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Program of today

Convex Sets:

• affine and convex sets

• cones

• operations that preserve convexity

• generalized inequalities

• separating and supporting hyperplane theorems

• extreme points - fundamental theorem of linear programming

Why are convex sets important ?

The domain of a convex function has to be convex

f
(

θx + (1 − θ)y
)

≤ θ f(x) + (1 − θ) f(y), ∀ θ ∈ [0, 1].
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Affine Structure

Definition 1. A set C ⊂ R
n is affine if for any x1, x2 ∈ C and θ ∈ R we

have

θx1 + (1 − θ)x2 ∈ C.

A set is affine if the line through every two points inside the set is contained

in the set.

Affine set: subspace with some offset,

C = x0 + V = {x0 + v | v ∈ V },

where V is a subspace of R
n.

Affine dimension of an affine set: dimension of the subspace V .
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Affine Structure II

Definition 2. The affine hull of a set of points x1, . . . , xk is defined as,

aff C =
{

k
∑

i=1

θixi

∣

∣

∣

k
∑

i=1

θi = 1
}

.

Important note: If the affine hull of a set of points is not equal to R
n the

interior of an affine set is always empty.

Definition 3. The relative interior relint C of the set C is defined as,

relint C = {x ∈ C | B(x, r) ∩ aff C ⊆ C for some r > 0},

where B(x, r) = {y ∈ R
n | ‖x − y‖ ≤ r} is the ball of radius r around x with

respect to some norm on R
n. The relative boundary of C is the set

C\relint C.
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Convex sets

Convex sets: A convex set C is a set such that every line segment

connecting any two points in C is again contained in C.

Definition 4. A set C is convex if for any x1, x2 ∈ C and for any θ with

0 ≤ θ ≤ 1 we have

θx1 + (1 − θ)x2 ∈ C.

=⇒ Every affine set is clearly convex.

Definition 5. A point z =
∑k

i=1
θixi where

∑k
i=1

θi = 1 and θi ≥ 0 is a

convex combination of x1, . . . , xk. The convex hull of a set C is defined

as

conv C =
{

k
∑

i=1

θixi

∣

∣

∣
x1, . . . , xk ∈ C, θi ≥ 0,

k
∑

i=1

θi = 1, k ∈ N

}

.

The convex combination can be seen as the weighted average of the points.
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Convex Sets II

• The convex hull conv C of a set C is convex. It is the smallest convex set

containing C.

• extension to continuous weights

conv C =
{

∫

C

x p(x) dx
∣

∣

∣
p(x) ≥ 0,

∫

C

p(x) dx = 1
}

.

Note:
∫

C
xp(x) dx = E[X].

Discrete version: use an atomic measure, where P(X = xi) = pi.
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Convex Sets III

Left: Convex set, Middle: Not Convex, Right: Not Convex.

Left: convex hull of a set of points, Right: convex hull of a non-convex set.
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Cones

Definition 6. A set C is called a cone if for every x ∈ C and θ ≥ 0 we have

θx ∈ C. A set C is a convex cone if it is convex and a cone, which means

that for any x1, x2 ∈ C and θ1, θ2 ≥ 0 we have

θ1x1 + θ2x2 ∈ C.

Note: a cone always contains the origin in R
n.

Definition 7. The conic hull of a set C is defined as

{

k
∑

i=1

θixi

∣

∣

∣
x1, . . . , xk ∈ C, θi ≥ 0, k ∈ N

}

.

• The conic hull is the smallest convex cone containing C.

• A cone is convex if and only if it contains all conic combinations of its

elements.
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Examples of convex sets

Definition 8. A polyhedron P is the set

P = {x | 〈aj , x〉 ≤ bj , j = 1, . . . ,m, 〈ci, x〉 = di, i = 1, . . . , p}.

• more compact form of a polyhedron P :

P = {x | Ax � b, Cx = d}.

where � indicates componentwise inequality and the j-th row of A is aj

and the i-th row of C is ci.

