Convex Optimization and Modeling

Introduction and a quick repetition of analysis/linear algebra

First lecture, 12.04.2010

Jun.-Prof. Matthias Hein

Advanced course, 2+2 hours, 6 credit points

- Exercises:
 - time+location: Friday, 16-18, E2.4, SR 216
 - teaching assistant: Shyam Sundar Rangapuram
 - weekly exercises, theoretical and practical work,
 - practical exercises will be in Matlab (available in the CIP-pools),
 - 50% of the points in the exercises are needed to take part in the exams.

• Exams:

- End-term: 28.7.
- Re-exam: to be determined
- Grading: An exam is passed if you get at least 50% of the points. The grading is based on the best out of end-term and re-exam.

The course is based (too large extent) on the book

Boyd, Vandenberghe: Convex Optimization

The book is freely available: http://www.stanford.edu/ boyd/cvxbook/

Other material:

- Bertsekas: Nonlinear Programming
- Hiriart-Urruty, Lemarechal: Fundamentals of Convex Analysis.
- original papers.

For the exercises in Matlab we will use

CVX: Matlab Software for Disciplined Convex Programming available at: http://www.stanford.edu/ boyd/cvx/ (Version 1.21).

- Introduction/Motivation Review of Linear Algebra
- Theory: Convex Analysis: Convex sets and functions
- Theory: Convex Optimization, Duality theory
- Algorithms: Unconstrained/equality-constrained Optimization
- Algorithms: Interior Point Methods, Alternatives
- Applications: Image Processing, Machine Learning, Statistics
- Applications: Convex relaxations of combinatorial problems

- Introduction Motivation
- Reminder of Analysis
- Reminder of Linear Algebra
- Inner Product and Norms

What is Optimization ?

- we want to find the **best parameters** for a certain problem e.g. best investment, best function which fits the data, best tradeoff between fitting the data and having a smooth function (machine learning, image denoising)
- **parameters** underlie restrictions \Rightarrow constraints.
 - total investment limited and positive,
 - images have to be positive, preservation of total intensity

Mathematical Optimization/Programming

 $\min_{x \in D} f(x),$ subject to: $g_i(x) \le 0, \ i = 1, \dots, r$ $h_j(x) = 0, \ j = 1, \dots, s$

- f is the **objective** or **cost** function.
- The domain D of the optimization problem:

$$D = \operatorname{dom} f \bigcap \bigcap_{i=1}^{r} \operatorname{dom} g_{i} \bigcap \bigcap_{j=1}^{s} \operatorname{dom} h_{j}.$$

- $x \in D$ is **feasible** if the inequality and equality constraints hold at x.
- the **optimal value** p^* of the optimization problem

$$p^* = \inf\{f(x) \mid g_i(x) \le 0, \ i = 1, \dots, r, \quad h_j(x) = 0, \ j = 1, \dots, s \quad x \in D\}.$$

Linear Programming

The objective f and the constraints $g_1, \ldots, g_n, h_1, \ldots, h_m$ are all **linear**. **Example of Linear Programming:** We want to fit a linear function, $\phi(x) = \langle w, x \rangle + b$, to a set of k data points $(x_i, y_i)_{i=1}^k$.

$$\underset{w,b}{\operatorname{arg\,min}} \sum_{i=1}^{k} \left| \left\langle w, x_i \right\rangle + b - y_i \right|$$

This non-linear problem can be formulated as a linear program:

$$\min_{w \in \mathbb{R}^n, b, \gamma_1, \dots, \gamma_k \in \mathbb{R}} \sum_{i=1}^k \gamma_i,$$
subject to: $\langle w, x_i \rangle + b - y_i \leq \gamma_i, \quad i = 1, \dots, k$

$$- (\langle w, x_i \rangle + b - y_i) \leq \gamma_i, \quad i = 1, \dots, k$$

Note that $\gamma_i \ge \max \{ \langle w, x_i \rangle + b - y_i, -(\langle w, x_i \rangle + b - y_i) \} = |\langle w, x_i \rangle + b - y_i|.$ In particular, at the optimum $\gamma_i = |\langle w, x_i \rangle + b - y_i|.$

Convex Optimization

The objective f and the inequality constraints g_1, \ldots, g_n are **convex**. The equality constraints h_1, \ldots, h_m are **linear**.

Distance between convex hulls - The hard margin Support Vector Machine (SVM)

We want to separate two classes of points $(x_i, y_i)_{i=1}^k$, where $y_i = 1$ or $y_i = -1$ with a hyperplane such that the hyperplane has maximal distance to the classes.

$$\min_{\substack{w \in \mathbb{R}^n, \ b \in \mathbb{R}}} \|w\|^2$$

subject to: $y_i(\langle w, x_i \rangle + b) \ge 1, \quad \forall i = 1, \dots, k$

This problem has only a feasible solution if the two classes are separable.

