disjoint convex subsets of \mathbb{R}^{n}, then there exists a hyperplane that separates them:

$$
\exists a \in \mathbb{R}^{n} \text { such that }\left\langle a, x_{1}\right\rangle \leq\left\langle a, x_{2}\right\rangle \quad \forall x_{1} \in C_{1}, x_{2} \in C_{2} .
$$

Theorem 4. Let C_{1} and C_{2} be two nonempty and disjoint convex subsets of \mathbb{R}^{n}, then there exists a hyperplane that separates them:

$$
\exists a \in \mathbb{R}^{n} \text { such that }\left\langle a, x_{1}\right\rangle \leq\left\langle a, x_{2}\right\rangle \quad \forall x_{1} \in C_{1}, x_{2} \in C_{2}
$$

- C_{1} be compact, C_{2} cld, convex and disj. and $\left(c_{1}, c_{2}\right)=\underset{x \in C_{1}, y \in C_{2}}{\arg \min }\|x-y\|$,
- Define $w=c_{2}-c_{1}$ and $b=\frac{\left\|c_{2}\right\|^{2}-\left\|c_{1}\right\|^{2}}{2}$ and the function

$$
f(x)=\langle w, x\rangle+b=\left\langle c_{2}-c_{1}, x-\frac{1}{2}\left(c_{2}+c_{1}\right)\right\rangle .
$$

- to show: f is negative on C_{1} and positive on C_{2}.
- Suppose there exists a point z on C_{2} such that $f(z)<0$. Now

$$
\begin{gathered}
f(z)=\left\langle c_{2}-c_{1}, z-c_{2}\right\rangle+\frac{1}{2}\left\|c_{2}-c_{1}\right\|^{2}<0 \quad \Longrightarrow \quad\left\langle c_{2}-c_{1}, z-c_{2}\right\rangle<0 \\
\left.\frac{\partial}{\partial t}\left\|c_{2}+t\left(z-c_{2}\right)-c_{1}\right\|^{2}\right|_{t=0}=2\left\langle z-c_{2}, c_{2}-c_{1}\right\rangle<0
\end{gathered}
$$

thus $t \ll 1,\left\|c_{2}+t\left(z-c_{2}\right)-c_{1}\right\| \leq\left\|c_{2}-c_{1}\right\|$ and $c_{2}+t\left(z-c_{2}\right) \in C_{2} \Rightarrow$ t

The construction of the separating hyerplane of two convex sets.

Proof continued

- general case: take $S=C_{1}-C_{2}$ and $\{0\} \quad\left(C_{1} \cap C_{2}=\emptyset \Rightarrow\{0\} \notin S\right)$,
- we assume $\{0\} \in \bar{S} \Rightarrow 0 \in \partial S$,
- If S has empty interior $\Rightarrow S$ contained in hyperplane through origin,
- S non-empty interior: consider $S_{-\varepsilon}=\{z \mid B(z, \varepsilon) \subset S\}$ which is convex and $\{0\} \notin S_{-\varepsilon}$,
- \Rightarrow separating hyperplane a_{ε} which strictly separates 0 from $\overline{S_{-\varepsilon}}$.
- assume that $\left\|a_{\varepsilon}\right\|=1$. The bounded sequence a_{ε} contains a convergent subsequence with limit a^{\prime}.
- Since $\left\langle a_{\varepsilon}, z\right\rangle>0$ for all $z \in S_{-\varepsilon}$, we have that $\left\langle a^{\prime}, z\right\rangle>0$ for all $z \in \operatorname{int} S$ and $\left\langle a^{\prime}, z\right\rangle \geq 0$ for all $z \in S$ and thus $\left\langle a^{\prime}, x_{1}\right\rangle \geq\left\langle a^{\prime}, x_{2}\right\rangle$.

Corollary 1 (Strict Separating Hyperplane Theorem). Let C_{1} and C_{2} be two nonempty and disjoint convex subsets of \mathbb{R}^{n} such that C_{1} is closed and C_{2} is compact, then there exists a hyperplane that strictly separates them: $\exists a \in \mathbb{R}^{n}, b \in \mathbb{R}$, such that $\left\langle a, x_{1}\right\rangle<b<\left\langle a, x_{2}\right\rangle \quad \forall x_{1} \in C_{1}, x_{2} \in C_{2}$.

Proposition 1. A closed convex set is the intersection of all half-spaces that contain it.

Proof:

- S is the intersection of all half-spaces containing the closed convex set C,
- $x \in C \Rightarrow x \in S$.
- Assume $x \in S$ but $x \notin C$. By the strict separation theorem there exists a halfspace containing C but not x which implies that x cannot lie in S.

Theorem 5 (Supporting Hyperplane Theorem). Let C be a convex set in \mathbb{R}^{n} and x^{\prime} a point that does not belong to the interior of C. Then there exists a vector $a \neq 0$ such that

$$
\langle a, x\rangle \geq\left\langle a, x^{\prime}\right\rangle, \quad \forall x \in C
$$

The supporting hyperplane of a (non-convex) set at x_{0}.

Extreme Points

Extreme Points:

Definition 17. Let C be a convex set. Then $x \in C$ is an extreme point if there exist no $y, z \in C$ with $y \neq x$ and $z \neq x$ such that for $0<\alpha<1$,

$$
x=\alpha y+(1-\alpha) z .
$$

(a)

(b)

Extreme
Points
(c)

Properties of extreme points:

Proposition 2. Let C be a nonempty, closed convex set in \mathbb{R}^{n}. Then C has at least one extreme point if and only if it does not contain a line, that is, a set L of the form $L=\{x+\alpha d \mid \alpha \in \mathbb{R}\}$ with $d \neq 0$.

The next theorem shows that extreme points are "generators" of convex sets. Theorem 6 (Krein-Milman-Theorem). A convex and compact set C is equal to the convex hull of its extreme points.

Extreme points as minima of concave functions:

Proposition 3. Let C be a convex subset of \mathbb{R}^{n} and let C^{*} be the set of minima of a concave function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $\operatorname{dom} f=C$. Then

- If C^{*} contains a relative interior point of C, then f must be constant over $C \Longrightarrow C^{*}=C$.
- If C is closed and contains at least one extreme point, and C^{*} is nonempty, then C^{*} contains some extreme point of C.

Basis for the simplex algorithm in Linear Programming

Proposition 4. Let P be a polyhedral subset of \mathbb{R}^{n}. If P has the form

$$
P=\left\{x \mid\left\langle a_{j}, x\right\rangle \leq b_{j}, \quad j=1, \ldots, r\right\},
$$

where $a_{j} \in \mathbb{R}^{n}$ and $b_{j} \in \mathbb{R}$, then a vector $v \in P$ is an extreme point if and only if the set

$$
\left\{a_{j} \mid\left\langle a_{j}, v\right\rangle=b_{j}, \quad j=1, \ldots, r\right\},
$$

contains n linearly independent vectors.

Proposition 5 (Fundamental Theorem of Linear Programming). Let P be a polyhedral set that has at least one extreme point. Then, if a linear function attains a minimum over P, it attains a minimum at some extreme point of P.