Definition 9. Let x0, . . . , xk be k + 1 points and assume that

x1 − x0, . . . , xk − x0 are linearly independent. Then the simplex determined

by them is given by

C = conv{x0, . . . , xk} =
{

k
∑

i=0

θixi

∣

∣

∣
θ � 0, 1T θ = 1

}

.
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Examples of convex sets

Polyhedron

k-Simplex

A 3-simplex in R
3.

• 1-simplex: line segment,

• 2-simplex: triangle,

• 3-simplex: tetrahedron.
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Examples: Cones

The positive semidefinite cone

The symbol Sn denotes the set of symmetric n × n matrices,

Sn = {X ∈ R
n×n | X = XT },

The set of positive semi-definite matrices Sn
+,

Sn
+ = {X ∈ Sn | X � 0},

where X � 0 ⇐⇒ ∀w ∈ R
n, 〈w,Xw〉 ≥ 0.

The set of positive-definite matrices Sn
++,

Sn
++ = {X ∈ Sn | X ≻ 0},

where X ≻ 0 ⇐⇒ ∀w ∈ R
n, w 6= 0, 〈w,Xw〉 > 0.

Note: Sn
+ is a convex cone but not Sn

++.
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Operations that conserve convexity

Definition 10. An affine function f : R
n → R

m has the form

f(x) = Ax + b with A ∈ R
m×n and b ∈ R

m.

Definition 11. The perspective function P : R
n+1 → R

n with domain

dom P = R
n × R++ is defined as P (z, t) = z

t
.

Definition 12. A linear fractional function is a composition of the

perspective with an affine function. Let g : R
n+1 → R

m+1 be affine,

g(x) =

(

A

cT

)

x +

(

b

d

)

,

where A ∈ R
m×n, b ∈ R

m, d ∈ R and c ∈ R
n. The function f : R

n → R
m

given by f = P ◦ g, that is

f(x) =
Ax + b

cT x + d
,

with domain dom f = {x | cT x + d > 0} is linear fractional.
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Perspective function

Pin-hole camera interpretation of the perspective function:

Important example for a linear fractional function:

Let X and Y be random variables on {1, . . . , n} and {1, . . . ,m}. and denote

by pij = P(X = i, Y = j) the probability that X = i and Y = j. The

conditional probability

fij = P(X = i|Y = j) =
pij

∑n
i=1

pij

.

is a linear-fractional function of pij . Given a convex set of probabilities on X

and Y also the conditional probabilities will be convex.
12



Operations that conserve convexity II

Collection of operations that conserve convexity:

Theorem 1. • Let {Cα}α∈I be an arbitrary set of convex sets, then their

intersection ∩α∈ICα is convex.

• The closure and relative interior of a convex set are convex.

• Let S ⊆ R
n be a convex set and f an affine function, then the image of S

under f , The image of a convex set S under an affine function

f : R
n → R

m,

f(S) = {f(x) ∈ R
m | x ∈ S},

is convex. Similarly, the pre-image of a convex set S under an

affine function f : R
k → R

n,

f−1(S) = {x ∈ R
k | f(x) ∈ S},

is convex.

Prominent examples: scaling, translation and projection.
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Operations that conserve convexity II

A more indirect example of the image of an affine function:

The cartesian or direct product C1 × C2 of two convex sets

C1 ⊆ R
n, C2 ⊆ R

m (turned into a vector space) is convex

λ
(

x1, x2

)

+ (1− λ)
(

y1, y2

)

=
(

λx1 + (1− λ)x2, λy1 + (1− λ)y2

)

∈ C1 ×C2.

Then the function f : R
n × R

n → R
n defined as f(x1, x2) = x1 + x2 preserves

convexity, therefore the sum C1 + C2 defined as

C1 + C2 = {x + y | x ∈ C1, y ∈ C2}

is convex.
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Operations that conserve convexity II

Collection of operations that conserve convexity (continued):

Theorem 2. • If C ⊆ dom P is convex, then its image

P (C) = {P (x) |x ∈ C} is convex. The pre-image of a convex set

under the perspective function is also convex. If C ⊆ R
n is convex,

then

P−1(C) = {(x, t) ∈ R
n+1 | x/t ∈ C, t > 0},

is convex.

