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Organization of the lecture

Advanced course, 2+2 hours, 6 credit points

• Exercises:

– time+location: Friday, 16-18, E2.4, SR 216

– teaching assistant: Shyam Sundar Rangapuram

– weekly exercises, theoretical and practical work,

– practical exercises will be in Matlab (available in the CIP-pools),

– 50% of the points in the exercises are needed to take part in the

exams.

• Exams:

– End-term: 28.7.

– Re-exam: to be determined

• Grading: An exam is passed if you get at least 50% of the points. The

grading is based on the best out of end-term and re-exam.
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Lecture Material

The course is based (too large extent) on the book

Boyd, Vandenberghe: Convex Optimization

The book is freely available: http://www.stanford.edu/ boyd/cvxbook/

Other material:

• Bertsekas: Nonlinear Programming

• Hiriart-Urruty, Lemarechal: Fundamentals of Convex Analysis.

• original papers.

For the exercises in Matlab we will use

CVX: Matlab Software for Disciplined Convex Programming

available at: http://www.stanford.edu/ boyd/cvx/ (Version 1.21).
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Roadmap of the lecture

• Introduction/Motivation - Review of Linear Algebra

• Theory: Convex Analysis: Convex sets and functions

• Theory: Convex Optimization, Duality theory

• Algorithms: Unconstrained/equality-constrained Optimization

• Algorithms: Interior Point Methods, Alternatives

• Applications: Image Processing, Machine Learning, Statistics

• Applications: Convex relaxations of combinatorial problems
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Roadmap for today

• Introduction - Motivation

• Reminder of Analysis

• Reminder of Linear Algebra

• Inner Product and Norms
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Introduction

What is Optimization ?

• we want to find the best parameters for a certain problem

e.g. best investment, best function which fits the data, best tradeoff

between fitting the data and having a smooth function (machine

learning, image denoising)

• parameters underlie restrictions ⇒ constraints.

– total investment limited and positive,

– images have to be positive, preservation of total intensity
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Introduction II

Mathematical Optimization/Programming

min
x∈D

f(x),

subject to: gi(x) ≤ 0, i = 1, . . . , r

hj(x) = 0, j = 1, . . . , s

• f is the objective or cost function.

• The domain D of the optimization problem:

D = dom f
⋂

∩r
i=1 dom gi

⋂

∩s
j=1 domhj .

• x ∈ D is feasible if the inequality and equality constraints hold at x.

• the optimal value p∗ of the optimization problem

p∗ = inf{f(x) | gi(x) ≤ 0, i = 1, . . . , r, hj(x) = 0, j = 1, . . . , s x ∈ D}.
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Introduction III

Linear Programming

The objective f and the constraints g1, . . . , gn, h1, . . . , hm are all linear.

Example of Linear Programming: We want to fit a linear function,

φ(x) = 〈w, x〉 + b, to a set of k data points (xi, yi)
k
i=1.

arg min
w,b

k
∑

i=1

∣

∣ 〈w, xi〉 + b − yi

∣

∣

This non-linear problem can be formulated as a linear program:

min
w∈Rn, b, γ1,...,γk∈R

k
∑

i=1

γi,

subject to: 〈w, xi〉 + b − yi ≤ γi, i = 1, . . . , k

−
(

〈w, xi〉 + b − yi

)

≤ γi, i = 1, . . . , k

Note that γi ≥ max
{

〈w, xi〉+ b− yi,−
(

〈w, xi〉+ b− yi

)}

= | 〈w, xi〉+ b− yi|.
In particular, at the optimum γi = | 〈w, xi〉 + b − yi|.
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Introduction IV

Convex Optimization

The objective f and the inequality constraints g1, . . . , gn are convex.

The equality constraints h1, . . . , hm are linear.

