Convex Optimization and Modeling

Duality Theory and Optimality Conditions

5th lecture, 12.05.2010
Jun.-Prof. Matthias Hein

Lagrangian and duality:

- the Lagrangian
- the dual Lagrange problem
- weak and strong duality, Slater's constraint qualification
- optimality conditions, complementary slackness, KKT conditions
- perturbation analysis of the constraints
- generalized inequalities

Duality theory is done for the general optimization problem !

Motivation of the Lagrange function: general optimization problem (MP)

$$
\begin{aligned}
& \min _{x \in D} f(x) \\
& \text { subject to: } g_{i}(x) \leq 0, i=1, \ldots, r \\
& h_{j}(x)=0, j=1, \ldots, s
\end{aligned}
$$

Idea:

- turn constrained problem into an unconstrained problem,
- the set of extremal points of the resulting unconstrained problem contains the extremal points of the original constrained problem (necessary condition). In some cases the two sets are equal (necessary and sufficient condition).

Definition 1. The Lagrangian or Lagrange function
$L: \mathbb{R}^{n} \times \mathbb{R}_{+}^{r} \times \mathbb{R}^{s} \rightarrow \mathbb{R}$ associated with the MP is defined as

$$
L(x, \lambda, \mu)=f(x)+\sum_{j=0}^{r} \lambda_{j} g_{j}(x)+\sum_{i=0}^{s} \mu_{i} h_{i}(x)
$$

with $\operatorname{dom} L=D \times \mathbb{R}_{+}^{r} \times \mathbb{R}^{s}$ where D is the domain of the optimization problem. The variables λ_{j} and μ_{i} are called Lagrange multipliers associated with the inequality and equality constraints.

Interpretation:

- The constrained problem is turned into an unconstrained problem using

$$
I_{-}(x)=\left\{\begin{array}{cc}
0 & \text { if } x \leq \infty, \\
\infty & \text { if } x>0 .
\end{array} \quad \text { and } \quad I_{0}(x)=\left\{\begin{array}{cc}
0 & \text { if } x=0 \\
\infty & \text { if } x>0 .
\end{array}\right.\right.
$$

Thus, we arrive at

$$
\min _{x \in D} f(x)+\sum_{j=0}^{r} I_{-}\left(g_{j}(x)\right)+\sum_{i=0}^{s} I_{0}\left(h_{i}(x)\right) .
$$

Lagrangian: relaxation of the hard constraints to linear functions.
Note, that a linear function (which is positive in the positive orthant) is an underestimator of the indicator function $I_{0}(x)\left(I_{-}(x)\right)$.

- the extremal points of the Lagrangian are closely related to the extremal points of the optimization problem.

Definition 2. The dual Lagrange function $q: \mathbb{R}_{+}^{r} \times \mathbb{R}^{s} \rightarrow \mathbb{R}$ associated with the MP is defined as

$$
q(\lambda, \mu)=\inf _{x \in D} L(x, \lambda, \mu)=\inf _{x \in D}\left(f(x)+\sum_{j=0}^{r} \lambda_{j} g_{j}(x)+\sum_{i=0}^{s} \mu_{i} h_{i}(x)\right)
$$

where $q(\lambda, \mu)$ is defined to be $-\infty$ if $L(x, \lambda, \mu)$ is unbounded from below in x.

Properties:

- the dual function is a pointwise infimum of a family of linear and thus concave functions (in λ and μ) and therefore concave.
This holds irrespectively of the character of the MP, in particular this holds also for discrete optimization problems.

Proposition 1. For any $\lambda \succeq 0$ and μ we have,

$$
q(\lambda, \mu) \leq p^{*}
$$

Proof. Suppose x^{\prime} is a feasible point for the problem, then $g_{i}\left(x^{\prime}\right) \leq 0, i=1, \ldots, r$ and $h_{j}\left(x^{\prime}\right)=0, j=1, \ldots, s$. Thus,

$$
\sum_{j=0}^{r} \lambda_{j} g_{j}\left(x^{\prime}\right)+\sum_{i=0}^{s} \mu_{i} h_{i}\left(x^{\prime}\right) \leq 0 .
$$

Thus we have,

$$
\begin{aligned}
& L\left(x^{\prime}, \lambda, \mu\right)=f\left(x^{\prime}\right)+\sum_{j=0}^{r} \lambda_{j} g_{j}\left(x^{\prime}\right)+\sum_{i=0}^{s} \mu_{i} h_{i}\left(x^{\prime}\right) \leq f\left(x^{\prime}\right) . \\
\Longrightarrow & q(\lambda, \mu)=\inf _{x \in D} L(x, \lambda, \mu) \leq f\left(x^{\prime}\right) .
\end{aligned}
$$

Since this holds for any feasible point x^{\prime}, we get $q(\lambda, \mu) \leq p^{*}$.

For each pair (λ, μ) with $\lambda \succeq 0$ we have $q(\lambda, \mu) \leq p^{*}$.
What is the best possible lower bound?

For each pair (λ, μ) with $\lambda \succeq 0$ we have $q(\lambda, \mu) \leq p^{*}$.
What is the best possible lower bound ?
Definition 4. The Lagrange dual problem is defined as

$$
\begin{array}{r}
\max q(\lambda, \mu), \\
\text { subject to: } \lambda \succeq 0 .
\end{array}
$$

Properties:

- For each MP the dual problem is convex.
- The original OP is called the primal problem.
- (λ, μ) is dual feasible if $q(\lambda, \mu)>-\infty$.
- $\left(\lambda^{*}, \mu^{*}\right)$ is called dual optimal if they are optimal for the dual problem.

