Convex Optimization and Modeling
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Constrained Minimization:

e Equality constrained minimization:

— Newton method with infeasible start

e Interior point methods:
— barrier method
— How to obtain a feasible starting point

— primal-dual barrier method
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Convex optimization problem with equality constraint:

min f(z)

subject to: Az = b.

Assumptions:
e f:R"™ — R is convex and twice differentiable,
o A c RP*" with rank A = p < n,

e optimal solution z* exists and p* = inf{ f(x) | Ax = b}.

Reminder: A pair (z*, u*) is primal-dual optimal if and only if
Ax™ = b, Vi) + A =0, (KKT-conditions).

Primal and dual feasibility equations.
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Equality constrained minimization II
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How to solve an equality constrained minimization problem 7

e climination of equality constraint - unconstrained optimization over
{2+ 2|2z € ker(A)},

where Az = b.

e solve the unconstrained dual problem,

max q(p).

e direct extension of Newton’s method for equality constrained

minimization.
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Equality constrained minimization III

Quadratic function with linear equality constraints - P € S

1
min 5 (x, Px) + {(q,x) + 1,

subject to: Az = b.
KKT conditions: Az* = b, Pz* 4+ q+ AT p* = 0.

P AT x* —q
—> KKT-system: =
A 0 L b

Cases:
e KKT-matrix nonsingular = unique primal-dual optimal pair (z*, u*),

e KKT-matrix singular:
— no solution: quadratic objective is unbounded from below,

— a whole subspace of possible solutions.
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Equality constrained minimization IV

Nonsingularity of the KKT matrix:

e P and A have no (non-trivial) common nullspace,
ker(A) Nker(P) = {0}.
e P is positive definite on the nullspace of A (ker(A)),
Ar =0, 2#0 =— (z,Px)>0.

If P> 0 the KKT-matrix is always non-singular.
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Newton’s method with equality constraints

Assumptions:
e initial point 29 is feasible, that is Az(®) = b.

Newton direction - second order approximation:

win f(z -+ d) = f(2) + (Vf(@),d) + 5 (d Hf(x)d)

subject to: A(x 4+ d) = b.
Newton step dy7 is the minimizer of this quadratic optimization problem:

Hf(:lj) AT dNT —Vf(ZIJ)

A 0 W 0

e 1 is feasible = Ad = 0.
e Newton step lies in the null-space of A.

e = + ad is feasible (stepsize selection by Armijo rule)
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Other Interpretation

Necessary and sufficient condition for optimality:
Ax* = b, Viz*)+ Al pu* = 0.

Linearized optimality condition:

Next point ' = z + d solves linearized optimality condition:

A(x +d) = b, Viz+d +ATw ~ Vf(z)+ Hf(x)d+ AT w = 0.

With Az = b (initial condition) this leads again to:

Hf(:c) AT dNT —Vf(x)

A 0 W 0
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Properties:

o Newton step is affine invariant, z = Sy f(y) = f(Sy).
Vi) =5"Vf(Sy), Hf(y)=S"Hf(Ty)S,
feasibility: ASy = b
Newton step: S dy = dyr.
o Newton decrement: \(x)? = (dn1, Hf(x)dnT).
1. Stopping criterion: f(z +d) = f(z) + (Vf(z),d) + & (d, H f(x)d)
(@) — inf{ f(z +v) | Az = b} = %v(:ﬁ).

—> estimate of the difference f(z) — p*.
2. Stepsize selection: < f(x + tdyr) = (Vf(z),dnt) = —A(2)%
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Assumption replacing H f(x) = m1:

Hi) AT\

A 0

Result: Elimination yields the same Newton step.

—> convergence analysis of unconstrained problem applies.
e linear convergence (damped Newton phase),
e quadratic convergence (pure Newton phase).

Self-concordant Objectives - required steps bounded by:

20 — 8o 1
31— 20)° (f(2@) = p*) + log, log, ( )

€

where «, 0 are the backtracking parameters (Armijo rule: o is «).
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Do we have to ensure feasibility of « 7
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Necessary and sufficient condition for optimality:
Ax* = b, Viz*)+ A p* = 0.

Linearized optimality condition:

Next point ' = z + d solves linearized optimality condition:
A(x +d) = b, Viz+d) +ATw ~ Vf(z)+ Hf(z)d+ Alw =0.
This results in

Hf(x) A\ [drpnt Vi(x)
A 0 w Ax — b
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Definition 1. In a primal-dual method both the primal variable x and the

dual variable p are updated.

e Primal residual: rp(x, ) = Az — b,
e Dual residual: rqu.(z, p) = Vf(z) + Al p,

e Residual: 7(z,u) = (rdual(z, 1), rpsi(z, 1)).
Primal-dual optimal point: (z*, u*) < r(a*,u*) = 0.

