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Program of today/next lecture

Lagrangian and duality:

• the Lagrangian

• the dual Lagrange problem

• weak and strong duality, Slater’s constraint qualification

• optimality conditions, complementary slackness, KKT conditions

• perturbation analysis of the constraints

• generalized inequalities
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The Lagrange function and duality

Duality theory is done for the general optimization problem !
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The Lagrange function

Motivation of the Lagrange function: general optimization problem

(MP)

min
x∈D

f(x),

subject to: gi(x) ≤ 0, i = 1, . . . , r

hj(x) = 0, j = 1, . . . , s.

Idea:

• turn constrained problem into an unconstrained problem,

• the set of extremal points of the resulting unconstrained problem

contains the extremal points of the original constrained problem

(necessary condition). In some cases the two sets are equal (necessary

and sufficient condition).
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The Lagrange function II

Definition 1. The Lagrangian or Lagrange function

L : R
n × R

r
+ × R

s → R associated with the MP is defined as

L(x, λ, µ) = f(x) +

r
∑

j=0

λj gj(x) +

s
∑

i=0

µi hi(x),

with dom L = D × R
r
+ × R

s where D is the domain of the optimization

problem. The variables λj and µi are called Lagrange multipliers

associated with the inequality and equality constraints.
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The Lagrange function III

Interpretation:

• The constrained problem is turned into an unconstrained problem using

I−(x) =

{

0 if x ≤ ∞,

∞ if x > 0.
, and I0(x) =

{

0 if x = 0,

∞ if x > 0.

Thus, we arrive at

min
x∈D

f(x) +

r
∑

j=0

I−(gj(x)) +

s
∑

i=0

I0(hi(x)).

Lagrangian: relaxation of the hard constraints to linear functions.

Note, that a linear function (which is positive in the positive orthant) is

an underestimator of the indicator function I0(x) (I−(x)).

• the extremal points of the Lagrangian are closely related to the extremal

points of the optimization problem.
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The dual function

Definition 2. The dual Lagrange function q : R
r
+ × R

s → R associated

with the MP is defined as

q(λ, µ) = inf
x∈D

L(x, λ, µ) = inf
x∈D

(

f(x) +

r
∑

j=0

λj gj(x) +

s
∑

i=0

µi hi(x)
)

,

where q(λ, µ) is defined to be −∞ if L(x, λ, µ) is unbounded from below in x.

Properties:

• the dual function is a pointwise infimum of a family of linear and thus

concave functions (in λ and µ) and therefore concave.

This holds irrespectively of the character of the MP, in particular this

holds also for discrete optimization problems.
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The dual function II

Proposition 1. For any λ � 0 and µ we have,

q(λ, µ) ≤ p∗.

Proof. Suppose x′ is a feasible point for the problem, then

gi(x
′) ≤ 0, i = 1, . . . , r and hj(x

′) = 0, j = 1, . . . , s. Thus,

r
∑

j=0

λj gj(x
′) +

s
∑

i=0

µi hi(x
′) ≤ 0.

Thus we have,

L(x′, λ, µ) = f(x′) +
r

∑

j=0

λj gj(x
′) +

s
∑

i=0

µi hi(x
′) ≤ f(x′).

=⇒ q(λ, µ) = inf
x∈D

L(x, λ, µ) ≤ f(x′).

Since this holds for any feasible point x′, we get q(λ, µ) ≤ p∗. 2
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The dual problem

For each pair (λ, µ) with λ � 0 we have q(λ, µ) ≤ p∗.

What is the best possible lower bound ?
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The dual problem

For each pair (λ, µ) with λ � 0 we have q(λ, µ) ≤ p∗.

What is the best possible lower bound ?

Definition 4. The Lagrange dual problem is defined as

max q(λ, µ),

subject to: λ � 0.

Properties:

• For each MP the dual problem is convex.

• The original OP is called the primal problem.

• (λ, µ) is dual feasible if q(λ, µ) > −∞.