The dual problem II

Making implicit constraints in the dual problem explicit:
The dimension of the domain of the dual function

$$
\operatorname{dom} q=\{(\lambda, \mu) \mid q(\lambda, \mu)>-\infty\}
$$

is often smaller than $r+s\left(\lambda \in \mathbb{R}^{r}, \mu \in \mathbb{R}^{s}\right) \Rightarrow$ identify "hidden constraints"

Making implicit constraints in the dual problem explicit: The dimension of the domain of the dual function

$$
\operatorname{dom} q=\{(\lambda, \mu) \mid q(\lambda, \mu)>-\infty\}
$$

is often smaller than $r+s\left(\lambda \in \mathbb{R}^{r}, \mu \in \mathbb{R}^{s}\right) \Rightarrow$ identify "hidden constraints" Example:

$$
\begin{gathered}
\min \langle c, x\rangle \quad \quad(\text { standard form LP }) \\
\text { subject to: } A x=b, \quad x \succeq 0 .
\end{gathered}
$$

with dual function: $q(\lambda, \mu)=\left\{\begin{array}{cc}-\langle b, \mu\rangle & \text { if } c+A^{T} \mu-\lambda=0, \\ -\infty & \text { otherwise }\end{array}\right.$.

$$
\max -\langle b, \mu\rangle,
$$

subject to: $\lambda \succeq 0$,

$$
A^{T} \mu-\lambda+c=0 .
$$

$$
\max -\langle b, \mu\rangle,
$$

subject to: $A^{T} \mu+c \succeq 0$. .

Consider the problem, with $x \in \mathbb{R}^{n}, A \in \mathbb{R}^{p \times n}$ and $b \in \mathbb{R}^{p}$,

$$
\min _{x \in D}\|x\|_{2}^{2}, \quad \quad \text { (Least squares with linear constraint) }
$$

subject to: $A x=b$,

- The Lagrangian is: $L(x, \mu)=\|x\|_{2}^{2}+\langle\mu, A x-b\rangle$.
- Lagrangian is a strictly convex function of x,

$$
\nabla_{x} L(x, \mu)=2 x+A^{T} \mu=0
$$

which gives $x=-\frac{1}{2} A^{T} \mu$ and we get the dual function

$$
q(\mu)=\frac{1}{4}\left\|A^{T} \mu\right\|_{2}^{2}+\left\langle\mu,-\frac{1}{2} A A^{T} \mu-b\right\rangle=-\frac{1}{4}\left\|A^{T} \mu\right\|_{2}^{2}-\langle\mu, b\rangle .
$$

The lower bound states for any $\mu \in \mathbb{R}^{p}$ we have

$$
-\frac{1}{4}\left\|A^{T} \mu\right\|_{2}^{2}-\langle\mu, b\rangle \leq p^{*}=\inf \left\{\|x\|_{2}^{2} \mid A x=b\right\}
$$

Problem:

- weighted, undirected graph with n vertices and weight matrix $W \in S^{n}$.
- split the graph (the vertex set) in two (disjoint) groups

$$
\begin{gathered}
\min \langle x, W x\rangle \quad \text { (graph cut criterion) } \\
\text { subject to: } x_{i}^{2}=1, \quad i=1, \ldots, n, \\
L(x, \mu)=\langle x, W x\rangle+\sum_{i=1}^{n} \mu_{i}\left(x_{i}^{2}-1\right)=\sum_{i, j=1}^{n}\left(W_{i j}+\mu_{i} \delta_{i j}\right) x_{i} x_{j}-\langle\mu, \mathbf{1}\rangle
\end{gathered}
$$

and thus the dual function is: $q(\mu)=\left\{\begin{array}{cc}-\langle\mu, \mathbf{1}\rangle, & \text { if } W+\operatorname{diag}(\mu) \succeq 0, \\ -\infty, & \text { otherwise }\end{array}\right.$.
For every μ which is feasible we get a lower bound e.g. $\mu=-\lambda_{\min }(W) \mathbf{1}$,

$$
p^{*} \geq-\langle\mu, \mathbf{1}\rangle=n \lambda_{\min }(W)
$$

Corollary 1. Let d^{*} and p^{*} be the optimal values of the dual and primal problem. Then

$$
d^{*} \leq p^{*}, \quad(\text { weak duality }) .
$$

- The difference $p^{*}-d^{*}$ is the optimal duality gap of the MP.
- solving the convex dual problem provides lower bounds for any MP.

Corollary 2. Let d^{*} and p^{*} be the optimal values of the dual and primal problem. Then

$$
d^{*} \leq p^{*}, \quad(\text { weak duality }) .
$$

- The difference $p^{*}-d^{*}$ is the optimal duality gap of the MP.
- solving the convex dual problem provides lower bounds for any MP.

Definition 6. We say that strong duality holds if

$$
d^{*}=p^{*} .
$$

Constraint qualifications are conditions under which strong duality holds.

Strong duality does not hold in general !
But for convex problems strong duality holds quite often.

Geometric interpretation of strong duality:

- only inequality constraints: consider the set defined as

$$
S=\left\{(g(x), f(x)) \in \mathbb{R}^{r} \times \mathbb{R} \mid x \in D\right\} \subseteq \mathbb{R}^{r+1}
$$

- Interpret the sum $L(x, \lambda)=f(x)+\langle\lambda, g(x)\rangle$ as

$$
\langle\lambda, g(x)\rangle+f(x)=\langle(\lambda, 1),(g(x), f(x))\rangle
$$

hyperplane H : normal vector $(\lambda, 1)$ going through the point $(g(x), f(x))$.