• Using the result about the perspective and affine function, it follows

immediately that the image of a convex set C under a linear

fractional function f is convex given that C lies in the domain of f

(that means cT x + d > 0 for all x ∈ C).
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Generalized Inequalities I

A proper cone

Definition 13. A cone K ⊆ R
n is called a proper cone if the following

holds

• K is convex,

• K is closed,

• K has nonempty interior (K is solid),

• K is pointed, that is it contains no line or equivalently x ∈ K and

−x ∈ K imply x = 0.

Note: The last property excludes R
n, the last and second last excludes

hyperplanes and half-spaces.
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Generalized Inequalities II

Definition 14. A proper cone K defines a generalized inequality which is

a partial ordering on R
n,

x �K y ⇐⇒ y − x ∈ K.

A strict partial ordering can be defined via

x ≺K y ⇐⇒ y − x ∈ intK.

Examples:

• K = {x ∈ R
n |xi ≥ 0, i = 1, . . . , n}, (positive orthant)

generalized inequality �K : componentwise inequality,

• for the set of symmetric matrices Sn, K = Sn
+ the set of positive

semi-definite matrices,

A �K B ⇐⇒ B − A ∈ Sn
+
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Generalized Inequalities III

Definition 15. A partial order ≤ over a set A is a binary relation on A,

which fulfills for all a, b, c ∈ A,

• reflexivity: a ≤ a,

• antisymmetry: a ≤ b and b ≤ a ⇒ a = b,

• transitivity: a ≤ b and b ≤ c ⇒ a ≤ c.

A set with a partial order is called partially ordered set or poset.

A generalized inequality induces a partial order and fulfills additionally

• preserved under addition, x �K y and u �K v ⇒ x + u �K y + v,

• preserved under scaling, x �K y ⇒ α x �K α y,

• preserved under limits, xt �K yt ⇒ x �K y,

where x = limt→∞ xt, y = limt→∞ yt.
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Generalized Inequalities IV

Minimum and minimal element

In a partial order not any two elements of a set can be compared !

Definition 16. If for every y ∈ C, we have x �K y, then we say that x is

the minimum element of C with respect to the generalized inequality �K

(the maximum element can be defined analogously).

C ⊆ {x} + K.

If for every y ∈ C we have y �K x only if y = x, then we say that x is a

minimal element of C with respect to the generalized inequality.

(x − K) ∩ C = {x}.
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Generalized Inequalities V

Minimum and minimal element

Left: The minimum of a convex set, Right: A minimal element of a convex

set.
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Separating Hyperplane Theorem

Theorem 3. Let C1 and C2 be two nonempty and disjoint convex subsets of

R
n, then there exists a hyperplane that separates them:

∃ a ∈ R
n such that 〈a, x1〉 ≤ 〈a, x2〉 ∀ x1 ∈ C1, x2 ∈ C2.
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Separating Hyperplane Theorem

Theorem 4. Let C1 and C2 be two nonempty and disjoint convex subsets of

R
n, then there exists a hyperplane that separates them:

∃ a ∈ R
n such that 〈a, x1〉 ≤ 〈a, x2〉 ∀ x1 ∈ C1, x2 ∈ C2.

• C1 be compact, C2 cld, convex and disj. and (c1, c2) = arg min
x∈C1, y∈C2

‖x − y‖,

• Define w = c2 − c1 and b = ‖c2‖
2−‖c1‖

2

2
and the function

f(x) = 〈w, x〉 + b =
〈

c2 − c1, x − 1

2
(c2 + c1)

〉

.

• to show: f is negative on C1 and positive on C2.