• (λ∗, µ∗) is called dual optimal if they are optimal for the dual problem.
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The dual problem II

Making implicit constraints in the dual problem explicit:

The dimension of the domain of the dual function

dom q = {(λ, µ) | q(λ, µ) > −∞},

is often smaller than r + s (λ ∈ R
r, µ ∈ R

s) ⇒ identify “hidden constraints”
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The dual problem II

Making implicit constraints in the dual problem explicit:

The dimension of the domain of the dual function

dom q = {(λ, µ) | q(λ, µ) > −∞},

is often smaller than r + s (λ ∈ R
r, µ ∈ R

s) ⇒ identify “hidden constraints”

Example:

min 〈c, x〉 (standard form LP)

subject to: Ax = b, x � 0.

with dual function: q(λ, µ) =

{

−〈b, µ〉 if c + AT µ − λ = 0,

−∞ otherwise
.

max − 〈b, µ〉 ,

subject to: λ � 0,

AT µ − λ + c = 0.

max − 〈b, µ〉 ,

subject to: AT µ + c � 0. .
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Example: Least squares with linear constraint

Consider the problem, with x ∈ R
n, A ∈ R

p×n and b ∈ R
p,

min
x∈D

‖x‖2

2
, (Least squares with linear constraint)

subject to: Ax = b, ,

• The Lagrangian is: L(x, µ) = ‖x‖2

2
+ 〈µ,Ax − b〉.

• Lagrangian is a strictly convex function of x,

∇xL(x, µ) = 2x + AT µ = 0,

which gives x = −1

2
AT µ and we get the dual function

q(µ) =
1

4

∥

∥AT µ
∥

∥

2

2
+

〈

µ,−
1

2
AAT µ − b

〉

= −
1

4

∥

∥AT µ
∥

∥

2

2
− 〈µ, b〉.

The lower bound states for any µ ∈ R
p we have

−
1

4

∥

∥AT µ
∥

∥

2

2
− 〈µ, b〉 ≤ p∗ = inf{‖x‖2

2
|Ax = b}.
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Example: A graph-cut problem

Problem:

• weighted, undirected graph with n vertices and weight matrix W ∈ Sn.

• split the graph (the vertex set) in two (disjoint) groups

min 〈x,Wx〉 (graph cut criterion)

subject to: x2
i = 1, i = 1, . . . , n,

L(x, µ) = 〈x,Wx〉 +

n
∑

i=1

µi(x
2
i − 1) =

n
∑

i,j=1

(

Wij + µiδij

)

xixj − 〈µ,1〉

and thus the dual function is: q(µ) =

{

−〈µ,1〉, if W + diag(µ) � 0,

−∞, otherwise
.

For every µ which is feasible we get a lower bound e.g. µ = −λmin(W )1,

p∗ ≥ −〈µ,1〉 = nλmin(W ).
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Weak and strong duality

Corollary 1. Let d∗ and p∗ be the optimal values of the dual and primal

problem. Then

d∗ ≤ p∗, (weak duality).

• The difference p∗ − d∗ is the optimal duality gap of the MP.

• solving the convex dual problem provides lower bounds for any MP.
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Weak and strong duality

Corollary 2. Let d∗ and p∗ be the optimal values of the dual and primal

problem. Then

d∗ ≤ p∗, (weak duality).

• The difference p∗ − d∗ is the optimal duality gap of the MP.

• solving the convex dual problem provides lower bounds for any MP.

Definition 6. We say that strong duality holds if

d∗ = p∗.

Constraint qualifications are conditions under which strong duality holds.

Strong duality does not hold in general !

But for convex problems strong duality holds quite often.
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Slater’s constraint qualification

Geometric interpretation of strong duality:

• only inequality constraints: consider the set defined as

S = {(g(x), f(x)) ∈ R
r × R |x ∈ D} ⊆ R

r+1.

• Interpret the sum L(x, λ) = f(x) + 〈λ, g(x)〉 as

〈λ, g(x)〉 + f(x) = 〈(λ, 1), (g(x), f(x))〉

hyperplane H: normal vector (λ, 1) going through the point (g(x), f(x)).

• We have u = (λ, 1) and x0 = (g(x), f(x)) and thus with x = (z,w) we get

〈u, x − x0〉 = 〈λ, z − g(x)〉 + (w − f(x)).

=⇒ H intersects the vertical axis {(0, w) |w ∈ R} at L(x, λ).

