Convex Optimization and Modeling

Numerical linear algebra

14th (last) lecture, 14.07.2010
Jun.-Prof. Matthias Hein

Topics:

- convex sets and functions
- convex optimization problems
- optimality conditions and duality theory
- unconstrained minimization (steepest descent, Newton, subgradient)
- interior point method
- constrained first order method (including FISTA)
- EXERCISES!

Convergence proofs:

- key ideas

Numerical Linear Algebra:

- Sparse Matrices
- Linear System: direct solution via factorization
- Low rank updates

Semi-definite Programming:

- Globally optimal solution of a non-convex problem
- The best approximation of the sparsest cut

Sparse Matrix: Let $A \in \mathbb{R}^{n \times m}$ be a sparse matrix (most entries are zero).
Consider the case where n and m are very large - full matrix would never fit it into memory.
Sparse Matrix Format: N denotes the number of nonzeros

- List of Coordinates
$N \times 3$ array - [rowIx, colIx, val]
Fast for creation of sparse matrix (Matlab).
- Compressed Column (Row) Storage
- array of length N containing value of nonzero elements,
- array of length N containing row indices of nonzero elements ,
- array of length $m+1$ where the s-entries points to the start of the s-th column in the value and row array

Internal Storage Format of sparse matrices in Matlab.

Compressed Column Storage: $A \in \mathbb{R}^{n \times m}$ with N nonzeros.

$$
A=\left(\begin{array}{llll}
0 & 5 & 0 & 0 \\
4 & 1 & 0 & 3 \\
1 & 2 & 0 & 7 \\
0 & 8 & 0 & 0
\end{array}\right) .
$$

has CCS representation (indices start with zero !)

$$
\begin{aligned}
& \text { val }=[4,1,5,1,2,8,3,7]-\quad N \text { entries } \\
& \text { row }=[1,2,0,1,2,3,1,2]-\quad N \text { entries } \\
& \text { col }=[0,2,6,6,8]-\quad m+1 \text { entries }
\end{aligned}
$$

Number of elements in column $j: \operatorname{col}(\mathrm{j}+1)-\operatorname{col}(\mathrm{j})$.
Number of non-zero elements in A : $\operatorname{col}(\mathrm{m}+1)$.

Which will be faster ?

$$
\mathrm{b}=\mathrm{A} * \mathrm{x} \quad \text { or } \quad \mathrm{bt}=\mathrm{xt} * \mathrm{At} \text { with: } \mathrm{xt}=\mathrm{x}^{\prime} ; \mathrm{At}=\mathrm{A}^{\prime} ;
$$

Which will be faster ?

$$
\mathrm{b}=\mathrm{A} * \mathrm{x} \text { or } \mathrm{bt}=\mathrm{xt} * \mathrm{At} \text { with: } \mathrm{xt}=\mathrm{x}^{\prime} \text {; } \mathrm{At}=\mathrm{A}^{\prime} \text {; }
$$

Matrix Multiplication from the left is much faster !

- the second is faster - quick experiment $10-15 \%$,
- can be easily parallelized.

Matrix-Vector-Multiplication from the left:

$$
b_{j}=\sum_{i=1}^{n} x_{i} A_{i j}=\sum_{i=\operatorname{col}(j)}^{\operatorname{col}(j+1)-1} x_{\mathrm{row}(i)} \operatorname{val}(i) .
$$

Summary:

- quick access of every column,
- but: adding an element which does not exist yet is expensive !

Solving a linear system

$$
A x=b,
$$

where $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}, A$ has full rank.

Methods:

- direct (non-iterative) methods,
- iterative methods.
\Rightarrow iterative methods are better for large-scale problems since they need less memory (fill-in phenomenon) and are also easier to parallelize.

Basic costs of matrix operations

- inner product in $\mathbb{R}^{n}: 2 n-1$ flops,
- matrix-vector product: $A x$ with $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^{n}$

1. general case: $2 m n$ flops,
2. A sparse, N nonzero entries: $2 N$ flops,
3. A factorized, $A=U V$ with $U \in \mathbb{R}^{m \times p}$ and $V \in \mathbb{R}^{p \times n}: 2 p(m+n)$ flops

Solving easy linear systems: $A x=b$

- diagonal matrix $A: x_{i}=\frac{b_{i}}{a_{i i}} \Longrightarrow n$ flops,
- lower triangular matrix A :

$$
\left(\begin{array}{ccc}
a_{11} & 0 & 0 \\
a_{21} & a_{22} & 0 \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right),
$$

flops: $\sum_{k=1}^{n}(2 k-1)=n^{2}$, less for structured matrices.