Distance between convex hulls - The hard margin Support Vector

Machine (SVM)

We want to separate two classes of points (xi, yi)
k
i=1, where yi = 1 or yi = −1

with a hyperplane such that the hyperplane has maximal distance to the

classes.

min
w∈Rn, b∈R

‖w‖2

subject to: yi(〈w, xi〉 + b) ≥ 1, ∀ i = 1, . . . , k

This problem has only a feasible solution if the two classes are separable.
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Visualization of the SVM solution
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Figure 1: A linearly separable problem. The hard margin solution of the SVM

is shown together with the convex hulls of the positive and negative class. The

points on the margin, that is 〈w, x〉 + b = ±1, are called support vectors.
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Introduction V

Unconstrained convex optimization: Total variation denoising

min
f

‖Y − f‖2 + λ ‖∇f‖
1
.
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Introduction VI

Classification of optimization problems:

• Linear (good properties, polynomial-time algorithms)

• Convex (share a lot of properties of linear problems ⇒ good complexity

properties)

• Nonlinear and non-convex (difficult ⇒ global optimality statements

are usually not possible)

Instead of

linear versus nonlinear

consider

convex versus non-convex

problem classes.

11



Introduction VII

Goodies of convex optimization problems:

• many interesting problems can be formulated as convex optimization

problems,

• the dual problem of non-convex problems is convex ⇒ lower bounds for

difficult problems !

• efficient algorithms available - but still active research area.

Goal of this course

• Overview over the theory of convex analysis and convex optimization,

• Modeling aspect in applications: how to recognize and formulate a

convex optimization problem,

• Introduction to nonlinear programming, interior point methods and

specialized methods.

Warning: Not every interesting problem in the world is convex !
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Reminder of Analysis

Properties of sets (in Rn):

Definition 1.

• A point x ∈ C lies in the interior of C if ∃ ǫ > 0 such that B(x, ε) ⊆ C.

• A point x ∈ C lies at the boundary if for every ε > 0 the ball around x

contains a point y 6∈ C.

• A set C is open if every point x in C is an interior point.

• A set C is closed if the complement Rn\C is open.

• A set C ∈ Rn is compact if it is closed and bounded

• The closure of C is the set C plus the limit elements of all sequences of

elements in C.

⇒ A closed set C contains all limits of sequences of elements in C,
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Reminder of Analysis II

Continuous functions:

Definition 2. A function f : Rn → Rm is continuous at x if for all ε > 0

there exists a δ such that

‖x − y‖ ≤ δ =⇒ ‖f(x) − f(y)‖ ≤ ε.

In particular for a continuous functions we have

lim
n→∞

f(xn) = f
(

lim
n→∞

xn

)

.

Closed functions, Level set

Definition 3. A function f : Rn → R is called closed if for each α the

(sub)level set

Lα = {x ∈ dom f | f(x) ≤ α},

is closed.

The level set of a discontinuous function need not be closed.
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Reminder of Analysis III

Definition 4. A function f : Rn → R has a local minimum at x, if

∃ ε > 0, such that f(x) ≤ f(y), ∀ y ∈ B(x, ε).

Properties:

• on a compact set every continuous functions attains its global

maximum/minimum,

• convex functions are (almost) continuous (except for the boundary).
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Reminder of Analysis IV

Discontinuous functions:

• there exist functions which are everywhere discontinuous

Dirichlet function: f(x) =

{

1 if x ∈ Q,

0 if x ∈ R\Q
,

only continuous on the irrational numbers,

Thomae function: f(x) =

{

1/q if x = p
q
∈ Q, with gcd(p, q) = 1,

0 if x ∈ R\Q
.

• discontinuous function: can have no global maxima/minima on a

compact set (dom f = [−π
2
, π

2
], f(x) = tan(x), f(π/2) = f(−π/2) = 0).

• there exist discontinuous functions which have no local minima/maxima.
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Reminder of Analysis V

Jacobian, Gradient

Definition 5. Let f : Rn → Rm and x ∈ int dom f , the derivative or

Jacobian of f at x is the matrix Df(x) ∈ Rm×n given by

Df(x)ij =
∂fi

∂xj
, i = 1, . . . ,m, j = 1, . . . , n.

