Convex Optimization and Modeling
Convex sets

Second lecture, 21.04.2010
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Program of today
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SAARLANDES

Convex Sets:
e affine and convex sets
e cones
e operations that preserve convexity
e generalized inequalities
e separating and supporting hyperplane theorems

e extreme points - fundamental theorem of linear programming

Why are convex sets important 7

The domain of a convex function has to be convex

f(Or+(1—0)y) < 0f(x)+(1-0)f(y), VO<c[01].
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Definition 1. A set C' C R" is affine if for any x1,2x9 € C and 6 € R we
have
Ox1+ (1 —0)zs € C.

A set is affine if the line through every two points inside the set is contained

in the set.

Affine set: subspace with some offset,
CZZCO‘|—V:{$O+U‘UEV},

where V' is a subspace of R™.

Affine dimension of an affine set: dimension of the subspace V.
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Definition 2. The affine hull of a set of points x1,...,x 1s defined as,

aff C' = {i@zxz i@i — 1}.
i=1

1=1

Important note: If the affine hull of a set of points is not equal to R™ the

interior of an affine set is always empty.
Definition 3. The relative interior relint C' of the set C' s defined as,

relint C = {x € C' | B(z,r) N aff C C C for some r > 0},

where B(z,r) ={y € R"| ||z —y|| < r} is the ball of radius r around x with

respect to some norm on R™. The relative boundary of C s the set

C\relint C.
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Convex sets: A convex set C is a set such that every line segment

connecting any two points in C' is again contained in C.

Definition 4. A set C is convex if for any x1,x2 € C and for any 0 with
0<60<1 we have
Ox1+ (1 —0)zs € C.

— Ewvery affine set is clearly convex.

Definition 5. A point z = Zle 0;x; where Zle 0; =1 and 0; > 0 is a
convexr combination of x1,...,x. The convex hull of a set C' s defined

as

k
x1,...,x € C, 6; >0, Z@i:L kEN}
1=1

k
conv C' = { E 0;x;
i=1

The convex combination can be seen as the weighted average of the points.
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e The convex hull conv C of a set (' is convex. It is the smallest convex set

containing C.

e extension to continuous weights

ConVC:{me(x)dx‘p(x)ZO, /Cp(a:)datzl}.

Note: [ zp(z)dr = E[X].

Discrete version: use an atomic measure, where P(X = ;) = p;.
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Left: Convex set, Middle: Not Convex, Right: Not Convex.

L] e

Left: convex hull of a set of points, Right: convex hull of a non-convex set.
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Definition 6. A set C' is called a cone if for every x € C and 6 > 0 we have
Ox € C. A set C is a convex cone if it is convex and a cone, which means
that for any x1,x2 € C and 61,02 > 0 we have

0121 + O219 € C.

Note: a cone always contains the origin in R".

Definition 7. The conic hull of a set C is defined as

k
{ ; 0ix;

e The conic hull is the smallest convex cone containing C.

x1,...,x € C,0; >0, kEN}.

e A cone is convex if and only if it contains all conic combinations of its

elements.
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Definition 8. A polyhedron P is the set
P={x| (aj,z) <bj, 5=1,....m, (c,x)=d;,1=1,...,p}.
e more compact form of a polyhedron P:
P={x|Ax <b, Cx =d}.

where < indicates componentwise inequality and the j-th row of A is a;
and the 7-th row of C is ¢;.

Definition 9. Let zg,...,x be k+ 1 points and assume that
x1 — ZTo,...,TE — xo are linearly independent. Then the stmplex determined

by them 1is given by

k
C' = COHV{ZB(), .o ,ZBk} — { Z 6)@33@

1=0

6= 0, 1T9:1}.
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Polyhedron

]
i

{as

s
it

k-Simplex

e l-simplex: line segment,

e 2-simplex: triangle,

e 3-simplex: tetrahedron.
A 3-simplex in R3.
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Examples: Cones

The positive semidefinite cone

The symbol S™ denotes the set of symmetric n x n matrices,
S"={X e R"| X = X'},
The set of positive semi-definite matrices S,
Y={X eS| X =0},

where X ~ 0 <— VweR" (w,Xw)>0.

The set of positive-definite matrices S,
To={XeS"|X -0},

where X =0 <= VYweR"w#0, (w,Xw)>D0.

Note: S—Tﬁ iIs a convex cone but not S—Tﬁ e
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Definition 10. An affine function f : R"™ — R™ has the form
f(x) = Ax 4+ b with A € R™*"™ and b € R™.

Definition 11. The perspective function P : Rt — R™ with domain

dom P = R" x Ry is defined as P(z,t) = 7.