- We have $u=(\lambda, 1)$ and $x_{0}=(g(x), f(x))$ and thus with $x=(z, w)$ we get

$$
\left\langle u, x-x_{0}\right\rangle=\langle\lambda, z-g(x)\rangle+(w-f(x)) .
$$

$\Longrightarrow H$ intersects the vertical axis $\{(0, w) \mid w \in \mathbb{R}\}$ at $L(x, \lambda)$.

$$
-\langle\lambda, g(x)\rangle+w-f(x)=0 \quad \Longrightarrow \quad w=f(x)+\langle\lambda, g(x)\rangle
$$

- Among all hyperplanes with normal $u=(\lambda, 1)$ that have S in the positive half-space, the highest intersection point of the vertical axis will be

$$
q(\lambda)=\inf _{x} L(x, \lambda)
$$

- The hyperplane $u=(\lambda, 1)$ with offset c contains every $y \in S$ if and only if

$$
\forall y \in S, \quad\langle u, y\rangle \geq c \quad \Leftrightarrow \quad\langle\lambda, g(x)\rangle+f(x) \geq c, \quad \forall x \in D .
$$

cuts the vertical axis at c and $c \leq f(x)+\langle\lambda, g(x)\rangle, \quad \forall x \in D$.
Thus: $c=\inf _{x \in D} f(x)+\langle\lambda, g(x)\rangle=q(\lambda)$.

- dual problem: find a hyperplane of form $u=(\lambda, 1)$ which has the highest interception with the vertical axis and contains S contained in its positive half-space.
- strong duality: there exists a supporting hyperplane of S which contains $\left(0, p^{*}\right)$.

a) supporting hyperplane of $S=\{(g(x), f(x)) \mid x \in$ $D\}$ and the value $q(\lambda)=$ $\inf _{x} L(x, \lambda)$ of the dual Lagrangian,
b) a set S with a duality gap,
c) no duality gap and the optimum is attained for an active inequality constraint,
d) no duality gap and the optimum is attained for an inactive inequality constraint.

Slater's constraint qualification:

Theorem 1. Suppose that the primal problem is convex and there exists an $x \in \operatorname{relint} D$ such that

$$
g_{i}(x)<0, \quad i=1, \ldots, r,
$$

then Slater's condition holds and strong duality holds. Strict inequality is not necessary if $g_{i}(x)$ is an affine constraint.

Proof:

- $A=\left\{\left(z_{1}, \ldots, z_{r}, w\right) \in \mathbb{R}^{r+1} \mid \exists x \in D, g_{j}(x) \leq z_{j}, j=1, \ldots, r, f(x) \leq w\right\}$, contains the set S. Since f, g_{j} are convex, they have convex sublevel sets $\Longrightarrow A$ is convex.
- $\left(0, p^{*}\right)$ is a boundary point of A,
- supporting hyperplane which contains A in the positive half-space \Longrightarrow

$$
\exists(\lambda, \beta) \neq(0,0) \text { such that }\langle\lambda, z\rangle+\beta\left(w-p^{*}\right) \geq 0, \quad \forall(z, w) \in A
$$

Proof continued:

- $(z, w+\gamma) \in A$ for $\gamma>0$ and $\left(z_{1}, \ldots, z_{j}+\gamma, \ldots, z_{r}, w\right) \in A$ for $\gamma>0$. If $\beta<0$ we could find easily a γ in order to violate the above equation \Longrightarrow $\lambda_{j} \geq 0$ for $j=1, \ldots, r$ and $\beta \geq 0$.
- Assume: $\beta=0 \quad \Longrightarrow \quad\langle\lambda, z\rangle \geq 0$ for all $(z, w) \in A$. Since $\left(g_{1}(x), \ldots, g_{r}(x), f(x)\right) \in A$ for all $x \in D, \sum_{j=1}^{r} \lambda_{j} g_{j}(x) \geq 0, \quad \forall x \in D$.
Assumption: $\exists x$ such that $g_{j}(x)<0$ for all $j=1, \ldots, r$, thus with $\lambda \succeq 0$ we would get $\lambda=0$ and thus $(\lambda, \beta)=(0,0)$ ᄂ.
- Division of (λ, β) by β we get the standard form $(\lambda, 1)$. With $(g(x), f(x)) \in A$ for all $x \in D$ yields,

$$
p^{*} \leq f(x)+\langle\lambda, g(x)\rangle, \quad \forall x \in D .
$$

and thus $p^{*} \leq \inf _{x \in D}(f(x)+\langle\lambda, g(x)\rangle)=q(\lambda) \leq d^{*}$.
Using weak duality we get $d^{*} \leq p^{*}$ and thus $p^{*}=d^{*}$.

Remark:

- If the problem is convex, Slater's condition does not only imply that strong duality holds but also that the dual optimal d^{*} is attained given that $d^{*}>-\infty$, that means there exist $\left(\lambda^{*}, \mu^{*}\right)$ such that $q\left(\lambda^{*}, \mu^{*}\right)=d^{*}=p^{*}$.

Primal problem can be solved by solving the dual problem.