−〈λ, g(x)〉 + w − f(x) = 0 =⇒ w = f(x) + 〈λ, g(x)〉 .
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Slater’s constraint qualification II

• Among all hyperplanes with normal u = (λ, 1) that have S in the positive

half-space, the highest intersection point of the vertical axis will be

q(λ) = inf
x

L(x, λ).

• The hyperplane u = (λ, 1) with offset c contains every y ∈ S if and only if

∀y ∈ S, 〈u, y〉 ≥ c ⇔ 〈λ, g(x)〉 + f(x) ≥ c, ∀x ∈ D.

cuts the vertical axis at c and c ≤ f(x) + 〈λ, g(x)〉 , ∀x ∈ D.

Thus: c = infx∈D f(x) + 〈λ, g(x)〉 = q(λ).

• dual problem: find a hyperplane of form u = (λ, 1) which has the

highest interception with the vertical axis and contains S contained in

its positive half-space.

• strong duality: there exists a supporting hyperplane of S which

contains (0, p∗).
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Slater’s constraint qualification III

a) supporting hyperplane of

S = {(g(x), f(x)) |x ∈

D} and the value q(λ) =

infx L(x, λ) of the dual

Lagrangian,

b) a set S with a duality gap,

c) no duality gap and the

optimum is attained for

an active inequality con-

straint,

d) no duality gap and the op-

timum is attained for an

inactive inequality con-

straint.
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Slaters’ constraint qualification IV

Slater’s constraint qualification:

Theorem 1. Suppose that the primal problem is convex and there exists an

x ∈ relintD such that

gi(x) < 0, i = 1, . . . , r,

then Slater’s condition holds and strong duality holds. Strict inequality is not

necessary if gi(x) is an affine constraint.

Proof:

• A = {(z1, . . . , zr, w) ∈ R
r+1 | ∃x ∈ D, gj(x) ≤ zj , j = 1, . . . , r, f(x) ≤ w},

contains the set S. Since f, gj are convex, they have convex sublevel sets

=⇒ A is convex.

• (0, p∗) is a boundary point of A,

• supporting hyperplane which contains A in the positive half-space =⇒

∃(λ, β) 6= (0, 0) such that 〈λ, z〉 + β(w − p∗) ≥ 0, ∀(z,w) ∈ A.
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Slaters’ constraint qualification V

Proof continued:

• (z,w + γ) ∈ A for γ > 0 and (z1, . . . , zj + γ, . . . , zr, w) ∈ A for γ > 0. If

β < 0 we could find easily a γ in order to violate the above equation =⇒

λj ≥ 0 for j = 1, . . . , r and β ≥ 0.

• Assume: β = 0 =⇒ 〈λ, z〉 ≥ 0 for all (z,w) ∈ A. Since

(g1(x), . . . , gr(x), f(x)) ∈ A for all x ∈ D,
∑r

j=1
λjgj(x) ≥ 0, ∀x ∈ D.

Assumption: ∃x such that gj(x) < 0 for all j = 1, . . . , r, thus with

λ � 0 we would get λ = 0 and thus (λ, β) = (0, 0) �.

• Division of (λ, β) by β we get the standard form (λ, 1). With

(g(x), f(x)) ∈ A for all x ∈ D yields,

p∗ ≤ f(x) + 〈λ, g(x)〉 , ∀x ∈ D.

and thus p∗ ≤ infx∈D

(

f(x) + 〈λ, g(x)〉
)

= q(λ) ≤ d∗.

Using weak duality we get d∗ ≤ p∗ and thus p∗ = d∗.
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Slaters’ constraint qualification VI

Remark:

• If the problem is convex, Slater’s condition does not only imply that

strong duality holds but also that the dual optimal d∗ is attained

given that d∗ > −∞, that means there exist (λ∗, µ∗) such that

q(λ∗, µ∗) = d∗ = p∗.

Primal problem can be solved by solving the dual problem.
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Minimax-Theorem for mixed strategy two-player matrix games

Two Player matrix game:

• P1 has actions {1, . . . , n} and P2 has actions {1, . . . ,m}.

• payoff matrix: P ∈ R
n×m,

• P1 chooses k, P2 chooses l =⇒ P1 pays P2 an amount of Pkl,

• Goals: P1 wants to minimize Pkl, P2 wants to maximize it

• In a mixed strategy game P1 and P2 make their choice using probability

measures P1,P2,

P1(k = i) = ui ≥ 0, and P2(l = j) = vj ≥ 0,

where
∑n

i=1
ui =

∑m
j=1

vj = 1.

