Convex Optimization and Modeling

Interior Point Methods

10th lecture, 16.06.2010

Jun.-Prof. Matthias Hein

Constrained Minimization:

- Equality constrained minimization:
 - Newton method with infeasible start
- Interior point methods:
 - barrier method
 - How to obtain a feasible starting point
 - primal-dual barrier method

Convex optimization problem with equality constraint:

 $\min_{x \in \mathbb{R}^n} f(x)$
subject to: Ax = b.

Assumptions:

- $f: \mathbb{R}^n \to \mathbb{R}$ is convex and twice differentiable,
- $A \in \mathbb{R}^{p \times n}$ with rank A = p < n,
- optimal solution x^* exists and $p^* = \inf\{f(x) | Ax = b\}.$

Reminder: A pair (x^*, μ^*) is primal-dual optimal if and only if

$$Ax^* = b, \qquad \nabla f(x^*) + A^T \mu^* = 0, \qquad$$
(KKT-conditions).

Primal and **dual feasibility** equations.

How to solve an equality constrained minimization problem ?

• elimination of equality constraint - unconstrained optimization over

$$\{\hat{x} + z \,|\, z \in \ker(A)\},\$$

where $A\hat{x} = b$.

• solve the unconstrained dual problem,

 $\max_{\mu \in \mathbb{R}^p} q(\mu).$

• direct extension of Newton's method for equality constrained minimization.

Quadratic function with linear equality constraints - $P \in S^n_+$

$$\min \frac{1}{2} \langle x, Px \rangle + \langle q, x \rangle + r ,$$
 subject to: $Ax = b$.

KKT conditions: $Ax^* = b$, $Px^* + q + A^T \mu^* = 0$.

$$\implies \mathbf{KKT-system:} \qquad \begin{pmatrix} P & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} x^* \\ \mu^* \end{pmatrix} = \begin{pmatrix} -q \\ b \end{pmatrix}$$

Cases:

- KKT-matrix nonsingular \implies unique primal-dual optimal pair (x^*, μ^*) ,
- KKT-matrix singular:
 - no solution: quadratic objective is unbounded from below,
 - a whole subspace of possible solutions.

Nonsingularity of the KKT matrix:

• P and A have no (non-trivial) common nullspace,

 $\ker(A) \cap \ker(P) = \{0\}.$

• P is positive definite on the nullspace of A (ker(A)),

$$Ax = 0, x \neq 0 \implies \langle x, Px \rangle > 0.$$

If $P \succ 0$ the KKT-matrix is always non-singular.

Assumptions:

• initial point $x^{(0)}$ is feasible, that is $Ax^{(0)} = b$.

Newton direction - second order approximation:

$$\min_{d \in \mathbb{R}^n} \hat{f}(x+d) = f(x) + \langle \nabla f(x), d \rangle + \frac{1}{2} \langle d, Hf(x) d \rangle,$$

subject to: $A(x+d) = b.$

Newton step d_{NT} is the minimizer of this quadratic optimization problem:

$$\begin{pmatrix} Hf(x) & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} d_{NT} \\ w \end{pmatrix} = \begin{pmatrix} -\nabla f(x) \\ 0 \end{pmatrix}$$

- x is feasible $\Rightarrow Ad = 0$.
- Newton step lies in the null-space of A.
- $x + \alpha d$ is feasible (stepsize selection by Armijo rule)

Necessary and sufficient condition for optimality:

$$Ax^* = b, \qquad \nabla f(x^*) + A^T \mu^* = 0.$$

Linearized optimality condition: Next point x' = x + d solves linearized optimality condition:

$$A(x+d) = b, \qquad \nabla f(x+d) + A^T w \approx \nabla f(x) + H f(x) d + A^T w = 0.$$

With Ax = b (initial condition) this leads again to:

$$\begin{pmatrix} Hf(x) & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} d_{NT} \\ w \end{pmatrix} = \begin{pmatrix} -\nabla f(x) \\ 0 \end{pmatrix}$$

Properties:

• Newton step is affine invariant, $x = Sy \ \overline{f}(y) = f(Sy)$.

$$\nabla \bar{f}(y) = S^T \nabla f(Sy), \qquad H \bar{f}(y) = S^T H f(Ty) S,$$

feasibility: ASy = b

Newton step: $S d_{NT}^y = d_{NT}^x$.