Two Player matrix game:

- P1 has actions $\{1, \ldots, n\}$ and P2 has actions $\{1, \ldots, m\}$.
- payoff matrix: $P \in \mathbb{R}^{n \times m}$,
- P1 chooses $k, \mathrm{P} 2$ chooses $l \Longrightarrow \mathrm{P} 1$ pays P 2 an amount of $P_{k l}$,
- Goals: P1 wants to minimize $P_{k l}, \mathrm{P} 2$ wants to maximize it
- In a mixed strategy game P1 and P2 make their choice using probability measures $\mathrm{P}_{1}, \mathrm{P}_{2}$,

$$
\mathrm{P}_{1}(k=i)=u_{i} \geq 0, \quad \text { and } \quad \mathrm{P}_{2}(l=j)=v_{j} \geq 0
$$

where $\sum_{i=1}^{n} u_{i}=\sum_{j=1}^{m} v_{j}=1$.

- The expected amount player 1 has to pay to player 2 is given by

$$
\langle u, P v\rangle=\sum_{i=1}^{m} \sum_{j=1}^{n} u_{i} P_{i j} v_{j}
$$

- Assumption: strategy of player 1 is known to player 2.

$$
\sup _{v \in \mathbb{R}^{m}, \sum_{j=1}^{m} v_{j}=1}\langle u, P v\rangle=\max _{i=1, \ldots, m}\left(P^{T} u\right)_{i}=\max _{i=1, \ldots, m} \sum_{j=1}^{n} P_{j i} u_{j}
$$

P1 has to choose u which minimizes the worst-case payoff to P 2

$$
\begin{array}{r}
\min \max _{i=1, \ldots, m} \sum_{j=1}^{n} P_{j i} u_{j} \\
\text { subject to: }\langle\mathbf{1}, u\rangle=1, \quad u \succeq 0
\end{array}
$$

p_{1}^{*} is smallest payoff of P 1 given that P 2 knows the strategy of P 1 .

$$
\begin{array}{r}
\max \min _{i=1, \ldots, n} \sum_{j=1}^{m} P_{i j} v_{j} \\
\text { subject to: }\langle\mathbf{1}, v\rangle=1, \quad v \succeq 0
\end{array}
$$

p_{2}^{*} is smallest payoff of P2 given that P1 knows the strategy of P2.

- knowledge of the strategy of the opponent should help and $p_{1}^{*} \geq p_{2}^{*}$.
- difference $p_{1}^{*}-p_{2}^{*}$ could be interpreted as the advantage of P2 over P1.
- knowledge of the strategy of the opponent should help and $p_{1}^{*} \geq p_{2}^{*}$.
- difference $p_{1}^{*}-p_{2}^{*}$ could be interpreted as the advantage of P2 over P1.

But it turns out that:

$$
p_{1}^{*}=p_{2}^{*}
$$

Proof in two steps:

- formulate both problems as LP's and show that they are dual to each other.
- since both are LP's we have strong duality and thus $p_{1}^{*}=p_{2}^{*}$.

Interpretation of weak and strong duality:

Lemma 1. The primal and dual optimal value p^{*} and d^{*} can be expressed as

$$
p^{*}=\inf _{x \in X} \sup _{\lambda \succeq 0, \mu} L(x, \lambda, \mu), \quad d^{*}=\sup _{\lambda \succeq 0, \mu} \inf _{x \in X} L(x, \lambda, \mu) .
$$

Remarks:

- Note: for any $f: \mathbb{R}^{m} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, we have for any $S_{y} \subset \mathbb{R}^{n}$ and $S_{x} \subset \mathbb{R}^{m}$,

$$
\sup _{y \in S_{y}} \inf _{x \in S_{x}} f(x, y) \leq \inf _{x \in S_{x}} \sup _{y \in S_{y}} f(x, y) .
$$

- strong duality: limit processes can be exchanged,
- In particular we have the saddle-point-interpretation

$$
\sup _{\lambda \succeq 0, \mu} \inf _{x \in X} L(x, \lambda, \mu) \leq L\left(x^{*}, \lambda^{*}, \mu^{*}\right) \leq \inf _{x \in X} \sup _{\lambda \succeq 0, \mu} L(x, \lambda, \mu) .
$$

Measure of suboptimality

- every dual feasible point (λ, μ) provides a certificate that $p^{*} \geq q(\lambda, \mu)$,
- every feasible point $x \in X$ provides a certificate that $d^{*} \leq f(x)$,
- any primal/dual feasible pair x and (λ, μ) provides upper bound on the duality gap: $f(x)-q(\lambda, \mu)$, or

$$
p^{*} \in[q(\lambda, \mu), f(x)], \quad d^{*} \in[q(\lambda, \mu), f(x)] .
$$

- duality gap is zero $\Longrightarrow x$ and (λ, μ) is primal/dual optimal.
- Stopping criterion: for an optimization algorithm which produces a sequence of primal feasible x_{k} and dual feasible $\left(\lambda_{k}, \mu_{k}\right)$. If strong duality holds use:

$$
f\left(x_{k}\right)-q\left(\lambda_{k}, \mu_{k}\right) \leq \varepsilon .
$$

Complementary slackness

Corollary 3. Suppose strong duality holds and let x^{*} be primal optimal and $\left(\lambda^{*}, \mu^{*}\right)$ be dual optimal. Then

$$
\lambda_{i}^{*} g_{i}\left(x^{*}\right)=0, \quad i=1, \ldots, r .
$$

Proof. Under strong duality we have

$$
\begin{aligned}
f\left(x^{*}\right) & =q\left(\lambda^{*}, \mu^{*}\right)=\inf _{x}\left(f(x)+\sum_{j=1}^{r} \lambda_{j}^{*} g_{j}(x)+\sum_{i=1}^{s} \mu_{i}^{*} h_{i}(x)\right) \\
& \leq f\left(x^{*}\right)+\sum_{j=1}^{r} \lambda_{j}^{*} g_{j}\left(x^{*}\right)+\sum_{i=1}^{s} \mu_{i}^{*} h_{i}\left(x^{*}\right) \leq f\left(x^{*}\right),
\end{aligned}
$$

which follows from $\lambda_{j} \geq 0$ together with $g_{j}(x) \leq 0$ and $h_{i}(x)=0$. Thus $\lambda_{j} g_{j}\left(x^{*}\right)=0, \quad i=1, \ldots, r$.
$\Longrightarrow x^{*}$ is the minimizer of $L\left(x, \lambda^{*}, \mu^{*}\right)!$

KKT optimality conditions

Theorem

- f, g_{i} and h_{j} differentiable,
- strong duality holds.

