
Convex Optimization and Modeling

Numerical linear algebra

14th (last) lecture, 14.07.2010

Jun.-Prof. Matthias Hein



Oral Exam

Topics:

• convex sets and functions

• convex optimization problems

• optimality conditions and duality theory

• unconstrained minimization (steepest descent, Newton, subgradient)

• interior point method

• constrained first order method (including FISTA)

• EXERCISES !

Convergence proofs:

• key ideas

1



Program of today

Numerical Linear Algebra:

• Sparse Matrices

• Linear System: direct solution via factorization

• Low rank updates

Semi-definite Programming:

• Globally optimal solution of a non-convex problem

• The best approximation of the sparsest cut

2



Sparse Matrices

Sparse Matrix: Let A ∈ R
n×m be a sparse matrix (most entries are zero).

Consider the case where n and m are very large - full matrix would never fit

it into memory.

Sparse Matrix Format: N denotes the number of nonzeros

• List of Coordinates

N × 3 array - [rowIx,colIx,val]

Fast for creation of sparse matrix (Matlab).

• Compressed Column (Row) Storage

– array of length N containing value of nonzero elements,

– array of length N containing row indices of nonzero elements ,

– array of length m + 1 where the s-entries points to the start of the

s-th column in the value and row array

Internal Storage Format of sparse matrices in Matlab.

3



Sparse Matrices II

Compressed Column Storage: A ∈ R
n×m with N nonzeros.

A =















0 5 0 0

4 1 0 3

1 2 0 7

0 8 0 0















.

has CCS representation (indices start with zero !)

val = [4, 1,5, 1, 2, 8,3, 7] − N entries

row = [1, 2,0, 1, 2, 3,1, 2] − N entries

col = [0, 2, 6, 6, 8] − m + 1 entries

Number of elements in column j: col(j+1)-col(j).

Number of non-zero elements in A: col(m+1).

4



Sparse Matrices III

Which will be faster ?

b = A*x or bt = xt*At with: xt = x’; At = A’;

5



Sparse Matrices III

Which will be faster ?

b = A*x or bt = xt*At with: xt = x’; At = A’;

Matrix Multiplication from the left is much faster !

• the second is faster - quick experiment 10 − 15%,

• can be easily parallelized.

Matrix-Vector-Multiplication from the left:

bj =
n

∑

i=1

xi Aij =

col(j+1)−1
∑

i=col(j)

xrow(i)val(i).

Summary:

• quick access of every column,

• but: adding an element which does not exist yet is expensive !

5



Numerical Linear Algebra

Solving a linear system

Ax = b,

where A ∈ R
n×n and b ∈ R

n, A has full rank.

Methods:

• direct (non-iterative) methods,

• iterative methods.

⇒ iterative methods are better for large-scale problems since they need

less memory (fill-in phenomenon) and are also easier to parallelize.

6



Numerical Linear Algebra II

Basic costs of matrix operations

• inner product in R
n: 2n − 1 flops,

• matrix-vector product: Ax with A ∈ R
m×n and x ∈ R

n

1. general case: 2mn flops,

2. A sparse, N nonzero entries: 2N flops,

3. A factorized, A = UV with U ∈ R
m×p and V ∈ R

p×n: 2p(m + n) flops

7



Numerical Linear Algebra III

Solving easy linear systems: Ax = b

• diagonal matrix A: xi = bi

aii
=⇒ n flops,

• lower triangular matrix A:










a11 0 0

a21 a22 0

a31 a32 a33





















x1

x2

x3











=











b1

b2

b3











,

flops:
∑n

k=1(2k − 1) = n2, less for structured matrices.

• upper triangular matrix A: same as lower triangular matrix,

• orthogonal matrix A: x = A−1b = AT b =⇒ n2 flops,

• permutation matrix P : A permutation matrix P is orthogonal ⇒
x = P T b with 0 flops,

8



Numerical Linear Algebra IV

Solving linear systems using factorization

We have a factorization of the matrix A into

A = BC.

Then we solve the linear system Ax = b using the steps

• Bz = b,

• Cx = z.

Cost: matrix factorization F + 2 solutions of linear systems S,

=⇒ B,C upper/lower triangular, S = n2.

Multiple right hand sides: Ax = B, B = (b1, . . . , bm) (m ≤ n).

Cost: F + 2mS.

9



Factorization of matrices

LU Factorization of a non-singular, square matrix A

A = PLU,

where

• P ∈ R
n×n is a permutation matrix,

• L ∈ R
n×n is a lower triangular matrix,

• U ∈ R
n×n is a upper triangular matrix.

=⇒ Gaussian elimination (with partial pivoting) needs 2n3

3 flops.

Solving the linear system: Ax = b via

z1 = P T b, Lz2 = z1, Ux = z2,

which costs 2n2 flops.

10



Factorization of matrices II

Cholesky Factorization of a symmetric, positive-definite matrix A

A = LLT ,

where L ∈ R
n×n is a lower triangular matrix,

Total cost: n3

3 flops.

• banded: bandwidth k, nk2 flops,

• sparse: complicated dependency on n, the number of nonzero

components and the sparsity pattern.

Usually reordering necessary for sparse cholesky factor L,

A = PLLT P T .

11



Factorization of matrices III

Let Ai be the principal submatrix:

Ai =











a11 . . . a1i

...
...

ai1 . . . aii











=:





Ai−1 βi

βT
i aii



 with βi =











a1i

...

ai−1,i











.

Iterative Algorithm for the Cholesky factorization:

• A1 = L1L
T
1 with L1 =

√
a11,

• Let Ai−1 = Li−1L
T
i−1, then

Li =





Li−1 0

lTi λii



 , where li = L−1
i−1βi and λii =

√

aii − ‖li‖2
.

