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Program of today

Constrained Minimization:

• Equality constrained minimization:

– Newton method with infeasible start

• Interior point methods:

– barrier method

– How to obtain a feasible starting point

– primal-dual barrier method
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Equality constrained minimization

Convex optimization problem with equality constraint:

min
x∈Rn

f(x)

subject to: Ax = b.

Assumptions:

• f : R
n → R is convex and twice differentiable,

• A ∈ R
p×n with rankA = p < n,

• optimal solution x∗ exists and p∗ = inf{f(x) |Ax = b}.

Reminder: A pair (x∗, µ∗) is primal-dual optimal if and only if

Ax∗ = b, ∇f(x∗) + AT µ∗ = 0, (KKT-conditions).

Primal and dual feasibility equations.
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Equality constrained minimization II

How to solve an equality constrained minimization problem ?

• elimination of equality constraint - unconstrained optimization over

{x̂ + z | z ∈ ker(A)},

where Ax̂ = b.

• solve the unconstrained dual problem,

max
µ∈Rp

q(µ).

• direct extension of Newton’s method for equality constrained

minimization.
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Equality constrained minimization III

Quadratic function with linear equality constraints - P ∈ Sn
+

min
1

2
〈x, Px〉 + 〈q, x〉 + r ,

subject to: Ax = b.

KKT conditions: Ax∗ = b, Px∗ + q + AT µ∗ = 0.

=⇒ KKT-system:





P AT

A 0









x∗

µ∗



 =





−q

b



 .

Cases:

• KKT-matrix nonsingular =⇒ unique primal-dual optimal pair (x∗, µ∗),

• KKT-matrix singular:

– no solution: quadratic objective is unbounded from below,

– a whole subspace of possible solutions.
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Equality constrained minimization IV

Nonsingularity of the KKT matrix:

• P and A have no (non-trivial) common nullspace,

ker(A) ∩ ker(P ) = {0}.

• P is positive definite on the nullspace of A (ker(A)),

Ax = 0, x 6= 0 =⇒ 〈x, Px〉 > 0.

If P ≻ 0 the KKT-matrix is always non-singular.
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Newton’s method with equality constraints

Assumptions:

• initial point x(0) is feasible, that is Ax(0) = b.

Newton direction - second order approximation:

min
d∈Rn

f̂(x + d) = f(x) + 〈∇f(x), d〉 +
1

2
〈d,Hf(x) d〉 ,

subject to: A(x + d) = b.

Newton step dNT is the minimizer of this quadratic optimization problem:




Hf(x) AT

A 0









dNT

w



 =





−∇f(x)

0



 .

• x is feasible ⇒ Ad = 0.

• Newton step lies in the null-space of A.

• x + αd is feasible (stepsize selection by Armijo rule)
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Other Interpretation

Necessary and sufficient condition for optimality:

Ax∗ = b, ∇f(x∗) + AT µ∗ = 0.

Linearized optimality condition:

Next point x′ = x + d solves linearized optimality condition:

A(x + d) = b, ∇f(x + d) + AT w ≈ ∇f(x) + Hf(x)d + AT w = 0.

With Ax = b (initial condition) this leads again to:




Hf(x) AT

A 0









dNT

w



 =





−∇f(x)

0



 .
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Properties of Newton step

Properties:

• Newton step is affine invariant, x = Sy f̄(y) = f(Sy).

∇f̄(y) = ST∇f(Sy), Hf̄(y) = ST Hf(Ty)S,

feasibility: ASy = b

Newton step: S d
y
NT = dx

NT .

• Newton decrement: λ(x)2 = 〈dNT ,Hf(x)dNT 〉.
1. Stopping criterion: f̂(x + d) = f(x) + 〈∇f(x), d〉 + 1

2 〈d,Hf(x)d〉

f(x) − inf{f̂(x + v) |Ax = b} =
1

2
λ2(x).

=⇒ estimate of the difference f(x) − p∗.

2. Stepsize selection: d
dt

f(x + tdNT ) = 〈∇f(x), dNT 〉 = −λ(x)2.
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Convergence analysis

Assumption replacing Hf(x) � m1:
∥

∥

∥

∥

∥

∥





Hf(x) AT

A 0





−1∥
∥

∥

∥

∥

∥

2

≤ K.

Result: Elimination yields the same Newton step.

=⇒ convergence analysis of unconstrained problem applies.

• linear convergence (damped Newton phase),

• quadratic convergence (pure Newton phase).