- Newton decrement: $\lambda(x)^2 = \langle d_{NT}, Hf(x)d_{NT} \rangle$.
 - 1. Stopping criterion: $\hat{f}(x+d) = f(x) + \langle \nabla f(x), d \rangle + \frac{1}{2} \langle d, Hf(x)d \rangle$

$$f(x) - \inf\{\hat{f}(x+v) \,|\, Ax = b\} = \frac{1}{2}\lambda^2(x).$$

 \implies estimate of the difference $f(x) - p^*$.

2. Stepsize selection: $\frac{d}{dt}f(x+td_{NT}) = \langle \nabla f(x), d_{NT} \rangle = -\lambda(x)^2$.

Assumption replacing $Hf(x) \succeq m\mathbb{1}$:

$$\left\| \begin{pmatrix} Hf(x) & A^T \\ A & 0 \end{pmatrix}^{-1} \right\|_2 \le K.$$

Result: Elimination yields the same Newton step.

- \implies convergence analysis of unconstrained problem applies.
 - linear convergence (damped Newton phase),
 - quadratic convergence (pure Newton phase).

Self-concordant Objectives - required steps bounded by:

$$\frac{20-8\sigma}{\sigma\beta(1-2\sigma)^2} \left(f(x^{(0)}) - p^* \right) + \log_2 \log_2 \left(\frac{1}{\varepsilon}\right),$$

where α, β are the backtracking parameters (Armijo rule: σ is α).

Do we have to ensure feasibility of x?

Necessary and sufficient condition for optimality:

$$Ax^* = b, \qquad \nabla f(x^*) + A^T \mu^* = 0.$$

Linearized optimality condition:

Next point x' = x + d solves linearized optimality condition:

$$A(x+d) = b, \qquad \nabla f(x+d) + A^T w \approx \nabla f(x) + H f(x) d + A^T w = 0.$$

This results in

$$\begin{pmatrix} Hf(x) & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} d_{IFNT} \\ w \end{pmatrix} = - \begin{pmatrix} \nabla f(x) \\ Ax - b \end{pmatrix}$$

Definition 1. In a *primal-dual* method both the primal variable x and the dual variable μ are updated.

- **Primal residual:** $r_{\text{pri}}(x,\mu) = Ax b$,
- **Dual residual:** $r_{\text{dual}}(x,\mu) = \nabla f(x) + A^T \mu$,
- **Residual:** $r(x,\mu) = (r_{dual}(x,\mu), r_{pri}(x,\mu)).$ Primal-dual optimal point: $(x^*,\mu^*) \iff r(x^*,\mu^*) = 0.$

Primal-dual Newton step minimizes first-order Taylor approx. of $r(x, \mu)$:

$$r(x + d_x, \mu + d_\mu) \approx r(x, \mu) + Dr|_{(x,\mu)} \begin{pmatrix} d_x \\ d_\mu \end{pmatrix} = 0$$
$$\implies Dr|_{(x,\mu)} \begin{pmatrix} d_x \\ d_\mu \end{pmatrix} = -r(x, \mu).$$

