Convex Optimization and Modeling

Introduction and a quick repetition of analysis/linear algebra

First lecture, 12.04.2010
Jun.-Prof. Matthias Hein

Advanced course, $2+2$ hours, 6 credit points

- Exercises:
- time+location: Friday, 16-18, E2.4, SR 216
- teaching assistant: Shyam Sundar Rangapuram
- weekly exercises, theoretical and practical work,
- practical exercises will be in Matlab (available in the CIP-pools),
- 50% of the points in the exercises are needed to take part in the exams.
- Exams:
- End-term: 28.7.
- Re-exam: to be determined
- Grading: An exam is passed if you get at least 50% of the points. The grading is based on the best out of end-term and re-exam.

The course is based (too large extent) on the book

Boyd, Vandenberghe: Convex Optimization

The book is freely available: http://www.stanford.edu/ boyd/cvxbook/

Other material:

- Bertsekas: Nonlinear Programming
- Hiriart-Urruty, Lemarechal: Fundamentals of Convex Analysis.
- original papers.

For the exercises in Matlab we will use
CVX: Matlab Software for Disciplined Convex Programming available at: http://www.stanford.edu/ boyd/cvx/ (Version 1.21).

- Introduction/Motivation - Review of Linear Algebra
- Theory: Convex Analysis: Convex sets and functions
- Theory: Convex Optimization, Duality theory
- Algorithms: Unconstrained/equality-constrained Optimization
- Algorithms: Interior Point Methods, Alternatives
- Applications: Image Processing, Machine Learning, Statistics
- Applications: Convex relaxations of combinatorial problems
- Introduction - Motivation
- Reminder of Analysis
- Reminder of Linear Algebra
- Inner Product and Norms

What is Optimization?

- we want to find the best parameters for a certain problem e.g. best investment, best function which fits the data, best tradeoff between fitting the data and having a smooth function (machine learning, image denoising)
- parameters underlie restrictions \Rightarrow constraints.
- total investment limited and positive,
- images have to be positive, preservation of total intensity

Mathematical Optimization/Programming

$$
\begin{aligned}
& \min _{x \in D} f(x) \\
& \text { subject to: } g_{i}(x) \leq 0, i=1, \ldots, r \\
& h_{j}(x)=0, j=1, \ldots, s
\end{aligned}
$$

- f is the objective or cost function.
- The domain D of the optimization problem:

$$
D=\operatorname{dom} f \bigcap \cap_{i=1}^{r} \operatorname{dom} g_{i} \bigcap \cap_{j=1}^{s} \operatorname{dom} h_{j} .
$$

- $x \in D$ is feasible if the inequality and equality constraints hold at x.
- the optimal value p^{*} of the optimization problem

$$
p^{*}=\inf \left\{f(x) \mid g_{i}(x) \leq 0, i=1, \ldots, r, \quad h_{j}(x)=0, j=1, \ldots, s \quad x \in D\right\} .
$$

Linear Programming

The objective f and the constraints $g_{1}, \ldots, g_{n}, h_{1}, \ldots, h_{m}$ are all linear.
Example of Linear Programming: We want to fit a linear function, $\phi(x)=\langle w, x\rangle+b$, to a set of k data points $\left(x_{i}, y_{i}\right)_{i=1}^{k}$.

$$
\underset{w, b}{\arg \min } \sum_{i=1}^{k}\left|\left\langle w, x_{i}\right\rangle+b-y_{i}\right|
$$

This non-linear problem can be formulated as a linear program:

$$
\begin{aligned}
\min _{w \in \mathbb{R}^{n}, b, \gamma_{1}, \ldots, \gamma_{k} \in \mathbb{R}} & \sum_{i=1}^{k} \gamma_{i} \\
\text { subject to: } & \left\langle w, x_{i}\right\rangle+b-y_{i} \leq \gamma_{i}, \quad i=1, \ldots, k \\
& -\left(\left\langle w, x_{i}\right\rangle+b-y_{i}\right) \leq \gamma_{i}, \quad i=1, \ldots, k
\end{aligned}
$$

Note that $\gamma_{i} \geq \max \left\{\left\langle w, x_{i}\right\rangle+b-y_{i},-\left(\left\langle w, x_{i}\right\rangle+b-y_{i}\right)\right\}=\left|\left\langle w, x_{i}\right\rangle+b-y_{i}\right|$.
In particular, at the optimum $\gamma_{i}=\left|\left\langle w, x_{i}\right\rangle+b-y_{i}\right|$.