Self-concordant Objectives - required steps bounded by:

20 − 8σ

σβ(1 − 2σ)2
(

f(x(0)) − p∗
)

+ log2 log2

(1

ε

)

,

where α, β are the backtracking parameters (Armijo rule: σ is α).
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Infeasible start Newton method

Do we have to ensure feasibility of x ?
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Infeasible start Newton method

Necessary and sufficient condition for optimality:

Ax∗ = b, ∇f(x∗) + AT µ∗ = 0.

Linearized optimality condition:

Next point x′ = x + d solves linearized optimality condition:

A(x + d) = b, ∇f(x + d) + AT w ≈ ∇f(x) + Hf(x)d + AT w = 0.

This results in




Hf(x) AT

A 0









dIFNT

w



 = −





∇f(x)

Ax − b



 .

10



Interpretation as primal-dual Newton step

Definition 1. In a primal-dual method both the primal variable x and the

dual variable µ are updated.

• Primal residual: rpri(x, µ) = Ax − b,

• Dual residual: rdual(x, µ) = ∇f(x) + AT µ,

• Residual: r(x, µ) =
(

rdual(x, µ), rpri(x, µ)
)

.

Primal-dual optimal point: (x∗, µ∗) ⇐⇒ r(x∗, µ∗) = 0.

Primal-dual Newton step minimizes first-order Taylor approx. of r(x, µ):

r(x + dx, µ + dµ) ≈ r(x, µ) + Dr|(x,µ)





dx

dµ



 = 0

=⇒ Dr|(x,µ)





dx

dµ



 = −r(x, µ).
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Primal-dual Newton step

Primal-dual Newton step:

Dr|(x,µ)





dx

dµ



 = −r(x, µ).

We have

Dr|(x,µ) =





∇xrdual ∇µrdual

∇xrpri ∇µrpri



 =





Hf(x) AT

A 0





=⇒





Hf(x) AT

A 0









dx

dµ



 = −





rdual(x, µ)

rpri(x, µ)



 = −





∇f(x) + AT µ

Ax − b



 .

and get with µ+ = µ + dµ





Hf(x) AT

A 0









dx

µ+



 = −





∇f(x)

Ax − b



 .
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Stepsize selection for primal-dual Newton step

The primal-dual step is not necessarily a descent direction:

d

dt
f(x + tdx)

∣

∣

t=0
= 〈∇f(x), dx〉 = −

〈

Hf(x)dx + AT w , dx

〉

= −〈dx,Hf(x)dx〉 + 〈w,Ax − b〉 .

where we have used, ∇f(x) + Hf(x)dx + AT w = 0, and, Adx = b − Ax.

BUT: it reduces the residual,

d

dt
‖r(x + tdx, µ + tdµ)‖

∣

∣

t=0
= −‖r(x, µ)‖ .

Towards feasibility: we have Adx = b − Ax

r+
pri = A(x+tdx)−b = (1−t)(Ax−b) = (1−t)rpri =⇒ r

(k)
pri =

(

k−1
∏

i=0

(1−t(i))
)

r(0).
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Infeasible start Newton method

Require: an initial starting point x0 and µ0,

1: repeat

2: compute the primal and dual Newton step dk
x and dk

µ

3: Backtracking Line Search:

4: t = 1

5: while
∥

∥r(x + tdk
x, µ + tdk

µ)
∥

∥ > (1 − σ t) ‖r(x, µ)‖ do

6: t = βt

7: end while

8: αk = t

9: UPDATE: xk+1 = xk + αkdk
x and µk+1 = µk + αkdk

µ.

10: until Axk = b and
∥

∥r(xk, µk)
∥

∥ ≤ ε
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Comparison of both methods

min
x∈R2

f(x1, x2) = ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1+0.1

subject to:
x1

2
+ x2 = 1.
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The constrained Newton method with feasible starting point.
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The infeasible Newton method - note that the function value does not decrease.
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Implementation

Solution of the KKT system:





H AT

A 0









v

w



 = −





g

h



 .

• Direct solution: symmetric, but not positive definite.

LDLT -factorization costs 1
3(n + p)3.

• Elimination: Hv + AT w = −g =⇒ v = −H−1[g + AT w].

and AH−1AT w + AH−1g = h =⇒ w = (AH−1AT )[h − AH−1g].

1. build H−1AT and H−1g, factorization of H and p+1 rhs

⇒ cost: f + (p + 1)s,

2. form S = AH−1AT , matrix multiplication ⇒ cost: p2n,

3. solve Sw = [h − AH−1g], factorization of S ⇒ cost 1
3p3 + p2,

4. solve Hv = g + AT w, cost: 2np + s.