- upper triangular matrix A : same as lower triangular matrix,
- orthogonal matrix $A: x=A^{-1} b=A^{T} b \Longrightarrow n^{2}$ flops,
- permutation matrix P : A permutation matrix P is orthogonal \Rightarrow $x=P^{T} b$ with 0 flops,

Solving linear systems using factorization
We have a factorization of the matrix A into

$$
A=B C .
$$

Then we solve the linear system $A x=b$ using the steps

- $B z=b$,
- $C x=z$.

Cost: matrix factorization $F+2$ solutions of linear systems S, $\Longrightarrow B, C$ upper/lower triangular, $S=n^{2}$.

Multiple right hand sides: $A x=B, B=\left(b_{1}, \ldots, b_{m}\right)(m \leq n)$.
Cost: $F+2 m S$.

LU Factorization of a non-singular, square matrix A

$$
A=P L U,
$$

where

- $P \in \mathbb{R}^{n \times n}$ is a permutation matrix,
- $L \in \mathbb{R}^{n \times n}$ is a lower triangular matrix,
- $U \in \mathbb{R}^{n \times n}$ is a upper triangular matrix.
\Longrightarrow Gaussian elimination (with partial pivoting) needs $\frac{2 n^{3}}{3}$ flops.

Solving the linear system: $A x=b$ via

$$
z_{1}=P^{T} b, \quad L z_{2}=z_{1}, \quad U x=z_{2},
$$

which costs $2 n^{2}$ flops.

Cholesky Factorization of a symmetric, positive-definite matrix A

$$
A=L L^{T},
$$

where $L \in \mathbb{R}^{n \times n}$ is a lower triangular matrix,

Total cost: $\frac{n^{3}}{3}$ flops.

- banded: bandwidth $k, n k^{2}$ flops,
- sparse: complicated dependency on n, the number of nonzero components and the sparsity pattern.
Usually reordering necessary for sparse cholesky factor L,

$$
A=P L L^{T} P^{T}
$$

Let A_{i} be the principal submatrix:

$$
A_{i}=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 i} \\
\vdots & & \vdots \\
a_{i 1} & \ldots & a_{i i}
\end{array}\right)=:\left(\begin{array}{cc}
A_{i-1} & \beta_{i} \\
\beta_{i}^{T} & a_{i i}
\end{array}\right) \text { with } \beta_{i}=\left(\begin{array}{c}
a_{1 i} \\
\vdots \\
a_{i-1, i}
\end{array}\right)
$$

Iterative Algorithm for the Cholesky factorization:

- $A_{1}=L_{1} L_{1}^{T}$ with $L_{1}=\sqrt{a_{11}}$,
- Let $A_{i-1}=L_{i-1} L_{i-1}^{T}$, then

$$
L_{i}=\left(\begin{array}{cc}
L_{i-1} & 0 \\
l_{i}^{T} & \lambda_{i i}
\end{array}\right), \quad \text { where } l_{i}=L_{i-1}^{-1} \beta_{i} \text { and } \lambda_{i i}=\sqrt{a_{i i}-\left\|l_{i}\right\|^{2}} .
$$

We have

$$
A_{i}=L_{i} L_{i}^{T}=\left(\begin{array}{cc}
L_{i-1} & 0 \\
l_{i}^{T} & \lambda_{i i}
\end{array}\right)\left(\begin{array}{cc}
L_{i-1}^{T} & l_{i} \\
0 & \lambda_{i i}
\end{array}\right)=\left(\begin{array}{cc}
L_{i-1} L_{i-1}^{T} & L_{i-1} l_{i} \\
l_{i}^{T} L_{i-1}^{T} & \lambda_{i i}^{2}+l_{i}^{T} l_{i}
\end{array}\right) .
$$

$L D L^{T}$ Factorization of a nonsingular, symmetric matrix A

$$
A=P L D L^{T} P^{T}
$$

where

- $P \in \mathbb{R}^{n \times n}$ is a permutation matrix,
- $L \in \mathbb{R}^{n \times n}$ is a lower triangular matrix with positive elements,
- $D \in \mathbb{R}^{n \times n}$ is block-diagonal with nonsingular 1×1 and 2×2 diagonal blocks.

Total cost: $\frac{n^{3}}{3}$ flops.

Block elimination

Solving a linear system with block structure

$$
\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{b_{1}}{b_{2}},
$$

where

- $A_{11} \in \mathbb{R}^{k \times k}, A_{12} \in \mathbb{R}^{k \times l}, A_{21} \in \mathbb{R}^{l \times k}, A_{22} \in \mathbb{R}^{l \times l}$,
- $x_{1}, b_{1} \in \mathbb{R}^{k}, x_{2}, b_{2} \in \mathbb{R}^{l}$,
- $n=k+l$.

Solution:

$$
x_{1}=A_{11}^{-1}\left(b_{1}-A_{12} x_{2}\right), \quad\left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right) x_{2}=b_{2}-A_{21} A_{11}^{-1} b_{1},
$$

where $S=A_{22}-A_{21} A_{11}^{-1} A_{12}$ is called the Schur complement.
\Longrightarrow advantage over the general case if A_{11}^{-1} easy to compute !