Convex Optimization

 The objective f and the inequality constraints g_{1}, \ldots, g_{n} are convex. The equality constraints h_{1}, \ldots, h_{m} are linear.Distance between convex hulls - The hard margin Support Vector Machine (SVM)
We want to separate two classes of points $\left(x_{i}, y_{i}\right)_{i=1}^{k}$, where $y_{i}=1$ or $y_{i}=-1$ with a hyperplane such that the hyperplane has maximal distance to the classes.

$$
\begin{gathered}
\min _{w \in \mathbb{R}^{n}, b \in \mathbb{R}}\|w\|^{2} \\
\text { subject to: } y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right) \geq 1, \quad \forall i=1, \ldots, k
\end{gathered}
$$

This problem has only a feasible solution if the two classes are separable.

Figure 1: A linearly separable problem. The hard margin solution of the SVM is shown together with the convex hulls of the positive and negative class. The points on the margin, that is $\langle w, x\rangle+b= \pm 1$, are called support vectors.

Unconstrained convex optimization: Total variation denoising

$$
\min _{f}\|Y-f\|^{2}+\lambda\|\nabla f\|_{1} .
$$

Introduction VI

Classification of optimization problems:

- Linear (good properties, polynomial-time algorithms)
- Convex (share a lot of properties of linear problems \Rightarrow good complexity properties)
- Nonlinear and non-convex (difficult \Rightarrow global optimality statements are usually not possible)

Instead of
linear versus nonlinear
consider
convex versus non-convex
problem classes.

Goodies of convex optimization problems:

- many interesting problems can be formulated as convex optimization problems,
- the dual problem of non-convex problems is convex \Rightarrow lower bounds for difficult problems !
- efficient algorithms available - but still active research area.

Goal of this course

- Overview over the theory of convex analysis and convex optimization,
- Modeling aspect in applications: how to recognize and formulate a convex optimization problem,
- Introduction to nonlinear programming, interior point methods and specialized methods.

Properties of sets (in \mathbb{R}^{n}):

Definition 1.

- A point $x \in C$ lies in the interior of C if $\exists \epsilon>0$ such that $B(x, \varepsilon) \subseteq C$.
- A point $x \in C$ lies at the boundary if for every $\varepsilon>0$ the ball around x contains a point $y \notin C$.
- A set C is open if every point x in C is an interior point.
- A set C is closed if the complement $\mathbb{R}^{n} \backslash C$ is open.
- A set $C \in \mathbb{R}^{n}$ is compact if it is closed and bounded
- The closure of C is the set C plus the limit elements of all sequences of elements in C.
\Rightarrow A closed set C contains all limits of sequences of elements in C,

Continuous functions:

Definition 2. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous at x if for all $\varepsilon>0$ there exists a δ such that

$$
\|x-y\| \leq \delta \quad \Longrightarrow \quad\|f(x)-f(y)\| \leq \varepsilon
$$

In particular for a continuous functions we have

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(\lim _{n \rightarrow \infty} x_{n}\right)
$$

Closed functions, Level set
Definition 3. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called closed if for each α the (sub)level set

$$
L_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\},
$$

is closed.
The level set of a discontinuous function need not be closed.

Definition 4. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ has a local minimum at x, if

$$
\exists \varepsilon>0, \text { such that } \quad f(x) \leq f(y), \quad \forall y \in B(x, \varepsilon) .
$$

Properties:

- on a compact set every continuous functions attains its global maximum/minimum,
- convex functions are (almost) continuous (except for the boundary).