The affine function g of z given by

g(z) = f(x) + Df(x)(z − x),

is the (best) first-order approximation of f at x.

Definition 6. If f : Rn → R the Jacobian reduces to the gradient which we

write usually as a (column) vector:

∇f(x) = Df(x)T =
∂f

∂xi

∣

∣

∣

x
, i = 1, . . . , n.
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Reminder of Analysis VI

Second Derivative, Hessian and Taylor’s theorem

Definition 7. Let f : Rn → R and f twice differentiable and x ∈ int dom f ,

the Hessian matrix of f at x is the matrix Hf(x) ∈ Rn×n given by

Hf(x)ij =
∂2f

∂xi∂xj
, i, j = 1, . . . , n.

BV use ∇2f for the Hessian matrix. The quadratic function g of z given by

g(z) = f(x) + ∇f(x)(z − x) +
1

2
〈z − x,Hf |x (z − x)〉 ,

is the (best) second-order approximation of f at x.

Theorem 1 (Taylor second-order expansion). Let Ω ⊆ Rn, f ∈ C2(Ω) and

x ∈ Ω, then ∀h ∈ Rn with [x, x + h] ⊂ Ω there ∃θ ∈ [0, 1] such that

f(x + h) = f(x) + 〈∇f |x, h〉 +
1

2
〈h,Hf(x + θh)h〉 .
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Taylor expansion
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Figure 2: The first and second order Taylor approximation at x = π
4

of f(x) =

sin(x). f(π/4) =
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Reminder of Linear Algebra

Range and Kernel of linear mappings

Definition 8. Let A ∈ Rm×n. The range of A is the subspace of Rm defined

as

ranA = {x ∈ Rm |x = Ay, y ∈ Rn}.

The dimension of ran A is the rank of A. The null space or kernel of A

is the subspace of Rn defined as

kerA = {y ∈ Rn |Ay = 0}.

Theorem 2. One has

dim kerA + dim ranA = n.

Moreover, one has the orthogonal decomposition

Rn = kerA ⊕ ranAT .
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Reminder of Linear Algebra II

Symmetric Matrices

Every real, symmetric matrix A ∈ Rn×n can be written as

A = QΛQT ,

where Q ∈ Rn×n is orthogonal (QQT = 1) and Λ is a diagonal matrix having

the eigenvalues λi on the diagonal. Alternatively, one can write

A =
∑n

i=1
λi qi qT

i ,

where qi is the eigenvector corresponding to the eigenvalue λi. Moreover,

detA =
∏n

i=1
λi, trA =

∑n

i=1
λi.

One can find the eigenvalues via the so-called Rayleigh-Ritz principle

λmin = inf
v∈Rn

〈v,Av〉
〈v, v〉 , λmax = sup

v∈Rn

〈v,Av〉
〈v, v〉 .
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Reminder of Linear Algebra III

Positive Definite Matrices

Definition 9. A real, symmetric matrix A ∈ Rn×n is positive

semi-definite if

〈w,Aw〉 ≥ 0, for all w ∈ Rn,

The real, symmetric matrix A ∈ Rn×n is positive definite if

〈w,Aw〉 > 0, for all w ∈ Rn with w 6= 0.

Notation:

• Sn: the set of symmetric matrices in Rn×n,

• Sn
+: the set of positive semi-definite matrices,

• Sn
++: the set of positive definite matrices.
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Reminder of Linear Algebra IV

Singular Value Decomposition

Every real matrix A ∈ Rm×n can be written as

A = UΣV T ,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal and Σ is a diagonal matrix

having the positive singular values σi on the diagonal.