Primal-dual Newton step:

$$Dr|_{(x,\mu)} \begin{pmatrix} d_x \\ d_\mu \end{pmatrix} = -r(x,\mu).$$

We have

$$Dr|_{(x,\mu)} = \begin{pmatrix} \nabla_x r_{\text{dual}} & \nabla_\mu r_{\text{dual}} \\ \nabla_x r_{\text{pri}} & \nabla_\mu r_{\text{pri}} \end{pmatrix} = \begin{pmatrix} Hf(x) & A^T \\ A & 0 \end{pmatrix}$$
$$\implies \begin{pmatrix} Hf(x) & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} d_x \\ d_\mu \end{pmatrix} = - \begin{pmatrix} r_{\text{dual}}(x,\mu) \\ r_{\text{pri}}(x,\mu) \end{pmatrix} = - \begin{pmatrix} \nabla f(x) + A^T \mu \\ Ax - b \end{pmatrix}.$$

and get with $\mu^+ = \mu + d_{\mu}$

$$\begin{pmatrix} Hf(x) & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} d_x \\ \mu^+ \end{pmatrix} = - \begin{pmatrix} \nabla f(x) \\ Ax - b \end{pmatrix}$$

٠

The primal-dual step is not necessarily a descent direction:

$$\frac{d}{dt}f(x+td_x)\big|_{t=0} = \langle \nabla f(x), d_x \rangle = -\langle Hf(x)d_x + A^Tw, d_x \rangle$$
$$= -\langle d_x, Hf(x)d_x \rangle + \langle w, Ax - b \rangle.$$

where we have used, $\nabla f(x) + Hf(x)d_x + A^Tw = 0$, and, $Ad_x = b - Ax$.

BUT: it reduces the residual,

$$\frac{d}{dt} \left\| r(x + td_x, \mu + td_\mu) \right\| \Big|_{t=0} = - \left\| r(x, \mu) \right\|.$$

Towards feasibility: we have $Ad_x = b - Ax$

$$r_{\rm pri}^+ = A(x + td_x) - b = (1 - t)(Ax - b) = (1 - t)r_{\rm pri} \implies r_{\rm pri}^{(k)} = \left(\prod_{i=0}^{k-1} (1 - t^{(i)})\right)r^{(0)}$$

Require: an initial starting point x^0 and μ^0 ,

- 1: repeat
- 2: compute the primal and dual Newton step d_x^k and d_μ^k
- 3: Backtracking Line Search:
- 4: t = 1
- 5: while $||r(x + td_x^k, \mu + td_\mu^k)|| > (1 \sigma t) ||r(x, \mu)||$ do 6: $t = \beta t$
- 7: end while
- 8: $\alpha^k = t$
- 9: **UPDATE:** $x^{k+1} = x^k + \alpha^k d_x^k$ and $\mu^{k+1} = \mu^k + \alpha^k d_\mu^k$. 10: **until** $Ax^k = b$ and $||r(x^k, \mu^k)|| \le \varepsilon$

Comparison of both methods

The constrained Newton method with feasible starting point.

The infeasible Newton method - note that the function value does not decrease.

Solution of the KKT system:

$$\begin{pmatrix} H & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} v \\ w \end{pmatrix} = - \begin{pmatrix} g \\ h \end{pmatrix}$$

- **Direct solution:** symmetric, but not positive definite. LDL^{T} -factorization costs $\frac{1}{3}(n+p)^{3}$.
- Elimination: $Hv + A^T w = -g \implies v = -H^{-1}[g + A^T w].$ and $AH^{-1}A^T w + AH^{-1}g = h \implies w = (AH^{-1}A^T)[h - AH^{-1}g].$
 - 1. build $H^{-1}A^T$ and $H^{-1}g$, factorization of H and p+1 rhs \Rightarrow cost: f + (p+1)s,
 - 2. form $S = AH^{-1}A^T$, matrix multiplication \Rightarrow cost: p^2n ,
 - 3. solve $Sw = [h AH^{-1}g]$, factorization of $S \Rightarrow \cos \frac{1}{3}p^3 + p^2$,
 - 4. solve $Hv = g + A^T w$, cost: 2np + s.

Total cost: $f + ps + p^2n + \frac{1}{3}p^3$ (leading terms).

General convex optimization problem:

 $\min_{x \in \mathbb{R}^n} f(x)$ subject to: $g_i(x) \le 0, \quad i = 1, \dots, m,$ Ax = b.