Total cost: f + ps + p2n + 1
3p3 (leading terms).
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Interior point methods

General convex optimization problem:

min
x∈Rn

f(x)

subject to: gi(x) ≤ 0, i = 1, . . . ,m,

Ax = b.

Assumptions:
• f ,g1, . . . , gm are convex and twice differentiable,

• A ∈ R
p×n with rank(A) = p,

• there exists an optimal x∗ such that f(x∗) = p∗,

• the problem is strictly feasible (Slater’s constraint qualification holds).

Ax∗ = b, gi(x
∗) ≤ 0, i = 1, . . . ,m, λ � 0,

∇f(x∗) +

m
∑

i=1

λ∗
i gi(x

∗) + AT µ∗ = 0, λ∗
i gi(x

∗) = 0.
17



Interior point methods II

What are interior point methods ?

• solve a sequence of equality constrained problem using Newton’s method,

• solution is always strictly feasible ⇒ lies in the interior of the constraint

set S = {x | gi(x) ≤ 0, i = 1, . . . ,m}.
• basically the inequality constraints are added to the objective such that

the solution is forced to be away from the boundary of S.

Hierarchy of convex optimization algorithms:

• quadratic objective with linear equality constraints ⇒ analytic solution,

• general objective with linear eq. const. ⇒ solve sequence of problems

with quadratic objective and linear equality constraints,

• general convex optimization problem ⇒ solve a sequence of problems

with general objective and linear equality constraints.
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Interior point methods III

Equivalent formulation of general convex optimization problem:

min
x∈Rn

f(x) +
m

∑

i=1

I−(gi(x))

subject to: Ax = b,

where I−(u) =
{ 0, u ≤ 0

∞, u > 0.
.

−3 −2 −1 0 1
−5

0

5

10
The logarithmic barrier function

 

 

t=0.5
t=1
t=1.5
t=2
Indicator

Basic idea: approximate indicator function with a differentiable function

with closed level sets.

Î−(u) = −
(1

t

)

log(−u), dom Î = {x |x < 0}.

where t is a parameter controlling the accuracy of the approximation.
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Interior point methods IV

Logarithmic Barrier Function: φ(x) = −∑m
i=1 log(−gi(x)).

Approximate formulation:

min
x∈Rn

t f(x) + φ(x)

subject to: Ax = b,

Derivatives of φ:

• ∇φ(x) = −∑m
i=1

1
gi(x)∇gi(x),

• Hφ(x) =
∑m

i=1
1

gi(x)2
∇gi(x)∇gi(x)T −

∑m
i=1

1
gi(x)Hgi(x).

Definition 2. Let x∗(t) be the optimal point of the above problem, which is

called central point. The central path is the set of points {x∗(t) | t > 0}.

20



Central Path

Figure 1: The central path for an LP. The dashed lines are the the contour

lines of φ. The central path converges to x∗ as t → ∞.
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Interior point methods V

Central points (opt. cond.): Ax∗(t) = b, gi(x
∗(t)) < 0, i = 1, . . . ,m,

0 = t∇f(x∗(t)) + ∇φ(x∗(t)) + AT µ̂ = t∇f(x∗(t)) +
m

∑

i=1

− 1

gi(x∗(t))
∇gi(x

∗(t)) + AT µ̂

Define: λ∗
i (t) = − 1

tgi(x∗(t)) and µ∗(t) = µ̂
t
.

=⇒ (λ∗(t), µ∗(t)) are dual feasible for the original problem

and x∗(t) is minimizer of Lagrangian !

• Lagragian: L(x, λ, µ) = f(x) +
∑m

i=1 λigi(x) + 〈µ,Ax − b〉.
• Dual function evaluated at (λ∗(t), µ∗(t)):

q(λ∗(t), µ∗(t)) = f(x∗(t)) +
m

∑

i=1

λ∗

i
(t)gi(x

∗(t)) + 〈µ∗, Ax∗(t) − b〉 = f(x∗(t)) − m

t
.

• Weak duality: p∗ ≥ q(λ∗(t), µ∗(t)) = f(x∗(t)) − m
t
.

f(x∗(t)) − p∗ ≤ m

t
.
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Interpretation of logarithmic barrier

Interpretation via KKT conditions:

−λ∗
i (t)gi(x

∗(t)) =
1

t
.

=⇒ for t large the original KKT conditions are approximately satisfied.