Then necessary conditions for primal and dual optimal points x^{*} and (λ^{*}, μ^{*}) are the Karush-Kuhn-Tucker(KKT) conditions

$$
\begin{aligned}
& g_{i}\left(x^{*}\right) \leq 0, i=1, \ldots, r, \quad h_{j}\left(x^{*}\right)=0, j=1, \ldots, s, \\
& \lambda_{i}^{*} \geq 0, i=1, \ldots, r \quad \lambda_{i}^{*} g_{i}\left(x^{*}\right)=0, i=1, \ldots, r \\
& \nabla f\left(x^{*}\right)+\sum_{i=1}^{r} \lambda_{i}^{*} \nabla g_{i}\left(x^{*}\right)+\sum_{j=1}^{s} \mu_{j}^{*} \nabla h_{j}\left(x^{*}\right)=0
\end{aligned}
$$

If the primal problem is convex, then the KKT conditions are necessary and sufficient for primal and dual optimal points with zero duality gap.

Remarks

- The condition:

$$
\nabla f\left(x^{*}\right)+\sum_{i=1}^{r} \lambda_{i}^{*} \nabla g_{i}\left(x^{*}\right)+\sum_{j=1}^{s} \mu_{j}^{*} \nabla h_{j}\left(x^{*}\right)=0,
$$

is equivalent to $\nabla_{x} L\left(x, \lambda^{*}, \mu^{*}\right)=0$.

- convex problem: any pair $x,(\lambda, \mu)$ which fulfills the KKT-conditions is primal and dual optimal. Additionally: Slater's condition holds \Longrightarrow such a point exists.
- Assume: strong duality and a dual optimal solution $\left(\lambda^{*}, \mu^{*}\right)$ is known and $L\left(x, \lambda^{*}, \mu^{*}\right)$ has a unique minimizer x^{*}

1. x^{*} is primal optimal as long as x^{*} is primal feasible,
2. If x^{*} is not primal feasible, then the primal optimal solution is not attained.

Geometric Interpretation for an equality constraint:

- The set, $h_{i}(x)=0, i=1, \ldots, m$, determines a constraint surface in \mathbb{R}^{d}.
- First order variations of the constraints (tangent space of the constraint surface)

$$
h(x)=h\left(x^{*}\right)+\left\langle\nabla h\left(x^{*}\right), x-x^{*}\right\rangle \approx 0 \quad \Longrightarrow \quad\left\langle\nabla h\left(x^{*}\right), x-x^{*}\right\rangle=0 .
$$

- at a local minima x^{*} the gradient ∇f is
 orthogonal to the subspace of first order variations

$$
V\left(x^{*}\right)=\left\{w \in \mathbb{R}^{d} \mid\left\langle w, \nabla h_{i}\left(x^{*}\right)\right\rangle=0, i=1, \ldots, m\right\}
$$

- Equivalently,
$\nabla f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla h_{i}\left(x^{*}\right)=0$.

Geometric Interpretation for an inequality constraint:

Two cases:

- constraint active: $g\left(x^{*}\right)=0$:

$$
\nabla f\left(x^{*}\right)+\lambda \nabla g\left(x^{*}\right)=0 .
$$

- constraint inactive: $g\left(x^{*}\right)<0$,

$$
\nabla f\left(x^{*}\right)=0 .
$$

Subgradient and Subdifferential: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex.
Definition 7. A vector v is a subgradient of f at x if

$$
f(z) \geq f(x)+\langle v, z-x\rangle, \quad \forall z \in \mathbb{R}^{n} .
$$

The subdifferential $\partial f(x)$ of f at x is the set of all subgradients of f at x.

Subdifferential as supporting hyperplane of the epigraph

No constraints: f is convex.

- f is differentiable everywhere,

$$
f\left(x^{*}\right)=\inf _{x} f(x) \quad \Longleftrightarrow \quad \nabla f\left(x^{*}\right)=0
$$

- f is not differentiable everywhere

$$
f\left(x^{*}\right)=\inf _{x} f(x) \quad \Longleftrightarrow \quad 0 \in \partial f\left(x^{*}\right)
$$

Proof: for all $x \in \operatorname{dom} f$,

$$
f(x) \geq f\left(x^{*}\right)=f\left(x^{*}\right)+\langle 0, x-x *\rangle .
$$

\Longrightarrow statement is simple - checking $0 \in \partial f(x)$ can be quite difficult!

Regression: Squared loss $+L_{1}$-regularization for orthogonal design,

$$
\Psi(w)=\frac{1}{2}\|y-w\|_{2}^{2}+\lambda\|w\|_{1}
$$

where $Y \in \mathbb{R}^{n}$ and $\lambda \geq 0$ is the regularization parameter.