• The expected amount player 1 has to pay to player 2 is given by

〈u, Pv〉 =

m
∑

i=1

n
∑

j=1

uiPijvj .
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Minimax-Theorem for mixed strategy two-player matrix games

• Assumption: strategy of player 1 is known to player 2.

sup
v∈Rm,

∑m
j=1

vj=1

〈u, Pv〉 = max
i=1,...,m

(P T u)i = max
i=1,...,m

n
∑

j=1

Pjiuj .

P1 has to choose u which minimizes the worst-case payoff to P2

min max
i=1,...,m

n
∑

j=1

Pjiuj

subject to: 〈1, u〉 = 1, u � 0.

p∗1 is smallest payoff of P1 given that P2 knows the strategy of P1.

max min
i=1,...,n

m
∑

j=1

Pijvj

subject to: 〈1, v〉 = 1, v � 0.,

p∗2 is smallest payoff of P2 given that P1 knows the strategy of P2.
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Minimax-Theorem for mixed strategy two-player matrix games

• knowledge of the strategy of the opponent should help and p∗1 ≥ p∗2.

• difference p∗1 − p∗2 could be interpreted as the advantage of P2 over P1.
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Minimax-Theorem for mixed strategy two-player matrix games

• knowledge of the strategy of the opponent should help and p∗1 ≥ p∗2.

• difference p∗1 − p∗2 could be interpreted as the advantage of P2 over P1.

But it turns out that:

p∗1 = p∗2.

Proof in two steps:

• formulate both problems as LP’s and show that they are dual to each

other.

• since both are LP’s we have strong duality and thus p∗1 = p∗2.
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Saddle-point interpretation

Interpretation of weak and strong duality:

Lemma 1. The primal and dual optimal value p∗ and d∗ can be expressed as

p∗ = inf
x∈X

sup
λ�0, µ

L(x, λ, µ), d∗ = sup
λ�0, µ

inf
x∈X

L(x, λ, µ).

Remarks:

• Note: for any f : R
m × R

n → R, we have for any Sy ⊂ R
n and Sx ⊂ R

m,

sup
y∈Sy

inf
x∈Sx

f(x, y) ≤ inf
x∈Sx

sup
y∈Sy

f(x, y).

• strong duality: limit processes can be exchanged,

• In particular we have the saddle-point-interpretation

sup
λ�0,µ

inf
x∈X

L(x, λ, µ) ≤ L(x∗, λ∗, µ∗) ≤ inf
x∈X

sup
λ�0,µ

L(x, λ, µ).
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Measure of suboptimality

• every dual feasible point (λ, µ) provides a certificate that p∗ ≥ q(λ, µ),

• every feasible point x ∈ X provides a certificate that d∗ ≤ f(x),

• any primal/dual feasible pair x and (λ, µ) provides upper bound on the

duality gap: f(x) − q(λ, µ), or

p∗ ∈ [q(λ, µ), f(x)], d∗ ∈ [q(λ, µ), f(x)].

• duality gap is zero =⇒ x and (λ, µ) is primal/dual optimal.

• Stopping criterion: for an optimization algorithm which produces a

sequence of primal feasible xk and dual feasible (λk, µk). If strong

duality holds use:

f(xk) − q(λk, µk) ≤ ε.
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Optimality conditions

Complementary slackness

Corollary 3. Suppose strong duality holds and let x∗ be primal optimal and

(λ∗, µ∗) be dual optimal. Then

λ∗
i gi(x

∗) = 0, i = 1, . . . , r.

Proof. Under strong duality we have

f(x∗) = q(λ∗, µ∗) = inf
x

(

f(x) +

r
∑

j=1

λ∗
jgj(x) +

s
∑

i=1

µ∗
i hi(x)

)

≤ f(x∗) +

r
∑

j=1

λ∗
jgj(x

∗) +

s
∑

i=1

µ∗
i hi(x

∗) ≤ f(x∗),

which follows from λj ≥ 0 together with gj(x) ≤ 0 and hi(x) = 0. Thus

λj gj(x
∗) = 0, i = 1, . . . , r. 2

=⇒ x∗ is the minimizer of L(x, λ∗, µ∗) !
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Optimality conditions

KKT optimality conditions

Theorem

• f , gi and hj differentiable,

• strong duality holds.