Force field interpretation (no equality constraints):

Force for each constraint: Fi(x) = −∇(− log(−gi(x))) =
1

gi(x)
∇gi(x),

generated by the potential φ: Fi = −∇φ(x).

• Fi(x) is moving the particle away from the boundary,

• F0(x) = −t∇f(x) is moving particle towards smaller values of f .

• at the central point x∗(t) =⇒ forces are in equilibrium.
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The barrier method

The barrier method (direct): set t = ε
m

then

f(x∗(t)) − p∗ ≤ ε. ⇒ generally does not work well.

Barrier method or path-following method:

Require: strictly feasible x0, γ, t = t(0) > 0, tolerance ε > 0.

1: repeat

2: Centering step: compute x∗(t) by minimizing

min
x∈Rn

t f(x) + φ(x)

subject to: Ax = b,

where previous central point is taken as starting point.

3: UPDATE: x = x∗(t).

4: t = γt.

5: until mγ
t

< ε
24



The barrier method - Implementation

• Accuracy of centering: Exact centering (that is very accurate

solution of the centering step) is not necessary but also does not harm.

• Choice of γ: for a small γ the last center point will be a good starting

point for the new centering step, whereas for large γ the last center point

is more or less an arbitrary initial point.

trade-off between inner and outer iterations

=⇒ turns out that for 3 < γ < 100 the total number of Newton steps is

almost constant.

• Choice of t(0): m
t(0)

≈ f(x(0)) − p∗.

• Infeasible Newton method: start with x(0) which fulfills inequality

constraints but not necessarily equality constraints. Then when feasible

point is found continue with normal barrier method.
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The full barrier method

Two step process:

• Phase I: find strictly feasible initial point x(0) or determine that no

feasible point exists.

• Phase II: barrier method.

Strictly feasible point:

gi(x) < 0, i = 1, . . . ,m, Ax = b.

Basic phase I method:

min
s∈R, x∈Rn

s

subject to: gi(x) ≤ s, i = 1, . . . ,m

Ax = b.

Choose x(0) such that Ax(0) = b and use s(0) = maxi=1,...,m gi(x
(0)).
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Phase I

Three cases:

1. p∗ < 0: there exists a strictly feasible solution =⇒ as soon as s < 0 the

optimization procedure can be stopped.

2. p∗ > 0: there exists no feasible solution =⇒ one can terminate when a

dual feasible point has been found which proves p∗ > 0.

3. p∗ = 0:

• a minimum is attained at x∗ and s∗ = 0 =⇒ the set of inequalities is

feasible but not strictly feasible.

• the minimum is not attained =⇒ the inequalities are infeasible.

Problem: in practice |f(x(end)) − p∗| < ε =⇒ with f(x(end)) ≈ 0 we get

|p∗| ≤ ε.

=⇒ gi(x) ≤ −ε infeasible, gi(x) ≤ ε feasible.
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Variant of Phase I

Variant of phase I method:

min
s∈Rm, x∈Rn

m
∑

i=1

si

subject to: gi(x) ≤ si, i = 1, . . . ,m

Ax = b,

si ≥ 0, i = 1, . . . ,m.

Feasibility:

p∗ = 0 ⇐⇒ inequalities feasible.

Advantage: identifies the set of feasible inequalities.
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Solving for a feasible point

The less feasible the harder to identify:

Inequalities: Ax � b + γ d.

where for γ > 0: feasible, γ < 0: infeasible.

Number of Newton steps versus the “grade” of feasibility .
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Complexity analysis

Assumptions:

• t f(x) + φ(x) is self concordant for every t ≥ t(0),

• the sublevel sets of the objective (subject to the constraints) are

bounded.

Number of Newton steps for equality constrained problem:

N ≤ f(x(0)) − p∗

δ(α, β)
+ log2 log2

(1

ε

)

,

where δ(α, β) = αβ(1−2α)2

20−8α
.

Number of Newton steps for one outer iteration of the barrier

method:

N ≤ m(γ − 1 − log γ)

δ(α, β)
+ log2 log2

(1

ε

)

,

Bound depends linearly on number of constraints m and roughly linear on µ.
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Complexity analysis II

Total number of Newton steps for outer iterations:

N ≤
log

(

m
t(0)ε

)

log γ

m(γ − 1 − log γ)

δ(α, β)
+ log2 log2

(1

ε

)

,

=⇒ at least linear convergence.

Properties:

• independent of the dimension n of the optimization variable and the

number of equality constraints.

• bound suggests γ = 1 +
√

m - but not a good choice in practice.