Discontinuous functions:

- there exist functions which are everywhere discontinuous

$$
\text { Dirichlet function: } \quad f(x)=\left\{\begin{array}{ll}
1 & \text { if } x \in \mathbb{Q} \\
0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}
\end{array},\right.
$$

only continuous on the irrational numbers,
Thomae function: $\quad f(x)=\left\{\begin{array}{ll}1 / q & \text { if } x=\frac{p}{q} \in \mathbb{Q}, \text { with } \operatorname{gcd}(p, q)=1, \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}\end{array}\right.$.

- discontinuous function: can have no global maxima/minima on a compact set $\left(\operatorname{dom} f=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], f(x)=\tan (x), f(\pi / 2)=f(-\pi / 2)=0\right)$.
- there exist discontinuous functions which have no local minima/maxima.

Jacobian, Gradient

Definition 5. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $x \in \operatorname{int} \operatorname{dom} f$, the derivative or Jacobian of f at x is the matrix $D f(x) \in \mathbb{R}^{m \times n}$ given by

$$
D f(x)_{i j}=\frac{\partial f_{i}}{\partial x_{j}}, \quad i=1, \ldots, m, \quad j=1, \ldots, n .
$$

The affine function g of z given by

$$
g(z)=f(x)+D f(x)(z-x),
$$

is the (best) first-order approximation of f at x.
Definition 6. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ the Jacobian reduces to the gradient which we write usually as a (column) vector:

$$
\nabla f(x)=D f(x)^{T}=\left.\frac{\partial f}{\partial x_{i}}\right|_{x}, \quad i=1, \ldots, n
$$

Second Derivative, Hessian and Taylor's theorem

Definition 7. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and f twice differentiable and $x \in \operatorname{int} \operatorname{dom} f$, the Hessian matrix of f at x is the matrix $H f(x) \in \mathbb{R}^{n \times n}$ given by

$$
H f(x)_{i j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}, \quad i, j=1, \ldots, n .
$$

BV use $\nabla^{2} f$ for the Hessian matrix. The quadratic function g of z given by

$$
g(z)=f(x)+\nabla f(x)(z-x)+\frac{1}{2}\left\langle z-x,\left.H f\right|_{x}(z-x)\right\rangle,
$$

is the (best) second-order approximation of f at x.
Theorem 1 (Taylor second-order expansion). Let $\Omega \subseteq \mathbb{R}^{n}$, $f \in C^{2}(\Omega)$ and $x \in \Omega$, then $\forall h \in \mathbb{R}^{n}$ with $[x, x+h] \subset \Omega$ there $\exists \theta \in[0,1]$ such that

$$
f(x+h)=f(x)+\left\langle\left.\nabla f\right|_{x}, h\right\rangle+\frac{1}{2}\langle h, H f(x+\theta h) h\rangle .
$$

Figure 2: The first and second order Taylor approximation at $x=\frac{\pi}{4}$ of $f(x)=$ $\sin (x) . f(\pi / 4)=\frac{\sqrt{2}}{2}, f^{\prime}(\pi / 4)=\frac{\sqrt{2}}{2}, f^{\prime \prime}(\pi / 4)=-\frac{\sqrt{2}}{2}$.

Range and Kernel of linear mappings

Definition 8. Let $A \in \mathbb{R}^{m \times n}$. The range of A is the subspace of \mathbb{R}^{m} defined as

$$
\operatorname{ran} A=\left\{x \in \mathbb{R}^{m} \mid x=A y, y \in \mathbb{R}^{n}\right\}
$$

The dimension of $\operatorname{ran} A$ is the rank of A. The null space or kernel of A is the subspace of \mathbb{R}^{n} defined as

$$
\operatorname{ker} A=\left\{y \in \mathbb{R}^{n} \mid A y=0\right\} .
$$

Theorem 2. One has

$$
\operatorname{dim} \operatorname{ker} A+\operatorname{dim} \operatorname{ran} A=n
$$