Assumptions:

- f, g_1, \ldots, g_m are convex and twice differentiable,
- $A \in \mathbb{R}^{p \times n}$ with rank(A) = p,
- there exists an optimal x^* such that $f(x^*) = p^*$,
- the problem is strictly feasible (Slater's constraint qualification holds).

$$Ax^* = b, \qquad g_i(x^*) \le 0, \ i = 1, \dots, m, \qquad \lambda \succeq 0,$$
$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* g_i(x^*) + A^T \mu^* = 0, \qquad \lambda_i^* g_i(x^*) = 0.$$

What are interior point methods ?

- solve a sequence of equality constrained problem using Newton's method,
- solution is always strictly feasible \Rightarrow lies in the **interior** of the constraint set $S = \{x \mid g_i(x) \le 0, i = 1, ..., m\}.$
- basically the inequality constraints are added to the objective such that the solution is forced to be away from the boundary of S.

Hierarchy of convex optimization algorithms:

- quadratic objective with linear equality constraints \Rightarrow analytic solution,
- general objective with linear eq. const. ⇒ solve sequence of problems with quadratic objective and linear equality constraints,
- general convex optimization problem ⇒ solve a sequence of problems with general objective and linear equality constraints.

Equivalent formulation of general convex optimization problem:

Basic idea: approximate indicator function with a differentiable function with closed level sets.

$$\hat{I}_{-}(u) = -\left(\frac{1}{t}\right)\log(-u), \quad \text{dom } \hat{I} = \{x \mid x < 0\}.$$

where t is a parameter controlling the accuracy of the approximation.

Logarithmic Barrier Function:
$$\phi(x) = -\sum_{i=1}^{m} \log(-g_i(x)).$$

Approximate formulation:

$$\min_{x \in \mathbb{R}^n} t f(x) + \phi(x)$$

subject to: $Ax = b$,

Derivatives of ϕ :

•
$$\nabla \phi(x) = -\sum_{i=1}^{m} \frac{1}{g_i(x)} \nabla g_i(x),$$

• $H \phi(x) = \sum_{i=1}^{m} \frac{1}{g_i(x)^2} \nabla g_i(x) \nabla g_i(x)^T - \sum_{i=1}^{m} \frac{1}{g_i(x)} H g_i(x)$

Definition 2. Let $x^*(t)$ be the optimal point of the above problem, which is called **central point**. The **central path** is the set of points $\{x^*(t) | t > 0\}$.

Central Path

Figure 1: The central path for an LP. The dashed lines are the the contour lines of ϕ . The central path converges to x^* as $t \to \infty$.

Central points (opt. cond.): $Ax^{*}(t) = b$, $g_{i}(x^{*}(t)) < 0$, i = 1, ..., m,

$$0 = t\nabla f(x^*(t)) + \nabla \phi(x^*(t)) + A^T \hat{\mu} = t\nabla f(x^*(t)) + \sum_{i=1}^m -\frac{1}{g_i(x^*(t))} \nabla g_i(x^*(t)) + A^T \hat{\mu}$$

- **Define:** $\lambda_i^*(t) = -\frac{1}{tg_i(x^*(t))}$ and $\mu^*(t) = \frac{\hat{\mu}}{t}$. $\implies (\lambda^*(t), \mu^*(t))$ are dual feasible for the original problem and $x^*(t)$ is minimizer of Lagrangian !
 - Lagragian: $L(x, \lambda, \mu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \langle \mu, Ax b \rangle.$
 - **Dual function** evaluated at $(\lambda^*(t), \mu^*(t))$:

$$q(\lambda^*(t),\mu^*(t)) = f(x^*(t)) + \sum_{i=1}^m \lambda_i^*(t)g_i(x^*(t)) + \langle \mu^*, Ax^*(t) - b \rangle = f(x^*(t)) - \frac{m}{t}.$$

• Weak duality: $p^* \ge q(\lambda^*(t), \mu^*(t)) = f(x^*(t)) - \frac{m}{t}$.

$$f(x^*(t)) - p^* \le \frac{m}{t}.$$

m

Interpretation via KKT conditions:

$$-\lambda_i^*(t)g_i(x^*(t)) = \frac{1}{t}.$$

 \implies for t large the original KKT conditions are approximately satisfied.

