Convex Optimization and Modeling
Numerical linear algebra

14th (last) lecture, 14.07.2010
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Topics:
e convex sets and functions
e convex optimization problems
e optimality conditions and duality theory
e unconstrained minimization (steepest descent, Newton, subgradient)
e interior point method
e constrained first order method (including FISTA)
e EXERCISES !

Convergence proofs:

e key ideas
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Program of today

Numerical Linear Algebra:
e Sparse Matrices
e Linear System: direct solution via factorization

e Low rank updates

Semi-definite Programming:
e Globally optimal solution of a non-convex problem

e The best approximation of the sparsest cut
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Sparse Matrix: Let A € R"*™ be a sparse matrix (most entries are zero).
Consider the case where n and m are very large - full matrix would never fit
it into memory.

Sparse Matrix Format: N denotes the number of nonzeros

e List of Coordinates
N x 3 array - [rowIx,collIx,val]

Fast for creation of sparse matrix (Matlab).
e Compressed Column (Row) Storage

— array of length IV containing value of nonzero elements,
— array of length N containing row indices of nonzero elements ,
— array of length m + 1 where the s-entries points to the start of the

s-th column in the value and row array

Internal Storage Format of sparse matrices in Matlab.
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Compressed Column Storage: A € R™™ ™ with N nonzeros.

(05 0 0)

410 3
A=

1 20 7

\0 8 0 0

has CCS representation (indices start with zero !)

val = [4,1,5,1,2,8,3,7] — N entries
row = [1,2,0,1,2,3,1,2] — N entries
col =[0,2,6,0,8] — m + 1 entries

Number of elements in column j: col(j+1)-col(j).

Number of non-zero elements in A: col(m+1).
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Sparse Matrices 111

Which will be faster ?
b=A*x or bt=xt*At with: xt=x’; At=A’;
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Sparse Matrices 111

Which will be faster ?
b=Axx or bt=xtxAt with: xt=x’; At=A’;

Matrix Multiplication from the left is much faster !
e the second is faster - quick experiment 10 — 15%,
e can be easily parallelized.
Matrix-Vector-Multiplication from the left:

col(j+1)—1

bj — i L3 A'LJ — Z xrow(i)val(i)‘
1=1

i=col(j)
Summary:
e quick access of every column,

e but: adding an element which does not exist yet is expensive !
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Solving a linear system

Ax = b,
where A € R™"" and b € R™, A has full rank.

Methods:

e direct (non-iterative) methods,

e iterative methods.

= iterative methods are better for large-scale problems since they need

less memory (fill-in phenomenon) and are also easier to parallelize.
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Numerical Linear Algebra II

Basic costs of matrix operations
e inner product in R™: 2n — 1 flops,
e matrix-vector product: Axr with A € R™*" and =z € R"

1. general case: 2mn flops,

2. A sparse, N nonzero entries: 2N flops,
3. A factorized, A = UV with U € R™*P and V € RP*™: 2p(m + n) flops
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Solving easy linear systems: Ax =0
e diagonal matrix A: z; = CIL’—’L —> n flops,

e lower triangular matrix A:

(an 0O O \ (5131\ (bl\
a1 a2 0 T2 by
\Cb31 asy ass ) \333 ) \53 )

flops: >7_;(2k — 1) = n?, less for structured matrices.

Y

e upper triangular matrix A: same as lower triangular matrix,
e orthogonal matrix A: x = A~ 'b = ATb = n? flops,

e permutation matrix P: A permutation matrix P is orthogonal =
r = PTb with 0 flops,
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Numerical Linear Algebra IV

Solving linear systems using factorization

We have a factorization of the matrix A into
A= BC.

Then we solve the linear system Ax = b using the steps
e Bz =0,

o (x =2z.

Cost: matrix factorization F' + 2 solutions of linear systems S,

— B, C upper/lower triangular, S = n?.

Multiple right hand sides: Ax = B, B = (b1,...,by) (m <n).
Cost: F' 4 2mS.
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MACHINE LEARNING

LU Factorization of a non-singular, square matrix A
A= PLU,

where
o P c R™"™ is a permutation matrix,
e L € R ™ ig a lower triangular matrix,
o U € R" " is a upper triangular matrix.

— Gaussian elimination (with partial pivoting) needs 2% flops.