Primal-dual Newton step minimizes first-order Taylor approx. of r(x, u):

T

r( +dg, p+dy) = r(x, 1) + Drlep S =0
)

T

= Dr|g, = —r(x, 1).

o
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Primal-dual Newton step:

X

Dr‘(w,,u) — —T(ZIJ,,U).
dy
We have
Dr] Vardual VpuTdual Hf(zx) A"
T T, — —
() Vm T'pri Vv ! pri A 0
. Hf(z) A\ [d. B Tdual(T, 1) | Vf(z)+ Al p
A 0 d, pri (2, 1) Ax — b

and get with put = p+d,

Hf(x) A"\ [ da Vf(z)
A 0 ut Az — b
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Stepsize selection for primal-dual Newton step

The primal-dual step is not necessarily a descent direction:

d T

— [l + tde)|,_, = (Vf(2),de) = = (Hf(x)dy + A'w, dy)
= — <d$7 Hf(:l))dx> + <w7A33 — b> -

where we have used, Vf(z) + H f(z)d, + A'w = 0, and, Ad, = b — Ax.

BUT: it reduces the residual,

d
dt H?“(:Ij + tdg, o+ td,u)” ‘t:O - HT(ZB”M)H '

Towards feasibility: we have Ad, = b — Ax

k—1
rto= A(gttdy)—b = (1—t)(Az—b) = (1—t)rps = 7~<’“>:(H(1—t<i>))r<0>.

pri pri
1=0
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Require: an initial starting point z° and uY,

1: repeat

2:  compute the primal and dual Newton step d’; and d/’j
3: Backtracking Line Search:

4: t=1

5. while ||r(x +tdi, p+tdy)|| > (1 —ot)||r(z, )| do
6 t=pt

7. end while

8 af=t

9:  UPDATE: z"! =24 oFdf and "' = 1% 4 oFd}.
10: until Az* = b and Hr(mk,,uk)H <e¢
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Comparison of both methods
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The infeasible Newton method - note that the function value does not decrease.
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H AT v g
Solution of the KKT system: — —
A 0 W h

e Direct solution: symmetric, but not positive definite.
LDL"-factorization costs 5(n + p)>.

e Elimination: Hv+ Alw =—-g = v=—-H g+ Alw].
and AH 'ATw+ AH lg=h = w=(AH1AT)[h — AH 1g].
1. build H'AT and H g, factorization of H and p+1 rhs

= cost: f+ (p+1)s,

2. form S = AH ' A" matrix multiplication = cost: p°n,
3. solve Sw = [h — AH!g], factorization of S = cost %p?’ + p?,
4. solve Hv = g + AT w, cost: 2np + s.
Total cost: f + ps + p?n + %pS (leading terms).
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Interior point methods

General convex optimization problem:

min
reR"™ ( )
subject to: g;(z) <0, i=1,...,m,
Ax =b.
Assumptions:
e f.g1,...,0, are convex and twice differentiable,

o A c RP*" with rank(A) = p,
e there exists an optimal z* such that f(z*) = p*,

e the problem is strictly feasible (Slater’s constraint qualification holds).

) + z:)\*gZ )+ AT =0, A gi(2™) = 0.



&l UNIVERSITAT
fi e

Interior point methods II

DES
SAARLANDES

What are interior point methods 7
e solve a sequence of equality constrained problem using Newton’s method,

e solution is always strictly feasible = lies in the interior of the constraint
set S ={z|gi(x) <0,1=1,...,m}.

e basically the inequality constraints are added to the objective such that

the solution is forced to be away from the boundary of S.

Hierarchy of convex optimization algorithms:
e quadratic objective with linear equality constraints =- analytic solution,

e ceneral objective with linear eq. const. = solve sequence of problems

with quadratic objective and linear equality constraints,

e general convex optimization problem =- solve a sequence of problems

with general objective and linear equality constraints.
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Interior point methods III

Equivalent formulation of general convex optimization problem:

The logarithmic barrier function

m 10r
1 —t=0.5
win f(2)+ 31 (5:(0)) -
1=1 | e
subject to: Ax = b, —Indicator
0
0, u<0
where I_(u) = {
oo, u > 0. . | | | |

Basic idea: approximate indicator function with a differentiable function

with closed level sets.
~ 1 n
I _(u) = —(z) log(—u), dom I ={x|x < 0}.

where t is a parameter controlling the accuracy of the approximation.
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Interior point methods IV

Logarithmic Barrier Function: ¢(z) = —> " log(—gi(z)).