Definition 12. A linear fractional function is a composition of the

perspective with an affine function. Let g : R*T1 — R™+L pe affine,

(4 (1)

where A € R™*" b e R™, d e R and c € R™. The function f : R" — R™
given by f = P o g, that is

Az + b
@) = cl'e4d

with domain dom f = {z|cl'z +d > 0} is linear fractional.
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Perspective function

Pin-hole camera interpretation of the perspective function:

m o

rg = —1

Important example for a linear fractional function:
Let X and Y be random variables on {1,...,n} and {1,...,m}. and denote
by pij = P(X =14,Y = j) the probability that X =7 and ¥ = j. The
conditional probability

Dij
i1 Pij

is a linear-fractional function of p;;. Given a convex set of probabilities on X

fij =P(X =1]Y =j) =

and Y also the conditional probabilities will be convex.
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Collection of operations that conserve convexity:

Theorem 1. e Let {Cylacr be an arbitrary set of convex sets, then their

intersection N, c;C, 1S conver.
The closure and relative interior of a conver set are conver.

Let S C R™ be a convex set and f an affine function, then the image of S
under f, The tmage of a convex set S under an affine function
f:R" - R™,

f(5) ={f(z) e R™ |z € 5},
1s convex. Similarly, the pre-tmage of a convex set S under an
affine function f :RF — R,

fH(S) = {z e R"| f(z) € S},

1S CONVEL.

Prominent examples: scaling, translation and projection.
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Operations that conserve convexity II

A more indirect example of the image of an affine function:
The cartesian or direct product C; x (5 of two convex sets

Ch1 CR”, Cy CR™ (turned into a vector space) is convex

A (:131,:132) +(1—=X) (yl,yg) — ()\:Bl + (1 =Xz, Ayp + (1 — )\)yg) e (1 x Os.

Then the function f: R” x R™ — R" defined as f(x1,x2) = x1 + z2 preserves

convexity, therefore the sum C4 + (9 defined as
C1-|—02:{ZB—|—y‘ZIZEC1, yEC'Q}

1S convex.
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Collection of operations that conserve convexity (continued):

Theorem 2. e [f(C C domP s convex, then its tmage
P(C) ={P(x) |z € C} is convex. The pre-image of a convex set
under the perspective function is also conver. If C' C R"™ is conver,
then

P HC)={(z,t) eR" |z/teC, t>0},
1S convex.

e Using the result about the perspective and affine function, it follows
immediately that the image of a convex set C' under a linear
fractional function f is convex given that C lies in the domain of f
(that means 'z +d > 0 for all x € C).
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A proper cone

Definition 13. A cone K C R" is called a proper cone if the following
holds

e K 1is conver,
e K 1s closed,
e K has nonempty interior (K is solid),

e K 1s pointed, that is it contains no line or equivalently x € K and

—x € K timply x = 0.

Note: The last property excludes R™, the last and second last excludes
hyperplanes and half-spaces.
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Definition 14. A proper cone K defines a generalized inequality which s

a partial ordering on R",
r gy < y—xe€ckK.
A strict partial ordering can be defined via
r<gy < y—xecintkK.

Examples:

o K={zxeR"|z; >0,i=1,...,n}, (positive orthant)

generalized inequality <g: componentwise inequality,

o for the set of symmetric matrices 5™, K = S the set of positive

semi-definite matrices,
A=xk B <= B-AcS}
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Definition 15. A partial order < over a set A is a binary relation on A,

whach fulfills for all a,b,c € A,
o reflerivity: a < a,
e antisymmetry: a < b and b <a = a =0,
o transitivity: a < b and b <c = a < c.

A set with a partial order is called partially ordered set or poset.

A generalized inequality induces a partial order and fulfills additionally
e preserved under addition, x <gy and u g v = r+u g Y+,
e preserved under scaling, x*=<gy = oar <Kk ay,

e preserved under limits, z; gy = x g,

where © = limy .o ¢, Yy = limy_ oo Ysz.
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Minimum and minimal element

In a partial order not any two elements of a set can be compared !

Definition 16. If for every y € C, we have x <k vy, then we say that x is

the minimum element of C with respect to the generalized inequality <k

(the maximum element can be defined analogously).

CC{z}+ K.

If for every y € C we have y g x only if y = x, then we say that x is a

minimal element of C' with respect to the generalized inequality.

(x — K)NnC ={x}.
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Generalized Inequalities V
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Minimum and minimal element

Left: The minimum of a convex set, Right: A minimal element of a convex

set.