Solving the linear system: Ax = b via
21 :PTb, Lzo = 21, Ux = 29,

which costs 2n? flops.
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Cholesky Factorization of a symmetric, positive-definite matrix A
A=LL"

where L € R™*" is a lower triangular matrix,

Total cost: %3 flops.

e banded: bandwidth k, nk? flops,

e sparse: complicated dependency on n, the number of nonzero
components and the sparsity pattern.

Usually reordering necessary for sparse cholesky factor L,

A=PLLTPT
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Let A; be the principal submatrix:

(a.ll a.lz-\ (au\

A i
: : P with §; = : :
@T Qg
Kail az’z’) \az’—l,i)
Iterative Algorithm for the Cholesky factorization:
o A = LlL{ with L1 = /a1,
o Let Ai—l — Li_lL;-r_l, then

A; =

Li1 O » 5
We have
A; = L; LY = Li-e 0 L;'F—l i _ Li—lL;'r—l Li—1l;

I i 0 i Ly A+
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LDL" Factorization of a nonsingular, symmetric matrix A
A=PLDL' P!,

where
e P e R™" is a permutation matrix,
o [ € R™"™ ig a lower triangular matrix with positive elements,

e D e R™ ™ is block-diagonal with nonsingular 1 x 1 and 2 x 2 diagonal
blocks.

Total cost: %3 flops.
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Solving a linear system with block structure
Ay A [ m b1
Ao Az T2 by

where
o A € Rka, Ao € Rle, Aoy € Rle, Ago € RZXZ,
o r1.b; € RF 9.5y € R,

o n==Fk-+1.
Solution:
r1 = A7 (b — Ajao), (Ao — Ag1 AT M A19)xe = by — Aoy AT Mby,

where S = Agy — A21A1_11A12 is called the Schur complement.

— advantage over the general case if Al_ll easy to compute !
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Sherman-Morrison-Woodbury Formula:
Let A € R"*™ have full rank, B € R"*P and C' € RP*"™, then

(A+BC) ' =A'—A'B(1+CA'B) oA

Proof:
(A+BC)x =b = Ar+By=0b, y=Cr
A B T b
C -1 Y 0
Block inversion leads to the desired result. ]

— Key simplification: CA~!B has rank p.
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Linear system

Ax = 0.

Now we have to solve a new linear system
(A +uvl)z' =b.
—> difference has rank one - rank one update of x.
= (A7 — A (1 + ot AT ) Tt AT DD

<U7:B> —1
— A" .
1+ (v, A= 1u) .

=X

Advantages:

e only factorization of A required !

e uv! is in general a dense matrix !
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Global Optimization

What is global optimization 7

Find the globally optimal solution of a (non-convex) problem.
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What is global optimization 7
Find the globally optimal solution of a (non-convex) problem.

We consider quadratic optimization with quadratic equality and inequality

constraints.
min (f, Af)
<f7 Bf> = G
(f,Cf) <d,

where A, B, C' are positive semi-definite.

— Problem is non-convex due to equality constraint !
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Can we find the globally optimal solution ?
Note, that (f, Af) = trace(Aff?). Thus we get

mjin trace(A ff1)

trace(B ff1)
trace(C ff71)

C

d

VAN

What would you do 7
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Relaxation into an SDP

min trace(A X)
Xesn

trace(B X) = c¢
trace(C X) < d
X =0

Under which conditions can one get the solution of the original problem from
the SDP 7
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Relaxation into an SDP

min trace(A X)
Xesn

trace(B X) = c¢
trace(C X) < d
X =0

Under which conditions can one get the solution of the original problem from
the SDP 7

If the minimizer X™* has rank one !
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Suppose we have an SDP of the form:

min trace(A X)
XesSn

trace(B; X) =¢;, i=1,....,m
X >0

Theorem 1 (Pataki(1998)). If X is an extreme point of the above SDP,
then rank(X) < r,, where

rm = max{r € N|r(r+1) < m}.

What does that imply for our problem ?

YN
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Suppose we have an SDP of the form:

min trace(A X)
XesSn

trace(B; X) =¢;, i=1,...,m
X =0

Theorem 2 (Pataki(1998)). If X is an extreme point of the above SDP,
then rank(X) < r,, where

rm = max{r € N|r(r+1) < m}.

What does that imply for our problem ?
e The optimum is attained at an extreme point (linear objective !)

e turn the problem into a problem with two equality constraints

all extreme points have rank one = minimizer has rank one.

YN
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