Then necessary conditions for primal and dual optimal points x∗ and

(λ∗, µ∗) are the Karush-Kuhn-Tucker(KKT) conditions

gi(x
∗) ≤ 0, i = 1, . . . , r, hj(x

∗) = 0, j = 1, . . . , s,

λ∗
i ≥ 0, i = 1, . . . , r λ∗

i gi(x
∗) = 0, i = 1, . . . , r

∇f(x∗) +

r
∑

i=1

λ∗
i∇gi(x

∗) +

s
∑

j=1

µ∗
j∇hj(x

∗) = 0.

If the primal problem is convex, then the KKT conditions are necessary

and sufficient for primal and dual optimal points with zero duality gap.
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KKT conditions

Remarks

• The condition:

∇f(x∗) +

r
∑

i=1

λ∗
i∇gi(x

∗) +

s
∑

j=1

µ∗
j∇hj(x

∗) = 0,

is equivalent to ∇xL(x, λ∗, µ∗) = 0.

• convex problem: any pair x, (λ, µ) which fulfills the KKT-conditions

is primal and dual optimal. Additionally: Slater’s condition holds =⇒

such a point exists.

• Assume: strong duality and a dual optimal solution (λ∗, µ∗) is known

and L(x, λ∗, µ∗) has a unique minimizer x∗

1. x∗ is primal optimal as long as x∗ is primal feasible,

2. If x∗ is not primal feasible, then the primal optimal solution is not

attained.
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First-Order Condition for equality constraints

Geometric Interpretation for an equality constraint:

• The set, hi(x) = 0, i = 1, . . . ,m, determines a constraint surface in R
d.

• First order variations of the constraints (tangent space of the constraint

surface)

h(x) = h(x∗) + 〈∇h(x∗), x − x∗〉 ≈ 0 =⇒ 〈∇h(x∗), x − x∗〉 = 0.

• at a local minima x∗ the gradient ∇f is

orthogonal to the subspace of first order

variations

V (x∗) = {w ∈ R
d | 〈w,∇hi(x

∗)〉 = 0, i = 1, . . . ,m}

• Equivalently,

∇f(x∗) +
∑m

i=1
λi∇hi(x

∗) = 0.
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First-Order Condition for inequality constraint

Geometric Interpretation for an inequality constraint:

Two cases:

• constraint active: g(x∗) = 0:

∇f(x∗) + λ∇g(x∗) = 0.

• constraint inactive: g(x∗) < 0,

∇f(x∗) = 0.
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Reminder I - Subdifferential

Subgradient and Subdifferential: Let f : R
n → R be convex.

Definition 7. A vector v is a subgradient of f at x if

f(z) ≥ f(x) + 〈v, z − x〉 , ∀ z ∈ R
n.

The subdifferential ∂f(x) of f at x is the set of all subgradients of f at x.
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Reminder II - Subdifferential

Subdifferential as supporting hyperplane of the epigraph
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Optimality conditions - non-differentiable case

No constraints: f is convex.

• f is differentiable everywhere,

f(x∗) = inf
x

f(x) ⇐⇒ ∇f(x∗) = 0.

• f is not differentiable everywhere

f(x∗) = inf
x

f(x) ⇐⇒ 0 ∈ ∂f(x∗).

Proof: for all x ∈ dom f ,

f(x) ≥ f(x∗) = f(x∗) + 〈0, x − x∗〉 .

=⇒ statement is simple - checking 0 ∈ ∂f(x) can be quite difficult !
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Example for optimality condition

Regression: Squared loss + L1-regularization for orthogonal design,

Ψ(w) =
1

2
‖y − w‖2

2
+ λ ‖w‖

1
,

where Y ∈ R
n and λ ≥ 0 is the regularization parameter.

Subdifferential of the objective Ψ

∂Ψ(w) =
{

w − y + λu | u ∈ ∂ ‖w‖
1

}

.

At the optimum w∗, 0 ∈ Ψ(w∗), that is there exists u ∈ ∂ ‖w∗‖
1

such that

w∗
i = yi − λui.