YN
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Theorem 3. Let C and Cy be two nonempty and disjoint convex subsets of

R™, then there exists a hyperplane that separates them:

Ja € R" such that (a,x1) < {(a,x2) Va1 € Cy, x2 € Ch.
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Separating Hyperplane Theorem
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Theorem 4. Let C and Cy be two nonempty and disjoint convex subsets of

R™, then there exists a hyperplane that separates them:
Ja € R" such that (a,x1) < {(a,x2) Va1 € Cy, x2 € Ch.

e ('1 be compact, Cy cld, convex and disj. and (c1,c3) = argmin||x — y||,
xeCy, yeCs

2 2
e Define w =cy —c; and b = eall ;HClH and the function

f(@) = (w,z) +b=(ca — 1,2 — 5(ca + c1)).

e to show: f is negative on C;] and positive on Cs.

e Suppose there exists a point z on C5 such that f(z) < 0. Now

1
f(z)={(co—c1,2 — o) + 3 lea—c1l? <0 = (ca—ec1,2—ca) <O,

0 5
Il _ _ —9(s_ _
g |lco +t(z — c2) — 1| . (z —co,c9 — 1) <0,

thus t < 1, ||[ca +t(z —c2) —c1]| < ||ca —c1]| and ca +t(2 — c2) € Cy = %

LEARNING
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Operations that conserve convexity
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The construction of the separating hyerplane of two convex sets.

'2 XD )
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Separating Hyperplane Theorem II

Proof continued

general case: take S =C7 — Cy and {0} (C1NCy=0 = {0} €59),
we assume {0} € S = 0 € 95,
If S has empty interior = S contained in hyperplane through origin,

S non-empty interior: consider S_. = {z| B(z,¢) C S} which is convex

and {0} € S_¢,
= separating hyperplane a. which strictly separates 0 from S_..

assume that ||ac|| = 1. The bounded sequence a. contains a convergent

subsequence with limit a'.

Since (a.,z) > 0 for all z € S_., we have that (a’,z) > 0 for all z € int S
and (a’,z) > 0 for all z € S and thus (a’,x1) > (d, x2).

Yy O
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Corollary 1 (Strict Separating Hyperplane Theorem). Let C and Cy be
two nonempty and disjoint convex subsets of R™ such that Cy is closed and

C5 1s compact, then there exists a hyperplane that strictly separates them:

Jda e R", beR, such that {(a,x1) < b < {a,z2) Vax;€C,xs € Cy.

Proposition 1. A closed convex set is the intersection of all half-spaces that

contain 1t.
Proof:

e S is the intersection of all half-spaces containing the closed convex set C,
e zc(C =2xeb.

e Assume x € S but x ¢ C. By the strict separation theorem there exists a

halfspace containing C' but not x which implies that z cannot lie in S.
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Theorem 5 (Supporting Hyperplane Theorem). Let C' be a conver set in
R™ and 2’ a point that does not belong to the interior of C'. Then there exists
a vector a # 0 such that

The supporting hyperplane of a (non-convex) set at x.
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Extreme Points:

Definition 17. Let C be a convexr set. Then x € C' is an extreme point if
there exist no y,z € C with y # x and z # x such that for 0 < a < 1,

r=ay+ (1 —a«a):z.

L

Extreme Extreme Extreme
Points Points Points

(@) (b) (c)

' WAl
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Properties of extreme points:

Proposition 2. Let C' be a nonempty, closed convex set in R™. Then C' has

at least one extreme point if and only if it does not contain a line, that s, a
set L of the form L = {x + ad|a € R} with d # 0.

The next theorem shows that extreme points are “generators” of convex sets.

Theorem 6 (Krein-Milman-Theorem). A convex and compact set C' is equal

to the convex hull of its extreme points.

)y P~
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Extreme Points in Linear Programming

Extreme points as minima of concave functions:

Proposition 3. Let C be a convex subset of R" and let C* be the set of

mintma of a concave function f : R™ — R with dom f = C. Then

o If C'" contains a relative interior point of C, then f must be constant
over C = C* =C.

e [f C is closed and contains at least one extreme point, and C* 1is

nonempty, then C* contains some extreme point of C.

' ~—— Level sets of f

P

</ T~

YO
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Extreme Points in Linear Programming 11

Basis for the simplex algorithm in Linear Programming

Proposition 4. Let P be a polyhedral subset of R™. If P has the form
P={o|{aa) <b, j=1,....r},

where a; € R™ and b; € R, then a vector v € P s an extreme point if and

only if the set
{ajHaj,v):bj, jZl,...,T},

contains n linearly independent vectors.

Proposition 5 (Fundamental Theorem of Linear Programming). Let P be a
polyhedral set that has at least one extreme point. Then, if a linear function

attains a minimum over P, it attains a minimum at some extreme point of

P.

Paal
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