Subdifferential of the objective Ψ

$$
\partial \Psi(w)=\left\{w-y+\lambda u \mid u \in \partial\|w\|_{1}\right\} .
$$

At the optimum $w^{*}, 0 \in \Psi\left(w^{*}\right)$, that is there exists $u \in \partial\left\|w^{*}\right\|_{1}$ such that

$$
w_{i}^{*}=y_{i}-\lambda u_{i} .
$$

This yields the so-called soft shrinkage solution:

$$
w_{i}^{*}=\operatorname{sign}\left(y_{i}\right)\left(\left|y_{i}\right|-\lambda\right)_{+} .
$$

KKT optimality conditions (non-smooth case)

Theorem

- f, g_{i} are convex and $h_{j}(x)=\left\langle a_{j}, x\right\rangle-b_{j}$.
- strong duality holds.

Then necessary and sufficient conditions for primal and dual optimal points x^{*} and $\left(\lambda^{*}, \mu^{*}\right)$ are the Karush-Kuhn-Tucker(KKT) conditions

$$
\begin{aligned}
& g_{i}\left(x^{*}\right) \leq 0, i=1, \ldots, r, \quad h_{j}\left(x^{*}\right)=0, j=1, \ldots, s, \\
& \lambda_{i}^{*} \geq 0, i=1, \ldots, r \quad \lambda_{i}^{*} g_{i}\left(x^{*}\right)=0, i=1, \ldots, r \\
& 0 \in \partial f\left(x^{*}\right)+\sum_{i=1}^{r} \lambda_{i}^{*} \partial g_{i}\left(x^{*}\right)+A^{T} \mu^{*} \text {. }
\end{aligned}
$$

Optimization problem with perturbed constraints:

$$
\begin{gathered}
\min _{x \in D} f(x) \\
\text { subject to: } g_{i}(x) \leq u_{i}, \quad i=1, \ldots, r \\
h_{j}(x)=v_{j}, \quad j=1, \ldots, s
\end{gathered}
$$

How sensitive is p^{*} to a slight variation of the constraints ?

Perturbation and sensitivity analysis

Optimization problem with perturbed constraints:

$$
\begin{gathered}
\min _{x \in D} f(x) \\
\text { subject to: } g_{i}(x) \leq u_{i}, \quad i=1, \ldots, r \\
h_{j}(x)=v_{j}, \quad j=1, \ldots, s
\end{gathered}
$$

- $p^{*}(u, v)$ is the primal optimal value of the perturbed problem, where $p^{*}=p^{*}(0,0)$,
- If the original problem is convex, then the function $p^{*}(u, v)$ is convex in u and v.

Proposition 2. Suppose that strong duality holds and the dual optimum is attained. Let $\left(\lambda^{*}, \mu^{*}\right)$ be dual optimal for the unperturbed problem, that is $u=0$ and $v=0$. Then

$$
p^{*}(u, v) \geq p(0,0)-\left\langle\lambda^{*}, u\right\rangle-\left\langle\mu^{*}, v\right\rangle, \quad \forall u \in \mathbb{R}^{r}, v \in \mathbb{R}^{s}
$$

If additionally $p^{*}(u, v)$ is differentiable in u and v, then

$$
\lambda_{i}^{*}=-\frac{\partial p^{*}}{\partial u_{i}}, \quad \mu_{j}^{*}=-\frac{\partial p^{*}}{\partial v_{j}}, \quad \text { at } \quad(u, v)=(0,0) .
$$

Interpretation:

- 1. λ_{i}^{*} is large and $u_{i}<0$ then $p^{*}(u, v)$ will increase strongly,

2. λ_{i}^{*} is small and $u_{i}>0$ then $p^{*}(u, v)$ will not decrease too much,
3. $\left|\mu_{i}^{*}\right|$ is large and $\operatorname{sign} v_{i}=-\operatorname{sign} \mu_{i}$ then $p^{*}(u, v)$ will increase strongly,
4. $\left|\mu_{i}^{*}\right|$ is small and $\operatorname{sign} v_{i}=-\operatorname{sign} \mu_{i}$ then $p^{*}(u, v)$ will decrease little,

Proof: Let x be any feasible point for the perturbed problem, that is $g_{i}(x) \leq u_{i}, i=1, \ldots, r$ and $h_{j}(x)=v_{j}, j=1, \ldots, s$. Then by strong duality,

$$
\begin{aligned}
p^{*}(0,0) & =q\left(\lambda^{*}, \mu^{*}\right) \leq f(x)+\sum_{i=1}^{r} \lambda_{i}^{*} g_{i}(x)+\sum_{j=1}^{s} \mu_{j}^{*} h_{j}(x) \\
& \leq f(x)+\left\langle\lambda^{*}, u\right\rangle+\left\langle\mu^{*}, v\right\rangle
\end{aligned}
$$

using the definition of $q(\lambda, \mu)$ and $\lambda^{*} \succeq 0$. Thus

$$
\forall \text { feasible } x: \quad f(x) \geq p(0,0)-\left\langle\lambda^{*}, u\right\rangle-\left\langle\mu^{*}, v\right\rangle
$$

$\Longrightarrow \quad p^{*}(u, v) \geq p(0,0)-\left\langle\lambda^{*}, u\right\rangle-\left\langle\mu^{*}, v\right\rangle$.
The derived inequality states that, $p^{*}\left(t e_{i}, 0\right)-p^{*} \geq-t \lambda_{i}^{*}$, and thus

$$
\forall t>0, \quad \frac{p^{*}\left(t e_{i}, 0\right)-p^{*}}{t} \geq-\lambda_{i}^{*}, \quad \forall t<0, \quad \frac{p^{*}\left(t e_{i}, 0\right)-p^{*}}{t} \leq-\lambda_{i}^{*},
$$

and thus since $p^{*}(u, v)$ is differentiable by assumption we have $\frac{\partial p^{*}}{\partial u_{i}}=-\lambda_{i}^{*}$.