Approximate formulation:

min ¢ f(z) + ¢(z)

reR"™
subject to: Axr = b,

Derivatives of ¢:
o Vo(z) = -3, —LVgi(a)
o Ho(w) = 0, Lo Vgi(0)Vai(a)” - S0, L Hoi(a).

Definition 2. Let z*(t) be the optimal point of the above problem, which is
called central point. The central path is the set of points {x*(t)|t > 0}.

YN
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Figure 1: The central path for an LP. The dashed lines are the the contour

lines of ¢. The central path converges to x* as t — oc.
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Interior point methods V

Central points (opt. cond.): Az*(t)=0b, gi(z*(t) <0,i=1,...,m,

m

Define: A} (t) = —tgi(xl*(t)) and p*(t) = %

— (A*(t), u*(t)) are dual feasible for the original problem
and x*(t) is minimizer of Lagrangian !

o Lagragian: L(z, A\, n) = f(x) + >0 Aigi(x) + (1, Az — b).
e Dual function evaluated at (A\*(t), u*(¢)):

qA* (1), p* (1) = fz"(t)) + Z Ai () gi(z™ (1)) + (", Az™(t) — b) = f(a™(t)) —

m
t

'2 XD )
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Interpretation of logarithmic barrier

Interpretation via KK'T conditions:
* * 1
X (il (1) = -

— for ¢ large the original KKT conditions are approximately satisfied.

Force field interpretation (no equality constraints):

1
Force for each constraint: Fj(x) = —V(—log(—g;(x))) = 7i(7) Vgi(x),
generated by the potential ¢: F; = —Vo(x).
e Fj(x) is moving the particle away from the boundary,
o Fy(x) = —tV f(x) is moving particle towards smaller values of f.

e at the central point x*(¢) = forces are in equilibrium.

Yy O
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The barrier method (direct): set ¢ = = then
f(x*(t)) — p® <e. = generally does not work well.

Barrier method or path-following method:

Require: strictly feasible 2, ~, t = t©0) > 0. tolerance € > 0.
1: repeat
2:  Centering step: compute x*(¢) by minimizing

min ¢ f(z) + ¢(z)

reR”
subject to: Ax = b,

where previous central point is taken as starting point.
3:  UPDATE: x = z*(1).
4: = ~t.

5: until @ <€
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e Accuracy of centering: Exact centering (that is very accurate

solution of the centering step) is not necessary but also does not harm.

e Choice of ~: for a small v the last center point will be a good starting
point for the new centering step, whereas for large v the last center point

is more or less an arbitrary initial point.
trade-off between inner and outer iterations

— turns out that for 3 < v < 100 the total number of Newton steps is

almost constant.

e Choice of t0): 2 ~ f(z(V)) — p*.

o Infeasible Newton method: start with 2(°) which fulfills inequality
constraints but not necessarily equality constraints. Then when feasible

point is found continue with normal barrier method.
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Two step process:

e Phase I: find strictly feasible initial point £(©) or determine that no

feasible point exists.
e Phase II: barrier method.
Strictly feasible point:
gi(r) <0,i=1,...,m, Az =b.
Basic phase I method:
min S

seR, xeR™

subject to: gi(z) <s, i=1,....m

Ax = b.

Choose 29 such that Az(® = b and use 50 = Maxi—1.. m gz-(:c(o)).

' WAl
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Three cases:

1. p* < 0: there exists a strictly feasible solution = as soon as s < 0 the

optimization procedure can be stopped.

2. p* > 0: there exists no feasible solution = one can terminate when a
dual feasible point has been found which proves p* > 0.

3. p* =0:
e a minimum is attained at ™ and s* = 0 = the set of inequalities is

feasible but not strictly feasible.

e the minimum is not attained = the inequalities are infeasible.
Problem: in practice |f(2(¢")) — p*| < ¢ = with f(2(*")) ~ 0 we get
Pl <e.

—> g;(x) < —¢ infeasible, g;(z) < ¢ feasible.

)y P~
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Variant of Phase [

Variant of phase I method:

Feasibility:

Advantage:

m

min g S;
seER™ xcR" < 1
1=

subject to: gi(z) <s;, t=1,...,m
Ax = b,

SZ'ZO, izl,...,m.

p" =0 <= inequalities feasible.

identifies the set of feasible inequalities.

SO
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Solving for a feasible point

The less feasible the harder to identify:
Inequalities: Ax <b+ ~vd.

where for v > 0: feasible, v < 0: infeasible.

100+ :
0+ Infeasible 3 Feasible
60

40¢

Newton iterations

[ &2

Number of Newton steps versus the “erade” of feasibility .

Paal
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Complexity analysis

Assumptions:
o t f(z) + &(x) is self concordant for every t > t(0),

e the sublevel sets of the objective (subject to the constraints) are
bounded.