• Suppose there exists a point z on C2 such that f(z) < 0. Now

f(z) = 〈c2 − c1, z − c2〉 +
1

2
‖c2 − c1‖

2 < 0 =⇒ 〈c2 − c1, z − c2〉 < 0,

∂

∂t
‖c2 + t(z − c2) − c1‖

2
∣

∣

∣

t=0
= 2 〈z − c2, c2 − c1〉 < 0,

thus t ≪ 1, ‖c2 + t(z − c2) − c1‖ ≤ ‖c2 − c1‖ and c2 + t(z − c2) ∈ C2 ⇒ �
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Operations that conserve convexity

The construction of the separating hyerplane of two convex sets.
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Separating Hyperplane Theorem II

Proof continued

• general case: take S = C1 − C2 and {0} (C1 ∩ C2 = ∅ ⇒ {0} 6∈ S),

• we assume {0} ∈ S ⇒ 0 ∈ ∂S,

• If S has empty interior ⇒ S contained in hyperplane through origin,

• S non-empty interior: consider S−ε = {z |B(z, ε) ⊂ S} which is convex

and {0} 6∈ S−ε,

• ⇒ separating hyperplane aε which strictly separates 0 from S−ε.

• assume that ‖aε‖ = 1. The bounded sequence aε contains a convergent

subsequence with limit a′.

• Since 〈aε, z〉 > 0 for all z ∈ S−ε, we have that 〈a′, z〉 > 0 for all z ∈ int S

and 〈a′, z〉 ≥ 0 for all z ∈ S and thus 〈a′, x1〉 ≥ 〈a′, x2〉.
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Separating Hyperplane Theorem III

Corollary 1 (Strict Separating Hyperplane Theorem). Let C1 and C2 be

two nonempty and disjoint convex subsets of R
n such that C1 is closed and

C2 is compact, then there exists a hyperplane that strictly separates them:

∃ a ∈ R
n, b ∈ R, such that 〈a, x1〉 < b < 〈a, x2〉 ∀ x1 ∈ C1, x2 ∈ C2.

Proposition 1. A closed convex set is the intersection of all half-spaces that

contain it.

Proof:

• S is the intersection of all half-spaces containing the closed convex set C,

• x ∈ C ⇒ x ∈ S.

• Assume x ∈ S but x 6∈ C. By the strict separation theorem there exists a

halfspace containing C but not x which implies that x cannot lie in S.
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Supporting Hyperplane Theorem

Theorem 5 (Supporting Hyperplane Theorem). Let C be a convex set in

R
n and x′ a point that does not belong to the interior of C. Then there exists

a vector a 6= 0 such that

〈a, x〉 ≥
〈

a, x′
〉

, ∀x ∈ C.

The supporting hyperplane of a (non-convex) set at x0.
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Extreme Points

Extreme Points:

Definition 17. Let C be a convex set. Then x ∈ C is an extreme point if

there exist no y, z ∈ C with y 6= x and z 6= x such that for 0 < α < 1,

x = αy + (1 − α)z.
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Extreme Points II

Properties of extreme points:

Proposition 2. Let C be a nonempty, closed convex set in R
n. Then C has

at least one extreme point if and only if it does not contain a line, that is, a

set L of the form L = {x + αd |α ∈ R} with d 6= 0.

The next theorem shows that extreme points are “generators” of convex sets.

Theorem 6 (Krein-Milman-Theorem). A convex and compact set C is equal

to the convex hull of its extreme points.
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Extreme Points in Linear Programming

Extreme points as minima of concave functions:

Proposition 3. Let C be a convex subset of R
n and let C∗ be the set of

minima of a concave function f : R
n → R with dom f = C. Then

• If C∗ contains a relative interior point of C, then f must be constant

over C =⇒ C∗ = C.

• If C is closed and contains at least one extreme point, and C∗ is

nonempty, then C∗ contains some extreme point of C.
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Extreme Points in Linear Programming II

Basis for the simplex algorithm in Linear Programming

Proposition 4. Let P be a polyhedral subset of R
n. If P has the form

P = {x | 〈aj , x〉 ≤ bj , j = 1, . . . , r},

where aj ∈ R
n and bj ∈ R, then a vector v ∈ P is an extreme point if and

only if the set

{aj | 〈aj , v〉 = bj , j = 1, . . . , r},

contains n linearly independent vectors.

Proposition 5 (Fundamental Theorem of Linear Programming). Let P be a

polyhedral set that has at least one extreme point. Then, if a linear function

attains a minimum over P , it attains a minimum at some extreme point of

P .
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