Dependency of the dual on the primal problem: The norm approximation problem

$$
\min _{x}\|A x-b\|_{p}
$$

where $b \in \mathbb{R}^{n}, x \in \mathbb{R}^{m}$ and $A \in \mathbb{R}^{n \times m}$.

Interpretation:

- find the solution to the linear system $A x=b$ if such a solution exists, if not find the best approximation with respect to the chosen p-norm,
- find the projection of b onto the subspace S spanned by the columns of A,

$$
S=\left\{y=\sum_{i=1}^{m} a_{i} y_{i} \mid a_{i} \in \mathbb{R}^{n}, \quad A=\left(a_{1}, \ldots, a_{m}\right)\right\}
$$

with respect to the p-norm.

Dependency of the dual on the primal problem:

$$
\min _{x}\|A x-b\|_{p}
$$

a) Lagrangian: $L(x)=\|A x-b\| \Longrightarrow$ dual function $q=\inf _{x \in \mathbb{R}^{m}}\|A x-b\|_{p}$.

Dependency of the dual on the primal problem:

b) Introduction of a new equality constraint:

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{m}, y \in \mathbb{R}^{n}}\|y\|_{p}, \\
& \text { subject to: } A x-b=y .
\end{aligned}
$$

Lagrangian: $L(x, y, \mu)=\|y\|_{p}+\langle\mu, A x-b-y\rangle$,

$$
\inf _{x \in \mathbb{R}^{m}}\langle\mu, A x\rangle=0, \text { if } A^{T} \mu=0, \text { otherwise }-\infty
$$

Hölder's ineq.: $\left(\frac{1}{q}+\frac{1}{p}=1\right):\langle\mu, y\rangle \leq\|\mu\|_{q}\|y\|_{p}$, equality is attained for y^{*},

$$
\begin{gathered}
\inf _{y \in \mathbb{R}^{n}}\|y\|_{p}-\langle\mu, y\rangle=\left\|y^{*}\right\|_{p}\left(1-\|\mu\|_{q}\right)=0, \text { if }\|\mu\|_{q} \leq 1, \text { otherwise }-\infty . \\
\max _{\mu \in \mathbb{R}^{n}}\langle\mu, b\rangle \\
\text { subject to: }\|\mu\|_{q} \leq 1, \quad A^{T} \mu=0 .
\end{gathered}
$$

Dependency of the dual on the primal problem:
c) Strictly monotonic transformation of the objective of the primal problem

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{m}, y \in \mathbb{R}^{n}}\|y\|_{p}^{2} \\
& \text { subject to: } A x-b=y .
\end{aligned}
$$

Lagrangian: $L(x, y, \mu)=\|y\|_{p}^{2}+\langle\mu, A x-b-y\rangle$,
Hölder's inequality: $\inf _{y \in \mathbb{R}^{n}}\|y\|_{p}^{2}-\langle\mu, y\rangle=\left\|y^{*}\right\|_{p}^{2}-\|\mu\|_{q}\left\|y^{*}\right\|_{p}$.
Minimum of quadratic function: $\left\|y^{*}\right\|=\frac{1}{2}\|\mu\|_{q}$ and the value is:
$\frac{1}{4}\|\mu\|_{q}^{2}-\frac{1}{2}\|\mu\|_{q}^{2}=-\frac{1}{4}\|\mu\|_{q}^{2}$,

$$
\max _{\mu \in \mathbb{R}^{n}}-\frac{1}{4}\|\mu\|_{q}^{2}+\langle\mu, b\rangle
$$

subject to: $A^{T} \mu=0$.

Weak alternatives: Feasibility problem for general optimization problem:

$$
\min _{x \in \mathbb{R}^{n}} 0
$$

subject to: $g_{i}(x) \leq 0, \quad i=1, \ldots, r$,

$$
h_{j}(x)=0, \quad j=1, \ldots, s .
$$

Primal optimal value: $p^{*}=\left\{\begin{array}{ll}0, & \text { if optimization problem is feasible }, \\ \infty, & \text { else. }\end{array}\right.$.
Dual function: $q(\lambda, \mu)=\inf _{x \in D}\left(\sum_{i=1}^{r} \lambda_{i} g_{i}(x)+\sum_{j=1}^{s} \mu_{j} h_{j}(x)\right)$.

> Dual problem: $\max _{\lambda \in \mathbb{R}^{r}, \mu \in \mathbb{R}^{s}} q(\lambda, \mu)$ subject to: $\lambda \succeq 0$.

Dual optimal value: $d^{*}= \begin{cases}\infty, & \text { if } \lambda \succeq 0 \text { and } q(\lambda, \mu)>0 \text { is feasible }, \\ 0, & \text { else. }\end{cases}$

Theorems of alternatives II

By weak duality: $d^{*} \leq p^{*}$.

- If the dual problem is feasible $\left(d^{*}=\infty\right)$ then the primal problem must be infeasible,
- If the primal problem is feasible $\left(p^{*}=0\right)$ then the dual problem is infeasible.
\Longrightarrow at most one of the system of inequalities is feasible,
- $g_{i}(x) \leq 0, \quad i=1, \ldots, r, \quad h_{j}(x)=0, \quad j=1, \ldots, s$,
- $\lambda \succeq 0, \quad q(\lambda, \mu)>0$.