Figure 1: A linearly separable problem. The hard margin solution of the SVM is shown together with the convex hulls of the positive and negative class. The points on the margin, that is $\langle w, x \rangle + b = \pm 1$, are called **support vectors**.

Introduction V

Unconstrained convex optimization: Total variation denoising

$$\min_{f} \|Y - f\|^2 + \lambda \|\nabla f\|_1.$$

Classification of optimization problems:

- Linear (good properties, polynomial-time algorithms)
- **Convex** (share a lot of properties of linear problems ⇒ good complexity properties)
- Nonlinear and non-convex (difficult ⇒ global optimality statements are usually not possible)

Instead of

linear versus nonlinear consider convex versus non-convex problem classes.

Goodies of convex optimization problems:

- many interesting problems can be formulated as convex optimization problems,
- the dual problem of non-convex problems is convex ⇒ lower bounds for difficult problems !
- efficient algorithms available but still active research area.

Goal of this course

- Overview over the theory of convex analysis and convex optimization,
- Modeling aspect in applications: how to recognize and formulate a convex optimization problem,
- Introduction to nonlinear programming, interior point methods and specialized methods.

Properties of sets (in \mathbb{R}^n):

Definition 1.

- A point $x \in C$ lies in the *interior* of C if $\exists \epsilon > 0$ such that $B(x, \epsilon) \subseteq C$.
- A point $x \in C$ lies at the **boundary** if for every $\varepsilon > 0$ the ball around x contains a point $y \notin C$.
- A set C is **open** if every point x in C is an interior point.
- A set C is **closed** if the complement $\mathbb{R}^n \setminus C$ is open.
- A set $C \in \mathbb{R}^n$ is **compact** if it is closed and bounded
- The closure of C is the set C plus the limit elements of all sequences of elements in C.
- \Rightarrow A closed set C contains all limits of sequences of elements in C,

Continuous functions:

Definition 2. A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is continuous at x if for all $\varepsilon > 0$ there exists a δ such that

$$||x - y|| \le \delta \implies ||f(x) - f(y)|| \le \varepsilon.$$

In particular for a continuous functions we have

$$\lim_{n \to \infty} f(x_n) = f\bigg(\lim_{n \to \infty} x_n\bigg).$$

Closed functions, Level set

Definition 3. A function $f : \mathbb{R}^n \to \mathbb{R}$ is called **closed** if for each α the (sub)level set

$$L_{\alpha} = \{ x \in \operatorname{dom} f \,|\, f(x) \le \alpha \},\$$

is closed.

The level set of a discontinuous function need not be closed.

Definition 4. A function $f : \mathbb{R}^n \to \mathbb{R}$ has a local minimum at x, if

 $\exists \varepsilon > 0, \text{ such that } f(x) \leq f(y), \quad \forall y \in B(x, \varepsilon).$

Properties:

- on a compact set every continuous functions attains its **global maximum/minimum**,
- convex functions are (almost) continuous (except for the boundary).

Discontinuous functions:

• there exist functions which are **everywhere discontinuous**

Dirichlet function:
$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$
,

only continuous on the irrational numbers,

Thomae function:
$$f(x) = \begin{cases} 1/q & \text{if } x = \frac{p}{q} \in \mathbb{Q}, \text{ with } \gcd(p,q) = 1, \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

- discontinuous function: can have **no** global maxima/minima on a compact set $(\text{dom } f = [-\frac{\pi}{2}, \frac{\pi}{2}], f(x) = \tan(x), f(\pi/2) = f(-\pi/2) = 0).$
- there exist discontinuous functions which have no local minima/maxima.

Jacobian, Gradient

Definition 5. Let $f : \mathbb{R}^n \to \mathbb{R}^m$ and $x \in \operatorname{int} \operatorname{dom} f$, the **derivative or** Jacobian of f at x is the matrix $Df(x) \in \mathbb{R}^{m \times n}$ given by

$$Df(x)_{ij} = \frac{\partial f_i}{\partial x_j}, \quad i = 1, \dots, m, \quad j = 1, \dots, n.$$

The affine function g of z given by

$$g(z) = f(x) + Df(x)(z - x),$$

is the (best) first-order approximation of f at x.