Number of Newton steps for equality constrained problem:

f(@®) —p* 1
N < 5.0 +1og210g2(g)7

where 0(a, 8) = aﬁ2(5_—82§4)2.

Number of Newton steps for one outer iteration of the barrier
method:

m(y —1—logv)
VE T )

Bound depends linearly on number of constraints m and roughly linear on pu.

1
+ logs log, (g)a

DM
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Total number of Newton steps for outer iterations:

log (ﬁ) m(y — 1 —logy)
log v 6(a, B)

—> at least linear convergence.

N <

1
+ logs log, (g>,

Properties:

e independent of the dimension n of the optimization variable and the

number of equality constraints.
e bound suggests v =1+ /m - but not a good choice in practice.

e bound applies only to self-concordant functions but method still works

fine for other convex functions.
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Generalized Inequalities: Can be integrated in the barrier method via

generalized logarithms V.

Example: positive semi-definite cone K = S%.
U(X) =logdet X.

= becomes infinite at the boundary of K (remember: the boundary are the
matrices in S which have not full rank <= positive semi-definite but not

positive definite)

)y
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Properties:
e ceneralize primal-dual method for equality constrained minimization.

no distinction between inner and outer iterations - at each step primal

and dual variables are updated.

in the primal-dual method, the primal and dual iterates need not be

feasible.

) O
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Primal-Dual Interior point method II

Primal-Dual Interior point method:

modified KKT equations satisfied <= ri(x,\,u) =0.

Tdual (%, A 1) = V f(2) + Z \iVgi(x) + A
1=1
1
rcentral,i(my )\, ,u) = _)‘i gz(gj) — ;

Tprimal(xa A, :u) = Ax — .

( Tdual(xa)\mu) \

re(z, A, p) R x R™ x RP — R™ x R™ x RP, (T, A 1) = | Teentral (T, N, 1)
\rprimal(ma )‘7 /j))
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Solving r;(z, A\, 1) = 0 via Newton:

(d, )

Tt(CC-Fdx,)\-Fd/\,M‘qu) ~ Tt(xa)\aﬂ)+DTt‘(x,A,u) dy | =0,

\%/

which gives the descent directions:

(Hf(x)+ S MHgi(z) Do)’ AT\ [do\  ( rawa(e A ) )
—diag(A)Dg(x) —diag(g(x)) 0 | | dx| = = | reentral(z, As 1)
\ A 0 O) \du) Krprimal(:c,)\,u))
where
(Vgl(ﬂf)T\
Dg(z) = E . Dg(z) e R™"™.

\ng (Qj)T)
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Surrogate duality gap:
:c(k), )\(k), v(k) need not be feasible = no computation of duality gap

possible as in the barrier method.

Barrier method:

m
; .

g\ (1), w7 () = f2™(t)) + Z Ai (0)gi(z™ (1)) + (", Az™(t) — b) = f(a7(t)) —

Pretend that z* is primal feasible, \¥, ;¥ are dual feasible:

m

Surrogate duality gap: — Z )\gk) (t)gi(z®)(2)).
i=1

Associated parameter ¢
t=—

0, o)y
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Primal-Dual Interior point method V

Stopping condition:

HrduaIH < Efeas HrprimaIH < Efeas — <)\(k),g(£13(k))> < e.

Stepsize selection:
as usual but first set maximal stepsize s such that A 4+ sdy > 0 and ensure

g(Tnew) < 0 during stepsize selection.
Final algorithm:

Require: (0 with gi(:c(o)) <0,i=1,...,m, A9 =0, and x© param:

Efeas) €, 7Y+
1: repeat

2:  Determine t = —y -+,

(Ag(2))
3:  Compute primal-dual descent direction,
4:  Line search and update,

5: until HrdualH S Efeas HrprimalH S Efeas — <)\,Q(CE)> S 3

> o d
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Non-negative Least Squares (NNLS):

min |[®z — Y|
reR"

subject to: x > 0,

where ® € R¥*" and Y € RY,

Hf(z)+ > NiHgi(z)  Dg(z) dL'd ~1
—diag(A)Dg(x) —diag(g(x)) diag(A) diag(z)
e d) can be eliminated,
e Solve (CDTCI) — diag(%))alaj = RHS.

Computation time per iteration is roughly the same for the barrier and

primal-dual method (dominated by the time for solving the linear system).
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logo(f(2™) —P7)

— Barrier Method
= —Primal—-Dual Barrier

-10

15 10 20 30 40 50 60

lterations

The primal-dual method is more robust against parameter changes than the barrier

method (e.g. no choice of t(9)).

> aY
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