Facts:

• the singular values σi are positive,

• the number of non-zero singular values is equal to the rank of A,

• U contains the left eigenvectors (eigenvectors of AAT ),

• V contains the right eigenvectors (eigenvectors of AT A),

• the singular values are the eigenvalues of AAT (AT A).
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Norms

Norms

Definition 10. Let V be a vector space. A norm ‖·‖ : V → R satisfies,

• non-negative: ‖x‖ ≥ 0 for all x ∈ Rn, ‖x‖ = 0 ⇔ x = 0,

• homogeneous: ‖αx‖ = |α| ‖x‖,
• triangle inequality: ‖x + y‖ ≤ ‖x‖ + ‖y‖.

A norm induces a distance measure(metric): d(x, y) = ‖x − y‖.
In Rn we have the p-norms (p ≥ 1)

‖x‖p =
(

n
∑

i=1

|xi|p
)

1

p
.

On matrices Rm×n this can be defined equivalently:

‖X‖p =
(

m
∑

i=1

n
∑

j=1

|Xij |p
)

1

p
.
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p-norm
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⇒ no norm.
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Norms II

Operator/Matrix norm

Definition 11. Let ‖·‖α be a norm on Rm and ‖·‖β a norm on Rn. The

operator-norm of A : Rm → Rn is defined as

‖A‖α,β = sup
v∈Rm,‖v‖α=1

‖Av‖β .

This is equivalent to:

‖A‖α,β = sup
v∈Rm

‖Av‖β

‖v‖α

.

If both norms are Euclidean, then the operator norm is

‖A‖
2,2 = σmax(X) =

√

λmax(AT A).

“Proof”:
‖Av‖

2

‖v‖
2

=

√

‖Av‖2

2

‖v‖2

2

=

√

〈v,AT Av〉
〈v, v〉 .
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Norms III

Equivalent Norms

Definition 12. We say that two norms ‖·‖
1

and ‖·‖
2

on a vector space V

are equivalent if there exist a, b > 0 such that

a ‖x‖
1
≤ ‖x‖

2
≤ b ‖x‖

1
, ∀x ∈ V.

Remarks:

• all norms on Rn are equivalent to each other, e.g.

‖x‖
2

=

√

∑

i

x2
i ≤

∑

i

√

x2
i =

∑

i

|xi| = ‖x‖
1
≤

√

∑

i

|xi|2
∑

i

1 =
√

n ‖x‖
2
.

‖x‖∞ = max
i

|xi| ≤
∑

i

|xi| = ‖x‖
1
≤ nmax

i
|xi| = n ‖x‖∞.

• the definition of a continuous function f : Rn → Rm does not depend on

the choice of the norm.
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Inner Product

Inner Product

Definition 13. Let V be a vector space. Then an inner product 〈·, ·〉 over R

is a bilinear form 〈·, ·〉 : V × V → R, such that

• symmetry: 〈x, y〉 = 〈y, x〉,
• non-negativity: 〈x, x〉 ≥ 0,

• non-degenerate: 〈x, x〉 = 0 ⇐⇒ x = 0 ,

Remarks:

• An inner product space is a vector space with an inner product,

• A complete inner product space is a Hilbert space,

• A complete normed space is a Banach space.
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Inner Product II

Inner Product

The standard-inner product on Rn is given for x, y ∈ Rn as

〈x, y〉 = xT y =
∑n

i=1
xiyi,

On can extend this to the set of matrices Rn×m, for X,Y ∈ Rn×m,

〈X,Y 〉 = tr(XT Y ) =
∑n

i=1

∑m

j=1
XijYij .

Clearly, an inner-product induces a norm via: ‖x‖ =
√

〈x, x〉.
The norm for the inner product on matrices is the Frobenius norm

‖X‖F =
√

tr(XT X) =
(

∑n

i=1

∑m

j=1
X2

ij

)
1

2

.

Every inner product fulfills the Cauchy-Schwarz inequality

| 〈x, y〉 | ≤ ‖x‖ ‖y‖ .
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Hierarchy of mathematical structures

The hierarchy of mathematical structures - an arrow denotes inclusion (e.g.

a Banach space is also a metric space or Rn is also a manifold.) Drawing

from “Teubner - Taschenbuch der Mathematik”.
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