Moreover, one has the orthogonal decomposition

$$
\mathbb{R}^{n}=\operatorname{ker} A \oplus \operatorname{ran} A^{T}
$$

Reminder of Linear Algebra II

Symmetric Matrices

Every real, symmetric matrix $A \in \mathbb{R}^{n \times n}$ can be written as

$$
A=Q \Lambda Q^{T}
$$

where $Q \in \mathbb{R}^{n \times n}$ is orthogonal $\left(Q Q^{T}=\mathbb{1}\right)$ and Λ is a diagonal matrix having the eigenvalues λ_{i} on the diagonal. Alternatively, one can write

$$
A=\sum_{i=1}^{n} \lambda_{i} q_{i} q_{i}^{T},
$$

where q_{i} is the eigenvector corresponding to the eigenvalue λ_{i}. Moreover,

$$
\operatorname{det} A=\prod_{i=1}^{n} \lambda_{i}, \quad \operatorname{tr} A=\sum_{i=1}^{n} \lambda_{i} .
$$

One can find the eigenvalues via the so-called Rayleigh-Ritz principle

$$
\lambda_{\min }=\inf _{v \in \mathbb{R}^{n}} \frac{\langle v, A v\rangle}{\langle v, v\rangle}, \quad \lambda_{\max }=\sup _{v \in \mathbb{R}^{n}} \frac{\langle v, A v\rangle}{\langle v, v\rangle} .
$$

Positive Definite Matrices

Definition 9. A real, symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite if

$$
\langle w, A w\rangle \geq 0, \quad \text { for all } w \in \mathbb{R}^{n}
$$

The real, symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive definite if

$$
\langle w, A w\rangle>0, \quad \text { for all } w \in \mathbb{R}^{n} \text { with } w \neq 0
$$

Notation:

- S^{n} : the set of symmetric matrices in $\mathbb{R}^{n \times n}$,
- S_{+}^{n} : the set of positive semi-definite matrices,
- S_{++}^{n} : the set of positive definite matrices.

Reminder of Linear Algebra IV

Singular Value Decomposition

Every real matrix $A \in \mathbb{R}^{m \times n}$ can be written as

$$
A=U \Sigma V^{T},
$$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal and Σ is a diagonal matrix having the positive singular values σ_{i} on the diagonal.

Facts:

- the singular values σ_{i} are positive,
- the number of non-zero singular values is equal to the rank of A,
- U contains the left eigenvectors (eigenvectors of $A A^{T}$),
- V contains the right eigenvectors (eigenvectors of $A^{T} A$),
- the singular values are the eigenvalues of $A A^{T}\left(A^{T} A\right)$.

Norms

Definition 10. Let V be a vector space. A norm $\|\cdot\|: V \rightarrow \mathbb{R}$ satisfies,

- non-negative: $\|x\| \geq 0$ for all $x \in \mathbb{R}^{n},\|x\|=0 \Leftrightarrow x=0$,
- homogeneous: $\|\alpha x\|=|\alpha|\|x\|$,
- triangle inequality: $\|x+y\| \leq\|x\|+\|y\|$.

A norm induces a distance measure(metric): $d(x, y)=\|x-y\|$.
In \mathbb{R}^{n} we have the p-norms $(p \geq 1)$

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

On matrices $\mathbb{R}^{m \times n}$ this can be defined equivalently:

$$
\|X\|_{p}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|X_{i j}\right|^{p}\right)^{\frac{1}{p}} .
$$

Level sets of the p-norms

The unit-ball of the p-norms. Note that for $p<1$, the unit-ball is not convex \Rightarrow no norm.