Force field interpretation (no equality constraints):

Force for each constraint: $F_i(x) = -\nabla(-\log(-g_i(x))) = \frac{1}{g_i(x)}\nabla g_i(x),$

generated by the potential ϕ : $F_i = -\nabla \phi(x)$.

- $F_i(x)$ is moving the particle away from the boundary,
- $F_0(x) = -t\nabla f(x)$ is moving particle towards smaller values of f.
- at the central point $x^*(t) \Longrightarrow$ forces are in equilibrium.

The barrier method (direct): set $t = \frac{\varepsilon}{m}$ then

 $f(x^*(t)) - p^* \leq \varepsilon$. \Rightarrow generally does not work well.

Barrier method or path-following method:

Require: strictly feasible x^0 , γ , $t = t^{(0)} > 0$, tolerance $\varepsilon > 0$.

- 1: repeat
- 2: Centering step: compute $x^*(t)$ by minimizing

 $\min_{x \in \mathbb{R}^n} t f(x) + \phi(x)$
subject to: Ax = b,

where previous central point is taken as starting point.

- 3: **UPDATE:** $x = x^*(t)$.
- 4: $t = \gamma t$.
- 5: until $\frac{m\gamma}{t} < \varepsilon$

- Accuracy of centering: Exact centering (that is very accurate solution of the centering step) is not necessary but also does not harm.
- Choice of γ: for a small γ the last center point will be a good starting point for the new centering step, whereas for large γ the last center point is more or less an arbitrary initial point.

trade-off between inner and outer iterations

 \implies turns out that for $3 < \gamma < 100$ the total number of Newton steps is almost constant.

- Choice of $t^{(0)}$: $\frac{m}{t^{(0)}} \approx f(x^{(0)}) p^*$.
- Infeasible Newton method: start with $x^{(0)}$ which fulfills inequality constraints but not necessarily equality constraints. Then when feasible point is found continue with normal barrier method.

Two step process:

- Phase I: find strictly feasible initial point $x^{(0)}$ or determine that no feasible point exists.
- **Phase II:** barrier method.

Strictly feasible point:

$$g_i(x) < 0, \ i = 1, \dots, m, \qquad Ax = b.$$

Basic phase I method:

$$\min_{\substack{s \in \mathbb{R}, x \in \mathbb{R}^n}} s$$

subject to: $g_i(x) \le s, \quad i = 1, \dots, m$
 $Ax = b.$

Choose $x^{(0)}$ such that $Ax^{(0)} = b$ and use $s^{(0)} = \max_{i=1,...,m} g_i(x^{(0)})$.

Three cases:

- 1. $p^* < 0$: there exists a strictly feasible solution \implies as soon as s < 0 the optimization procedure can be stopped.
- 2. $p^* > 0$: there exists no feasible solution \implies one can terminate when a dual feasible point has been found which proves $p^* > 0$.
- 3. $p^* = 0$:
 - a minimum is attained at x^{*} and s^{*} = 0 ⇒ the set of inequalities is feasible but not strictly feasible.
 - the minimum is not attained \implies the inequalities are infeasible. **Problem:** in practice $|f(x^{(end)}) - p^*| < \varepsilon \implies$ with $f(x^{(end)}) \approx 0$ we get $|p^*| \leq \varepsilon$.
 - $\implies g_i(x) \leq -\varepsilon$ infeasible, $g_i(x) \leq \varepsilon$ feasible.

Variant of phase I method:

$$\min_{\substack{s \in \mathbb{R}^m, x \in \mathbb{R}^n}} \sum_{i=1}^m s_i$$

subject to: $g_i(x) \le s_i, \quad i = 1, \dots, m$
 $Ax = b,$
 $s_i \ge 0, \quad i = 1, \dots, m.$

Feasibility:

 $p^* = 0 \iff$ inequalities feasible.