Definition 6. If $f : \mathbb{R}^n \to \mathbb{R}$ the Jacobian reduces to the **gradient** which we write usually as a (column) vector:

$$\nabla f(x) = Df(x)^T = \frac{\partial f}{\partial x_i}\Big|_x, \quad i = 1, \dots, n.$$

Second Derivative, Hessian and Taylor's theorem

Definition 7. Let $f : \mathbb{R}^n \to \mathbb{R}$ and f twice differentiable and $x \in \text{int dom } f$, the **Hessian matrix** of f at x is the matrix $Hf(x) \in \mathbb{R}^{n \times n}$ given by

$$Hf(x)_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n.$$

BV use $\nabla^2 f$ for the Hessian matrix. The quadratic function g of z given by

$$g(z) = f(x) + \nabla f(x)(z-x) + \frac{1}{2} \langle z-x, Hf|_x (z-x) \rangle,$$

is the (best) second-order approximation of f at x.

Theorem 1 (Taylor second-order expansion). Let $\Omega \subseteq \mathbb{R}^n$, $f \in C^2(\Omega)$ and $x \in \Omega$, then $\forall h \in \mathbb{R}^n$ with $[x, x + h] \subset \Omega$ there $\exists \theta \in [0, 1]$ such that

$$f(x+h) = f(x) + \langle \nabla f|_x, h \rangle + \frac{1}{2} \langle h, Hf(x+\theta h)h \rangle.$$

Taylor expansion

Figure 2: The first and second order Taylor approximation at $x = \frac{\pi}{4}$ of $f(x) = \sin(x)$. $f(\pi/4) = \frac{\sqrt{2}}{2}$, $f'(\pi/4) = \frac{\sqrt{2}}{2}$, $f''(\pi/4) = -\frac{\sqrt{2}}{2}$.

Range and Kernel of linear mappings

Definition 8. Let $A \in \mathbb{R}^{m \times n}$. The range of A is the subspace of \mathbb{R}^m defined as

$$\operatorname{ran} A = \{ x \in \mathbb{R}^m \, | \, x = Ay, \ y \in \mathbb{R}^n \}.$$

The dimension of ran A is the rank of A. The null space or kernel of A is the subspace of \mathbb{R}^n defined as

$$\ker A = \{ y \in \mathbb{R}^n \, | \, Ay = 0 \}.$$

Theorem 2. One has

 $\dim \ker A + \dim \operatorname{ran} A = n.$

Moreover, one has the orthogonal decomposition

 $\mathbb{R}^n = \ker A \oplus \operatorname{ran} A^T.$

Symmetric Matrices

Every real, symmetric matrix $A \in \mathbb{R}^{n \times n}$ can be written as

$$A = Q\Lambda Q^T,$$

where $Q \in \mathbb{R}^{n \times n}$ is orthogonal $(QQ^T = 1)$ and Λ is a diagonal matrix having the eigenvalues λ_i on the diagonal. Alternatively, one can write

$$A = \sum_{i=1}^{n} \lambda_i \, q_i \, q_i^T,$$

where q_i is the eigenvector corresponding to the eigenvalue λ_i . Moreover,

$$\det A = \prod_{i=1}^{n} \lambda_i, \quad \operatorname{tr} A = \sum_{i=1}^{n} \lambda_i.$$

One can find the eigenvalues via the so-called **Rayleigh-Ritz** principle

$$\lambda_{\min} = \inf_{v \in \mathbb{R}^n} \frac{\langle v, Av \rangle}{\langle v, v \rangle}, \quad \lambda_{\max} = \sup_{v \in \mathbb{R}^n} \frac{\langle v, Av \rangle}{\langle v, v \rangle}.$$

Positive Definite Matrices

Definition 9. A real, symmetric matrix $A \in \mathbb{R}^{n \times n}$ is **positive** semi-definite if

$$\langle w, Aw \rangle \ge 0, \quad \text{for all } w \in \mathbb{R}^n,$$

The real, symmetric matrix $A \in \mathbb{R}^{n \times n}$ is **positive definite** if

$$\langle w, Aw \rangle > 0$$
, for all $w \in \mathbb{R}^n$ with $w \neq 0$.

Notation:

- S^n : the set of symmetric matrices in $\mathbb{R}^{n \times n}$,
- S^n_+ : the set of positive semi-definite matrices,
- S_{++}^n : the set of positive definite matrices.

Singular Value Decomposition

Every real matrix $A \in \mathbb{R}^{m \times n}$ can be written as

 $A = U\Sigma V^T,$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal and Σ is a diagonal matrix having the positive **singular values** σ_i on the diagonal.

Facts:

- the singular values σ_i are positive,
- the number of non-zero singular values is equal to the rank of A,
- U contains the left eigenvectors (eigenvectors of AA^T),
- V contains the right eigenvectors (eigenvectors of $A^T A$),
- the singular values are the eigenvalues of $AA^T (A^T A)$.