This yields the so-called soft shrinkage solution:

w∗
i = sign(yi) (|yi| − λ)+.
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Optimality conditions - non-differentiable case

KKT optimality conditions (non-smooth case)

Theorem

• f , gi are convex and hj(x) = 〈aj , x〉 − bj .

• strong duality holds.

Then necessary and sufficient conditions for primal and dual optimal

points x∗ and (λ∗, µ∗) are the Karush-Kuhn-Tucker(KKT) conditions

gi(x
∗) ≤ 0, i = 1, . . . , r, hj(x

∗) = 0, j = 1, . . . , s,

λ∗
i ≥ 0, i = 1, . . . , r λ∗

i gi(x
∗) = 0, i = 1, . . . , r

0 ∈ ∂f(x∗) +

r
∑

i=1

λ∗
i ∂gi(x

∗) + AT µ∗.
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Perturbation and sensitivity analysis

Optimization problem with perturbed constraints:

min
x∈D

f(x),

subject to: gi(x) ≤ ui, i = 1, . . . , r

hj(x) = vj , j = 1, . . . , s.

How sensitive is p∗ to a slight variation of the constraints ?
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Perturbation and sensitivity analysis

Optimization problem with perturbed constraints:

min
x∈D

f(x),

subject to: gi(x) ≤ ui, i = 1, . . . , r

hj(x) = vj , j = 1, . . . , s.

• p∗(u, v) is the primal optimal value of the perturbed problem, where

p∗ = p∗(0, 0),

• If the original problem is convex, then the function p∗(u, v) is convex in

u and v.
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Perturbation and sensitivity analysis II

Proposition 2. Suppose that strong duality holds and the dual optimum is

attained. Let (λ∗, µ∗) be dual optimal for the unperturbed problem, that is

u = 0 and v = 0. Then

p∗(u, v) ≥ p(0, 0) − 〈λ∗, u〉 − 〈µ∗, v〉 , ∀ u ∈ R
r, v ∈ R

s.

If additionally p∗(u, v) is differentiable in u and v, then

λ∗
i = −

∂p∗

∂ui
, µ∗

j = −
∂p∗

∂vj
, at (u, v) = (0, 0).

Interpretation:

• 1. λ∗
i is large and ui < 0 then p∗(u, v) will increase strongly,

2. λ∗
i is small and ui > 0 then p∗(u, v) will not decrease too much,

3. |µ∗
i | is large and sign vi = −sign µi then p∗(u, v) will increase strongly,

4. |µ∗
i | is small and sign vi = −sign µi then p∗(u, v) will decrease little,
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Perturbation and sensitivity analysis III

Proof: Let x be any feasible point for the perturbed problem, that is

gi(x) ≤ ui, i = 1, . . . , r and hj(x) = vj , j = 1, . . . , s. Then by strong duality,

p∗(0, 0) = q(λ∗, µ∗) ≤ f(x) +

r
∑

i=1

λ∗
i gi(x) +

s
∑

j=1

µ∗
jhj(x)

≤ f(x) + 〈λ∗, u〉 + 〈µ∗, v〉 ,

using the definition of q(λ, µ) and λ∗ � 0. Thus

∀ feasible x : f(x) ≥ p(0, 0) − 〈λ∗, u〉 − 〈µ∗, v〉 ,

=⇒ p∗(u, v) ≥ p(0, 0) − 〈λ∗, u〉 − 〈µ∗, v〉 .

The derived inequality states that, p∗(tei, 0) − p∗ ≥ −t λ∗
i , and thus

∀t > 0,
p∗(tei, 0) − p∗

t
≥ −λ∗

i , ∀t < 0,
p∗(tei, 0) − p∗

t
≤ −λ∗

i ,

and thus since p∗(u, v) is differentiable by assumption we have ∂p∗

∂ui
= −λ∗

i .
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Changes of the dual problem

Dependency of the dual on the primal problem: The norm

approximation problem

min
x

‖Ax − b‖p ,

where b ∈ R
n, x ∈ R

m and A ∈ R
n×m.