Sherman-Morrison-Woodbury Formula:

Let $A \in \mathbb{R}^{n \times n}$ have full rank, $B \in \mathbb{R}^{n \times p}$ and $C \in \mathbb{R}^{p \times n}$, then

$$
(A+B C)^{-1}=A^{-1}-A^{-1} B\left(\mathbb{1}+C A^{-1} B\right)^{-1} C A^{-1} .
$$

Proof:

$$
\begin{gathered}
(A+B C) x=b \quad \Longleftrightarrow \quad A x+B y=b, \quad y=C x \\
\left(\begin{array}{cc}
A & B \\
C & -\mathbb{1}
\end{array}\right)\binom{x}{y}=\binom{b}{0}
\end{gathered}
$$

Block inversion leads to the desired result.
\Longrightarrow Key simplification: $C A^{-1} B$ has rank p.

Rank One Update

Linear system

$$
A x=b
$$

Now we have to solve a new linear system

$$
\left(A+u v^{T}\right) x^{\prime}=b
$$

\Longrightarrow difference has rank one - rank one update of x .

$$
\begin{aligned}
x^{\prime} & =\left(A^{-1}-A^{-1} u\left(\mathbb{1}+v^{T} A^{-1} u\right)^{-1} v^{T} A^{-1}\right) b \\
& =x-\frac{\langle v, x\rangle}{1+\left\langle v, A^{-1} u\right\rangle} A^{-1} u .
\end{aligned}
$$

Advantages:

- only factorization of A required !
- $u v^{T}$ is in general a dense matrix !

Global Optimization

What is global optimization ?

Find the globally optimal solution of a (non-convex) problem.

Global Optimization

What is global optimization ?

Find the globally optimal solution of a (non-convex) problem.
We consider quadratic optimization with quadratic equality and inequality constraints.

$$
\begin{aligned}
\min _{f \in \mathbb{R}^{n}} & \langle f, A f\rangle \\
& \langle f, B f\rangle=c \\
& \langle f, C f\rangle \leq d
\end{aligned}
$$

where A, B, C are positive semi-definite.
\Longrightarrow Problem is non-convex due to equality constraint!

Can we find the globally optimal solution? Note, that $\langle f, A f\rangle=\operatorname{trace}\left(A f f^{T}\right)$. Thus we get

$$
\begin{aligned}
& \min _{f} \operatorname{trace}\left(A f f^{T}\right) \\
& \quad \operatorname{trace}\left(B f f^{T}\right)=c \\
& \operatorname{trace}\left(C f f^{T}\right) \leq d
\end{aligned}
$$

What would you do ?

Global Optimization III

Relaxation into an SDP

$$
\begin{aligned}
\min _{X \in S^{n}} & \operatorname{trace}(A X) \\
& \operatorname{trace}(B X)=c \\
& \operatorname{trace}(C X) \leq d \\
& X \succeq 0
\end{aligned}
$$

Under which conditions can one get the solution of the original problem from the SDP ?

Global Optimization III

Relaxation into an SDP

$$
\begin{aligned}
\min _{X \in S^{n}} & \operatorname{trace}(A X) \\
& \operatorname{trace}(B X)=c \\
& \operatorname{trace}(C X) \leq d \\
& X \succeq 0
\end{aligned}
$$

Under which conditions can one get the solution of the original problem from the SDP?

If the minimizer X^{*} has rank one!

Global Optimization III

Suppose we have an SDP of the form:

$$
\begin{aligned}
\min _{X \in S^{n}} & \operatorname{trace}(A X) \\
& \operatorname{trace}\left(B_{i} X\right)=c_{i}, \quad i=1, \ldots, m \\
& X \succeq 0
\end{aligned}
$$

Theorem 1 (Pataki(1998)). If X is an extreme point of the above $S D P$, then $\operatorname{rank}(X) \leq r_{m}$, where

$$
r_{m}=\max \{r \in \mathbb{N} \mid r(r+1) \leq m\}
$$

What does that imply for our problem ?

Suppose we have an SDP of the form:

$$
\begin{aligned}
\min _{X \in S^{n}} & \operatorname{trace}(A X) \\
& \operatorname{trace}\left(B_{i} X\right)=c_{i}, \quad i=1, \ldots, m \\
& X \succeq 0
\end{aligned}
$$

Theorem 2 (Pataki(1998)). If X is an extreme point of the above SDP, then $\operatorname{rank}(X) \leq r_{m}$, where

$$
r_{m}=\max \{r \in \mathbb{N} \mid r(r+1) \leq m\} .
$$

What does that imply for our problem ?

- The optimum is attained at an extreme point (linear objective!)
- turn the problem into a problem with two equality constraints all extreme points have rank one \Longrightarrow minimizer has rank one.