• bound applies only to self-concordant functions but method still works

fine for other convex functions.
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Barrier for Sn
+

Generalized Inequalities: Can be integrated in the barrier method via

generalized logarithms Ψ.

Example: positive semi-definite cone K = Sn
+.

Ψ(X) = log detX.

⇒ becomes infinite at the boundary of K (remember: the boundary are the

matrices in Sn
+ which have not full rank ⇐⇒ positive semi-definite but not

positive definite)
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Primal-Dual Interior point methods

Properties:

• generalize primal-dual method for equality constrained minimization.

• no distinction between inner and outer iterations - at each step primal

and dual variables are updated.

• in the primal-dual method, the primal and dual iterates need not be

feasible.
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Primal-Dual Interior point method II

Primal-Dual Interior point method:

modified KKT equations satisfied ⇐⇒ rt(x, λ, µ) = 0.

rdual(x, λ, µ) = ∇f(x) +

m
∑

i=1

λi∇gi(x) + AT µ

rcentral,i(x, λ, µ) = −λi gi(x) − 1

t

rprimal(x, λ, µ) = Ax − b.

rt(x, λ, µ) : R
n × R

m × R
p → R

n × R
m × R

p, rt(x, λ, µ) =











rdual(x, λ, µ)

rcentral(x, λ, µ)

rprimal(x, λ, µ)










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Primal-Dual Interior point method III

Solving rt(x, λ, µ) = 0 via Newton:

rt(x + dx, λ + dλ, µ + dµ) ≈ rt(x, λ, µ) + Drt|(x,λ,µ)











dx

dλ

dµ











= 0,

which gives the descent directions:










Hf(x) +
∑m

i=1 λiHgi(x) Dg(x)T AT

−diag(λ)Dg(x) −diag(g(x)) 0

A 0 0





















dx

dλ

dµ











= −











rdual(x, λ, µ)

rcentral(x, λ, µ)

rprimal(x, λ, µ)











where

Dg(x) =











∇g1(x)T

...

∇gm(x)T











, Dg(x) ∈ R
m×n.
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Primal-Dual Interior point method IV

Surrogate duality gap:

x(k), λ(k), ν(k) need not be feasible =⇒ no computation of duality gap

possible as in the barrier method.

Barrier method:

q(λ∗(t), µ∗(t)) = f(x∗(t)) +

m
∑

i=1

λ∗
i (t)gi(x

∗(t)) + 〈µ∗, Ax∗(t) − b〉 = f(x∗(t)) − m

t
.

Pretend that xk is primal feasible, λk, µk are dual feasible:

Surrogate duality gap: −
m

∑

i=1

λ
(k)
i (t)gi(x

(k)(t)).

Associated parameter t

t = − m
〈

λ(k), g(x(k))
〉 .
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Primal-Dual Interior point method V

Stopping condition:

‖rdual‖ ≤ εfeas, ‖rprimal‖ ≤ εfeas, −
〈

λ(k), g(x(k))
〉

≤ ε.

Stepsize selection:

as usual but first set maximal stepsize s such that λ + sdλ ≻ 0 and ensure

g(xnew) ≺ 0 during stepsize selection.

Final algorithm:

Require: x(0) with gi(x
(0)) < 0, i = 1, . . . ,m, λ(0) ≻ 0, and µ(0), param:

εfeas, ε, γ.

1: repeat

2: Determine t = −γ m
〈λ,g(x)〉 ,

3: Compute primal-dual descent direction,

4: Line search and update,

5: until ‖rdual‖ ≤ εfeas, ‖rprimal‖ ≤ εfeas, −〈λ, g(x)〉 ≤ ε
37



Comparison: barrier versus primal-dual method

Non-negative Least Squares (NNLS):

min
x∈Rn

‖Φx − Y ‖2
2

subject to: x � 0,

where Φ ∈ R
d×n and Y ∈ R

d.





Hf(x) +
∑m

i=1 λiHgi(x) Dg(x)T

−diag(λ)Dg(x) −diag(g(x))



 =





ΦT Φ −1

diag(λ) diag(x)





• dλ can be eliminated,

• Solve
(

ΦT Φ − diag(λ
x
)
)

dx = RHS.

Computation time per iteration is roughly the same for the barrier and

primal-dual method (dominated by the time for solving the linear system).
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Comparison for NNLS
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Barrier Method
Primal−Dual Barrier

The primal-dual method is more robust against parameter changes than the barrier

method (e.g. no choice of t(0)).
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