Interpretation:

• find the solution to the linear system Ax = b if such a solution exists, if

not find the best approximation with respect to the chosen p-norm,

• find the projection of b onto the subspace S spanned by the columns of

A,

S =
{

y =

m
∑

i=1

aiyi | ai ∈ R
n, A = (a1, . . . , am)

}

,

with respect to the p-norm.
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Changes of the dual problem

Dependency of the dual on the primal problem:

min
x

‖Ax − b‖p

a) Lagrangian: L(x) = ‖Ax − b‖ =⇒ dual function q = infx∈Rm ‖Ax − b‖p.
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Changes of the dual problem

Dependency of the dual on the primal problem:

b) Introduction of a new equality constraint:

min
x∈Rm, y∈Rn

‖y‖p ,

subject to: Ax − b = y.

Lagrangian: L(x, y, µ) = ‖y‖p + 〈µ,Ax − b − y〉 ,

inf
x∈Rm

〈µ,Ax〉 = 0, if AT µ = 0, otherwise −∞.

Hölder’s ineq.: (1

q
+ 1

p
= 1): 〈µ, y〉 ≤ ‖µ‖q ‖y‖p , equality is attained for y∗,

inf
y∈Rn

‖y‖p − 〈µ, y〉 = ‖y∗‖p (1 − ‖µ‖q) = 0, if ‖µ‖q ≤ 1, otherwise −∞.

max
µ∈Rn

〈µ, b〉

subject to: ‖µ‖q ≤ 1, AT µ = 0.
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Changes of the dual problem

Dependency of the dual on the primal problem:

c) Strictly monotonic transformation of the objective of the primal problem

min
x∈Rm, y∈Rn

‖y‖2

p ,

subject to: Ax − b = y.

Lagrangian: L(x, y, µ) = ‖y‖2

p + 〈µ,Ax − b − y〉 ,

Hölder’s inequality: inf
y∈Rn

‖y‖2

p − 〈µ, y〉 = ‖y∗‖2

p − ‖µ‖q ‖y
∗‖p .

Minimum of quadratic function: ‖y∗‖ = 1

2
‖µ‖q and the value is:

1

4
‖µ‖2

q −
1

2
‖µ‖2

q = −1

4
‖µ‖2

q ,

max
µ∈Rn

−
1

4
‖µ‖2

q + 〈µ, b〉

subject to: AT µ = 0.

Note, that we have here no inequality constrained but instead a quadratic
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Theorems of alternatives

Weak alternatives: Feasibility problem for general optimization problem:

min
x∈Rn

0

subject to: gi(x) ≤ 0, i = 1, . . . , r,

hj(x) = 0, j = 1, . . . , s.

Primal optimal value: p∗ =

{

0, if optimization problem is feasible ,

∞, else.
.

Dual function: q(λ, µ) = infx∈D

(

∑r
i=1

λigi(x) +
∑s

j=1
µjhj(x)

)

.

Dual problem: max
λ∈Rr,µ∈Rs

q(λ, µ)

subject to: λ � 0.

Dual optimal value: d∗ =

{

∞, if λ � 0 and q(λ, µ) > 0 is feasible ,

0, else.
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Theorems of alternatives II

By weak duality: d∗ ≤ p∗.

• If the dual problem is feasible (d∗ = ∞) then the primal problem must

be infeasible,

• If the primal problem is feasible (p∗ = 0) then the dual problem is

infeasible.

=⇒ at most one of the system of inequalities is feasible,

• gi(x) ≤ 0, i = 1, . . . , r, hj(x) = 0, j = 1, . . . , s,

• λ � 0, q(λ, µ) > 0.

Definition 8. An inequality system where at most one of the two holds is

called weak alternatives.

Note: the case d∗ = ∞ and p∗ = ∞ can also happen
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Theorems of alternatives III

Strong alternatives:

• optimization problem is convex (gi convex and hj affine),

• there exists an x′ ∈ relint D such that Ax′ = b.

Two sets of inequalities

• gi(x) ≤ 0, i = 1, . . . , r, Ax = b

• λ � 0, q(λ, µ) > 0.

Under the above condition exactly one of them holds:

Strong alternatives
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Generalizes inequalities

Replace inequality constraint:

gi(x) ≤ 0 =⇒ gi(x) �K 0.

Optimization problem with generalized inequality constraint:

min
x∈D

f(x),

subject to: gi(x) �Ki
0, i = 1, . . . , r,

hj(x) = 0, j = 1, . . . , s,

where Ki ⊂ R
ki are proper cones.