Norms II

Operator/Matrix norm

Definition 11. Let $\|\cdot\|_{\alpha}$ be a norm on \mathbb{R}^{m} and $\|\cdot\|_{\beta}$ a norm on \mathbb{R}^{n}. The operator-norm of $A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is defined as

$$
\|A\|_{\alpha, \beta}=\sup _{v \in \mathbb{R}^{m},\|v\|_{\alpha}=1}\|A v\|_{\beta}
$$

This is equivalent to:

$$
\|A\|_{\alpha, \beta}=\sup _{v \in \mathbb{R}^{m}} \frac{\|A v\|_{\beta}}{\|v\|_{\alpha}} .
$$

If both norms are Euclidean, then the operator norm is

$$
\|A\|_{2,2}=\sigma_{\max }(X)=\sqrt{\lambda_{\max }\left(A^{T} A\right)} .
$$

"Proof":

$$
\frac{\|A v\|_{2}}{\|v\|_{2}}=\sqrt{\frac{\|A v\|_{2}^{2}}{\|v\|_{2}^{2}}}=\sqrt{\frac{\left\langle v, A^{T} A v\right\rangle}{\langle v, v\rangle}} .
$$

Equivalent Norms

Definition 12. We say that two norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ on a vector space V are equivalent if there exist $a, b>0$ such that

$$
a\|x\|_{1} \leq\|x\|_{2} \leq b\|x\|_{1}, \quad \forall x \in V .
$$

Remarks:

- all norms on \mathbb{R}^{n} are equivalent to each other, e.g.

$$
\begin{gathered}
\|x\|_{2}=\sqrt{\sum_{i} x_{i}^{2}} \leq \sum_{i} \sqrt{x_{i}^{2}}=\sum_{i}\left|x_{i}\right|=\|x\|_{1} \leq \sqrt{\sum_{i}\left|x_{i}\right|^{2} \sum_{i} 1}=\sqrt{n}\|x\|_{2} \\
\|x\|_{\infty}=\max _{i}\left|x_{i}\right| \leq \sum_{i}\left|x_{i}\right|=\|x\|_{1} \leq n \max _{i}\left|x_{i}\right|=n\|x\|_{\infty}
\end{gathered}
$$

- the definition of a continuous function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ does not depend on the choice of the norm.

Inner Product

Definition 13. Let V be a vector space. Then an inner product $\langle\cdot, \cdot\rangle$ over \mathbb{R} is a bilinear form $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$, such that

- symmetry: $\langle x, y\rangle=\langle y, x\rangle$,
- non-negativity: $\langle x, x\rangle \geq 0$,
- non-degenerate: $\langle x, x\rangle=0 \quad \Longleftrightarrow \quad x=0$,

Remarks:

- An inner product space is a vector space with an inner product,
- A complete inner product space is a Hilbert space,
- A complete normed space is a Banach space.

Inner Product

The standard-inner product on \mathbb{R}^{n} is given for $x, y \in \mathbb{R}^{n}$ as

$$
\langle x, y\rangle=x^{T} y=\sum_{i=1}^{n} x_{i} y_{i}
$$

On can extend this to the set of matrices $\mathbb{R}^{n \times m}$, for $X, Y \in \mathbb{R}^{n \times m}$,

$$
\langle X, Y\rangle=\operatorname{tr}\left(X^{T} Y\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} X_{i j} Y_{i j}
$$

Clearly, an inner-product induces a norm via: $\|x\|=\sqrt{\langle x, x\rangle}$. The norm for the inner product on matrices is the Frobenius norm

$$
\|X\|_{F}=\sqrt{\operatorname{tr}\left(X^{T} X\right)}=\left(\sum_{i=1}^{n} \sum_{j=1}^{m} X_{i j}^{2}\right)^{\frac{1}{2}}
$$

Every inner product fulfills the Cauchy-Schwarz inequality

$$
|\langle x, y\rangle| \leq\|x\|\|y\| .
$$

The hierarchy of mathematical structures - an arrow denotes inclusion (e.g.
a Banach space is also a metric space or \mathbb{R}^{n} is also a manifold.) Drawing from "Teubner - Taschenbuch der Mathematik".