Advantage: identifies the set of feasible inequalities.

The less feasible the harder to identify:

Inequalities: $Ax \leq b + \gamma d$.

where for $\gamma > 0$: feasible, $\gamma < 0$: infeasible.

Number of Newton steps versus the "grade" of feasibility.

Assumptions:

- $t f(x) + \phi(x)$ is self concordant for every $t \ge t^{(0)}$,
- the sublevel sets of the objective (subject to the constraints) are bounded.

Number of Newton steps for equality constrained problem:

$$N \leq \frac{f(x^{(0)}) - p^*}{\delta(\alpha, \beta)} + \log_2 \log_2 \left(\frac{1}{\varepsilon}\right),$$

where $\delta(\alpha, \beta) = \frac{\alpha\beta(1-2\alpha)^2}{20-8\alpha}$.

Number of Newton steps for one outer iteration of the barrier method:

$$N \leq \frac{m(\gamma - 1 - \log \gamma)}{\delta(\alpha, \beta)} + \log_2 \log_2 \left(\frac{1}{\varepsilon}\right),$$

Bound depends linearly on number of constraints m and roughly linear on μ .

Total number of Newton steps for outer iterations:

$$N \leq \frac{\log\left(\frac{m}{t^{(0)}\varepsilon}\right)}{\log \gamma} \frac{m(\gamma - 1 - \log \gamma)}{\delta(\alpha, \beta)} + \log_2 \log_2\left(\frac{1}{\varepsilon}\right),$$

 \implies at least **linear convergence**.

Properties:

- independent of the dimension n of the optimization variable and the number of equality constraints.
- bound suggests $\gamma = 1 + \sqrt{m}$ but not a good choice in practice.
- bound applies only to self-concordant functions but method still works fine for other convex functions.

Generalized Inequalities: Can be integrated in the barrier method via generalized logarithms Ψ .

Example: positive semi-definite cone $K = S_+^n$.

 $\Psi(X) = \log \det X.$

 \Rightarrow becomes infinite at the boundary of K (remember: the boundary are the matrices in S^n_+ which have not full rank \iff positive semi-definite but not positive definite)

Properties:

- generalize primal-dual method for equality constrained minimization.
- no distinction between inner and outer iterations at each step **primal** and **dual** variables are updated.
- in the primal-dual method, the primal and dual iterates need not be feasible.

Primal-Dual Interior point method:

modified KKT equations satisfied $\iff r_t(x, \lambda, \mu) = 0.$

$$r_{\text{dual}}(x,\lambda,\mu) = \nabla f(x) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x) + A^T \mu$$
$$r_{\text{central},i}(x,\lambda,\mu) = -\lambda_i g_i(x) - \frac{1}{t}$$
$$r_{\text{primal}}(x,\lambda,\mu) = Ax - b.$$

 $r_t(x,\lambda,\mu): \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}^n \times \mathbb{R}^p, \qquad r_t(x,\lambda,\mu) = \begin{pmatrix} r_{\text{dual}}(x,\lambda,\mu) \\ r_{\text{central}}(x,\lambda,\mu) \\ r_{\text{primal}}(x,\lambda,\mu) \end{pmatrix}$

Solving $r_t(x, \lambda, \mu) = 0$ via Newton:

$$r_t(x+d_x,\lambda+d_\lambda,\mu+d_\mu) \approx r_t(x,\lambda,\mu) + Dr_t|_{(x,\lambda,\mu)} \begin{pmatrix} d_x \\ d_\lambda \\ d_\mu \end{pmatrix} = 0,$$

which gives the descent directions:

$$\begin{pmatrix} Hf(x) + \sum_{i=1}^{m} \lambda_i Hg_i(x) & Dg(x)^T & A^T \\ -\operatorname{diag}(\lambda) Dg(x) & -\operatorname{diag}(g(x)) & 0 \\ A & 0 & 0 \end{pmatrix} \begin{pmatrix} d_x \\ d_\lambda \\ d_\mu \end{pmatrix} = - \begin{pmatrix} r_{\mathrm{dual}}(x,\lambda,\mu) \\ r_{\mathrm{central}}(x,\lambda,\mu) \\ r_{\mathrm{primal}}(x,\lambda,\mu) \end{pmatrix}$$

where

$$Dg(x) = \begin{pmatrix} \nabla g_1(x)^T \\ \vdots \\ \nabla g_m(x)^T \end{pmatrix}, \qquad Dg(x) \in \mathbb{R}^{m \times n}$$

٠

Surrogate duality gap:

 $x^{(k)}, \lambda^{(k)}, \nu^{(k)}$ need not be feasible \implies no computation of duality gap possible as in the barrier method.

Barrier method:

$$q(\lambda^*(t),\mu^*(t)) = f(x^*(t)) + \sum_{i=1}^m \lambda_i^*(t)g_i(x^*(t)) + \langle \mu^*, Ax^*(t) - b \rangle = f(x^*(t)) - \frac{m}{t}$$

Pretend that x^k is primal feasible, λ^k , μ^k are dual feasible:

Surrogate duality gap:
$$-\sum_{i=1}^m \lambda_i^{(k)}(t)g_i(x^{(k)}(t)).$$

Associated parameter t

$$t = -\frac{m}{\left\langle \lambda^{(k)}, g(x^{(k)}) \right\rangle}.$$

Stopping condition:

$$||r_{\text{dual}}|| \le \varepsilon_{\text{feas}}, \quad ||r_{\text{primal}}|| \le \varepsilon_{\text{feas}}, \quad -\left\langle \lambda^{(k)}, g(x^{(k)}) \right\rangle \le \varepsilon.$$

Stepsize selection:

as usual but first set maximal stepsize s such that $\lambda + sd_{\lambda} \succ 0$ and ensure $g(x_{\text{new}}) \prec 0$ during stepsize selection.

Final algorithm:

Require: $x^{(0)}$ with $g_i(x^{(0)}) < 0$, i = 1, ..., m, $\lambda^{(0)} > 0$, and $\mu^{(0)}$, param:

 $\varepsilon_{\mathrm{feas}}, \varepsilon, \gamma.$

- 1: repeat
- 2: Determine $t = -\gamma \frac{m}{\langle \lambda, g(x) \rangle}$,
- 3: Compute primal-dual descent direction,
- 4: Line search and update,
- 5: **until** $||r_{\text{dual}}|| \le \varepsilon_{\text{feas}}, ||r_{\text{primal}}|| \le \varepsilon_{\text{feas}}, -\langle \lambda, g(x) \rangle \le \varepsilon$

Non-negative Least Squares (NNLS):

$$\min_{x \in \mathbb{R}^n} \|\Phi x - Y\|_2^2$$

subject to: $x \succeq 0$,

where $\Phi \in \mathbb{R}^{d \times n}$ and $Y \in \mathbb{R}^d$.

$$\begin{pmatrix} Hf(x) + \sum_{i=1}^{m} \lambda_i Hg_i(x) & Dg(x)^T \\ -\operatorname{diag}(\lambda) Dg(x) & -\operatorname{diag}(g(x)) \end{pmatrix} = \begin{pmatrix} \Phi^T \Phi & -\mathbb{1} \\ \operatorname{diag}(\lambda) & \operatorname{diag}(x) \end{pmatrix}$$

• d_{λ} can be eliminated,

• Solve
$$\left(\Phi^T \Phi - \operatorname{diag}(\frac{\lambda}{x})\right) d_x = RHS.$$

Computation time per iteration is roughly the same for the barrier and primal-dual method (dominated by the time for solving the linear system).

The primal-dual method is more robust against parameter changes than the barrier method (e.g. no choice of $t^{(0)}$).