Almost all properties carry over with only minor changes !
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Interlude: Dual cone

Dual cone K∗

K∗ := {y
∣

∣ 〈x, y〉 ≥ 0, ∀x ∈ K}.

Dual cone of Sn
+

y ∈ (Sn
+)∗ ⇐⇒ tr(XY ) ≥ 0, ∀X ∈ Sn

+.

Now with X =
∑

i λiu
i(ui)T ,

tr(XY ) = tr
(

∑

i

λiu
i(ui)T

)

=
∑

i

λi tr
(

ui(ui)T Y
)

=
∑

i

λi

∑

r,s

ui
ru

i
sYrs =

∑

i

λi 〈ui, Y ui〉

If Y /∈ Sn
+ there exists q such that 〈q, Y q〉 < 0 =⇒ X = qqT , tr(XY ) < 0.

The dual cone of Sn
+ is Sn

+ (self-dual).
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Generalizes inequalities II

• Lagrangian: for, gi(x) �Ki
0, we get a Lagrange multiplier λ ∈ R

ki .

L(x, λ, µ) = f(x) +

r
∑

i=1

〈λi, gi(x)〉 +

s
∑

j=1

µjhj(x).

• Dual function: λi ≥ 0 =⇒ λi �K∗

i
0, (K∗

i dual cone of Ki).

Note: λi �K∗

i
0 and gi(x) �Ki

0 =⇒ 〈λi, gi(x)〉 ≤ 0,

x feasible , λi �K∗

i
0 =⇒ f(x) +

r
∑

i=1

〈λi, gi(x)〉 +

s
∑

j=1

µjhj(x) ≤ f(x).

• Dual problem: The dual problem becomes

max
λ, µ

q(λ, µ),

subject to: λi �K∗

i
0, i = 1, . . . , r.

We have weak duality: d∗ ≤ p∗.
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Generalizes inequalities III

• Slater’s condition and strong duality: for a convex primal problem

min
x∈D

f(x),

subject to: gi(x) �Ki
0, i = 1, . . . , r

Ax = b, ,

where f is convex, gi is Ki-convex.

Proposition 3. If there exists an x ∈ relint D with Ax = b and

gi(x) ≺Ki
0, then strong duality, d∗ = p∗, holds.
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Generalizes inequalities IV

Example: Lagrange dual of a semidefinite program:

min
x∈D

〈c, x〉 ,

subject to:

n
∑

i=1

xiFi + G �Sk
+

0,

where F1, . . . , Fn, G ∈ Sk
+. The Lagrangian is

L(x, λ) = 〈c, x〉 +

n
∑

i=1

xi tr(λFi) + tr(λG) =

n
∑

i=1

xi

(

ci + tr(λFi)
)

+ tr(λG),

where λ ∈ Sk and thus the dual problem becomes

max
λ, µ

tr(λG),

subject to: ci + tr(λFi) = 0, i = 1, . . . , n.
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Generalizes inequalities V

• Complementary slackness: One has

〈λ∗
i , gi(x

∗)〉 = 0, i = 1, . . . , r.

From this we deduce

λ∗
i ≻K∗

i
0 =⇒ gi(x

∗) = 0, gi(x
∗) ≺Ki

0 =⇒ λ∗
i = 0.

Important: the condition 〈λ∗
i , gi(x

∗)〉 = 0 can be fulfilled if λ∗
i 6= 0

and gi(x
∗) 6= 0.
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Generalizes inequalities VI

• KKT conditions: f, gi and hj are differentiable:

Proposition 4. If strong duality holds, the following KKT-conditions

are necessary conditions for primal x∗ and dual optimal (λ∗, µ∗) points,

gi(x
∗) ≤ 0, i = 1, . . . , r, hj(x

∗) = 0, j = 1, . . . , s,

λ∗
i �K∗

i
0, i = 1, . . . , r 〈λ∗

i , gi(x
∗)〉 = 0, i = 1, . . . , r

∇f(x∗) +

r
∑

i=1

Dgi(x
∗)T λ∗

i +

s
∑

j=1

µ∗
j∇hj(x

∗) = 0.

If the problem is convex, then the KKT-conditions are necessary and

sufficient for optimality of λ∗, µ∗.
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