Norms

Norms

Definition 10. Let V be a vector space. A norm $\|\cdot\| : V \to \mathbb{R}$ satisfies,

- non-negative: $||x|| \ge 0$ for all $x \in \mathbb{R}^n$, $||x|| = 0 \Leftrightarrow x = 0$,
- homogeneous: $\|\alpha x\| = |\alpha| \|x\|$,
- triangle inequality: $||x + y|| \le ||x|| + ||y||$.

A norm induces a **distance measure(metric)**: d(x, y) = ||x - y||. In \mathbb{R}^n we have the *p*-norms $(p \ge 1)$

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}.$$

On matrices $\mathbb{R}^{m \times n}$ this can be defined equivalently:

$$||X||_{p} = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |X_{ij}|^{p}\right)^{\frac{1}{p}}.$$

The unit-ball of the *p*-norms. Note that for p < 1, the unit-ball is not convex \Rightarrow no norm.

Operator/Matrix norm

Definition 11. Let $\|\cdot\|_{\alpha}$ be a norm on \mathbb{R}^m and $\|\cdot\|_{\beta}$ a norm on \mathbb{R}^n . The *operator-norm* of $A : \mathbb{R}^m \to \mathbb{R}^n$ is defined as

$$\|A\|_{\alpha,\beta} = \sup_{v \in \mathbb{R}^m, \|v\|_{\alpha} = 1} \|Av\|_{\beta}.$$

This is equivalent to:

$$|A||_{\alpha,\beta} = \sup_{v \in \mathbb{R}^m} \frac{\|Av\|_{\beta}}{\|v\|_{\alpha}}.$$

If both norms are Euclidean, then the operator norm is

$$|A||_{2,2} = \sigma_{\max}(X) = \sqrt{\lambda_{\max}(A^T A)}.$$

"Proof":

$$\frac{\|Av\|_2}{\|v\|_2} = \sqrt{\frac{\|Av\|_2^2}{\|v\|_2^2}} = \sqrt{\frac{\langle v, A^T Av \rangle}{\langle v, v \rangle}}.$$

Norms III

Equivalent Norms

Definition 12. We say that two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on a vector space V are *equivalent* if there exist a, b > 0 such that

$$a \|x\|_{1} \le \|x\|_{2} \le b \|x\|_{1}, \quad \forall x \in V.$$

Remarks:

• all norms on \mathbb{R}^n are equivalent to each other, e.g.

$$\|x\|_{2} = \sqrt{\sum_{i} x_{i}^{2}} \le \sum_{i} \sqrt{x_{i}^{2}} = \sum_{i} |x_{i}| = \|x\|_{1} \le \sqrt{\sum_{i} |x_{i}|^{2} \sum_{i} 1} = \sqrt{n} \|x\|_{2}.$$

$$||x||_{\infty} = \max_{i} |x_{i}| \le \sum_{i} |x_{i}| = ||x||_{1} \le n \max_{i} |x_{i}| = n ||x||_{\infty}.$$

• the definition of a continuous function $f: \mathbb{R}^n \to \mathbb{R}^m$ does not depend on the choice of the norm.

Inner Product

Definition 13. Let V be a vector space. Then an inner product $\langle \cdot, \cdot \rangle$ over \mathbb{R} is a **bilinear form** $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$, such that

- symmetry: $\langle x, y \rangle = \langle y, x \rangle$,
- non-negativity: $\langle x, x \rangle \ge 0$,
- non-degenerate: $\langle x, x \rangle = 0 \quad \Longleftrightarrow \quad x = 0$,

Remarks:

- An inner product space is a vector space with an inner product,
- A complete inner product space is a **Hilbert space**,
- A complete normed space is a **Banach space**.

Inner Product

The standard-inner product on \mathbb{R}^n is given for $x, y \in \mathbb{R}^n$ as

$$\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i,$$

On can extend this to the set of matrices $\mathbb{R}^{n \times m}$, for $X, Y \in \mathbb{R}^{n \times m}$,

$$\langle X, Y \rangle = \operatorname{tr}(X^T Y) = \sum_{i=1}^n \sum_{j=1}^m X_{ij} Y_{ij}.$$

Clearly, an inner-product induces a norm via: $||x|| = \sqrt{\langle x, x \rangle}$. The norm for the inner product on matrices is the **Frobenius norm**

$$\|X\|_F = \sqrt{\operatorname{tr}(X^T X)} = \left(\sum_{i=1}^n \sum_{j=1}^m X_{ij}^2\right)^{\frac{1}{2}}$$

Every inner product fulfills the **Cauchy-Schwarz inequality**

$$|\langle x,y\rangle| \le ||x|| \, ||y||$$
.

Hierarchy of mathematical structures

The hierarchy of mathematical structures - an arrow denotes inclusion (e.g. a Banach space is also a metric space or \mathbb{R}^n is also a manifold.) Drawing from "Teubner - Taschenbuch der Mathematik".