We have

Ai = LiL
T
i =





Li−1 0

lTi λii









LT
i−1

li

0 λii



 =





Li−1L
T
i−1

Li−1li

lTi LT
i−1

λ2

ii + lTi li



 .

12



Factorization of matrices IV

LDLT Factorization of a nonsingular, symmetric matrix A

A = PLDLT P T ,

where

• P ∈ R
n×n is a permutation matrix,

• L ∈ R
n×n is a lower triangular matrix with positive elements,

• D ∈ R
n×n is block-diagonal with nonsingular 1 × 1 and 2 × 2 diagonal

blocks.

Total cost: n3

3 flops.

13



Block elimination

Solving a linear system with block structure




A11 A12

A21 A22









x1

x2



 =





b1

b2



 ,

where

• A11 ∈ R
k×k, A12 ∈ R

k×l, A21 ∈ R
l×k, A22 ∈ R

l×l,

• x1, b1 ∈ R
k, x2, b2 ∈ R

l,

• n = k + l.

Solution:

x1 = A−1
11 (b1 − A12x2), (A22 − A21A

−1
11 A12)x2 = b2 − A21A

−1
11 b1,

where S = A22 − A21A
−1
11 A12 is called the Schur complement.

=⇒ advantage over the general case if A−1
11 easy to compute !

14



Low Rank Updates

Sherman-Morrison-Woodbury Formula:

Let A ∈ R
n×n have full rank, B ∈ R

n×p and C ∈ R
p×n, then

(

A + BC
)

−1
= A−1 − A−1B(1+ CA−1B)−1CA−1.

Proof:

(A + BC)x = b ⇐⇒ Ax + By = b, y = Cx





A B

C −1








x

y



 =





b

0





Block inversion leads to the desired result. 2

=⇒ Key simplification: CA−1B has rank p.

15



Rank One Update

Linear system

Ax = b.

Now we have to solve a new linear system

(A + uvT )x′ = b.

=⇒ difference has rank one - rank one update of x.

x′ = (A−1 − A−1u(1+ vT A−1u)−1vT A−1)b

= x − 〈v, x〉
1 + 〈v,A−1u〉A

−1u.

Advantages:

• only factorization of A required !

• uvT is in general a dense matrix !

16



Global Optimization

What is global optimization ?

Find the globally optimal solution of a (non-convex) problem.

17



Global Optimization

What is global optimization ?

Find the globally optimal solution of a (non-convex) problem.

We consider quadratic optimization with quadratic equality and inequality

constraints.

min
f∈Rn

〈f,Af〉

〈f,Bf〉 = c,

〈f,Cf〉 ≤ d,

where A,B,C are positive semi-definite.

=⇒ Problem is non-convex due to equality constraint !

17



Global Optimization II

Can we find the globally optimal solution ?

Note, that 〈f,Af〉 = trace(AffT ). Thus we get

min
f

trace(AffT )

trace(B ffT ) = c

trace(C ffT ) ≤ d

What would you do ?

18



Global Optimization III

Relaxation into an SDP

min
X∈Sn

trace(AX)

trace(B X) = c

trace(C X) ≤ d

X � 0

Under which conditions can one get the solution of the original problem from

the SDP ?

19



Global Optimization III

Relaxation into an SDP

min
X∈Sn

trace(AX)

trace(B X) = c

trace(C X) ≤ d

X � 0

Under which conditions can one get the solution of the original problem from

the SDP ?

If the minimizer X∗ has rank one !

19



Global Optimization III

Suppose we have an SDP of the form:

min
X∈Sn

trace(AX)

trace(Bi X) = ci, i = 1, . . . ,m

X � 0

Theorem 1 (Pataki(1998)). If X is an extreme point of the above SDP,

then rank(X) ≤ rm, where

rm = max{r ∈ N
∣

∣ r(r + 1) ≤ m}.

What does that imply for our problem ?

20



Global Optimization III

Suppose we have an SDP of the form:

min
X∈Sn

trace(AX)

trace(Bi X) = ci, i = 1, . . . ,m

X � 0

Theorem 2 (Pataki(1998)). If X is an extreme point of the above SDP,

then rank(X) ≤ rm, where

rm = max{r ∈ N
∣

∣ r(r + 1) ≤ m}.

What does that imply for our problem ?

• The optimum is attained at an extreme point (linear objective !)

• turn the problem into a problem with two equality constraints

all extreme points have rank one =⇒ minimizer has rank one.
20


	{
ormalsize Oral Exam}
	{
ormalsize Program of today}
	{
ormalsize Sparse Matrices}
	{
ormalsize Sparse Matrices II}
	{
ormalsize Sparse Matrices III}
	{
ormalsize Sparse Matrices III}

	{
ormalsize Numerical Linear Algebra}
	{
ormalsize Numerical Linear Algebra II}
	{
ormalsize Numerical Linear Algebra III}
	{
ormalsize Numerical Linear Algebra IV}
	{
ormalsize Factorization of matrices}
	{
ormalsize Factorization of matrices II}
	{
ormalsize Factorization of matrices III}
	{
ormalsize Factorization of matrices IV }
	{
ormalsize Block elimination}
	{
ormalsize Low Rank Updates}
	{
ormalsize Rank One Update}
	{
ormalsize Global Optimization}
	{
ormalsize Global Optimization}

	{
ormalsize Global Optimization II}
	{
ormalsize Global Optimization III}
	{
ormalsize Global Optimization III}

	{
ormalsize Global Optimization III}
	{
ormalsize Global Optimization III}