Definition 8. An inequality system where at most one of the two holds is called weak alternatives.

Note: the case $d^{*}=\infty$ and $p^{*}=\infty$ can also happen

Strong alternatives:

- optimization problem is convex (g_{i} convex and h_{j} affine),
- there exists an $x^{\prime} \in \operatorname{relint} D$ such that $A x^{\prime}=b$.

Two sets of inequalities

- $g_{i}(x) \leq 0, \quad i=1, \ldots, r, \quad A x=b$
- $\lambda \succeq 0, \quad q(\lambda, \mu)>0$.

Under the above condition exactly one of them holds:
Strong alternatives

Replace inequality constraint:

$$
g_{i}(x) \leq 0 \quad \Longrightarrow \quad g_{i}(x) \preceq_{K} 0 .
$$

Optimization problem with generalized inequality constraint:

$$
\begin{aligned}
& \min _{x \in D} f(x), \\
& \text { subject to: } g_{i}(x) \preceq_{K_{i}} 0, \quad i=1, \ldots, r, \\
& h_{j}(x)=0, \quad j=1, \ldots, s,
\end{aligned}
$$

where $K_{i} \subset \mathbb{R}^{k_{i}}$ are proper cones.

Almost all properties carry over with only minor changes !

Dual cone K^{*}

$$
K^{*}:=\{y \mid\langle x, y\rangle \geq 0, \forall x \in K\} .
$$

Dual cone of S_{+}^{n}

$$
y \in\left(S_{+}^{n}\right)^{*} \Longleftrightarrow \operatorname{tr}(X Y) \geq 0, \forall X \in S_{+}^{n} .
$$

Now with $X=\sum_{i} \lambda_{i} u^{i}\left(u^{i}\right)^{T}$,

$$
\begin{aligned}
\operatorname{tr}(X Y) & =\operatorname{tr}\left(\sum_{i} \lambda_{i} u^{i}\left(u^{i}\right)^{T}\right)=\sum_{i} \lambda_{i} \operatorname{tr}\left(u^{i}\left(u^{i}\right)^{T} Y\right) \\
& =\sum_{i} \lambda_{i} \sum_{r, s} u_{r}^{i} u_{s}^{i} Y_{r s}=\sum_{i} \lambda_{i}\left\langle u_{i}, Y u_{i}\right\rangle
\end{aligned}
$$

If $Y \notin S_{+}^{n}$ there exists q such that $\langle q, Y q\rangle<0 \Longrightarrow X=q q^{T}, \operatorname{tr}(X Y)<0$. The dual cone of S_{+}^{n} is S_{+}^{n} (self-dual).

- Lagrangian: for, $g_{i}(x) \preceq_{K_{i}} 0$, we get a Lagrange multiplier $\lambda \in \mathbb{R}^{k_{i}}$.

$$
L(x, \lambda, \mu)=f(x)+\sum_{i=1}^{r}\left\langle\lambda_{i}, g_{i}(x)\right\rangle+\sum_{j=1}^{s} \mu_{j} h_{j}(x) .
$$

- Dual function: $\lambda_{i} \geq 0 \Longrightarrow \lambda_{i} \succeq_{K_{i}^{*}} 0, \quad\left(K_{i}^{*}\right.$ dual cone of $\left.K_{i}\right)$. Note: $\lambda_{i} \succeq_{K_{i}^{*}} 0$ and $g_{i}(x) \preceq_{K_{i}} 0 \Longrightarrow\left\langle\lambda_{i}, g_{i}(x)\right\rangle \leq 0$, x feasible,$\lambda_{i} \succeq_{K_{i}^{*}} 0 \quad \Longrightarrow \quad f(x)+\sum_{i=1}^{r}\left\langle\lambda_{i}, g_{i}(x)\right\rangle+\sum_{j=1}^{s} \mu_{j} h_{j}(x) \leq f(x)$.
- Dual problem: The dual problem becomes

$$
\begin{gathered}
\max _{\lambda, \mu} q(\lambda, \mu), \\
\text { subject to: } \lambda_{i} \succeq_{K_{i}^{*}} 0, \quad i=1, \ldots, r .
\end{gathered}
$$

We have weak duality: $d^{*} \leq p^{*}$.

- Slater's condition and strong duality: for a convex primal problem

$$
\begin{aligned}
& \min _{x \in D} f(x), \\
& \text { subject to: } g_{i}(x) \preceq{ }_{K_{i}} 0, \quad i=1, \ldots, r \\
& A x=b,
\end{aligned}
$$

where f is convex, g_{i} is K_{i}-convex.

Proposition 3. If there exists an $x \in \operatorname{relint} D$ with $A x=b$ and $g_{i}(x) \prec_{K_{i}} 0$, then strong duality, $d^{*}=p^{*}$, holds.

Example: Lagrange dual of a semidefinite program:

$$
\begin{gathered}
\min _{x \in D}\langle c, x\rangle \\
\text { subject to: } \sum_{i=1}^{n} x_{i} F_{i}+G \preceq_{S_{+}^{k}} 0,
\end{gathered}
$$

where $F_{1}, \ldots, F_{n}, G \in S_{+}^{k}$. The Lagrangian is

$$
L(x, \lambda)=\langle c, x\rangle+\sum_{i=1}^{n} x_{i} \operatorname{tr}\left(\lambda F_{i}\right)+\operatorname{tr}(\lambda G)=\sum_{i=1}^{n} x_{i}\left(c_{i}+\operatorname{tr}\left(\lambda F_{i}\right)\right)+\operatorname{tr}(\lambda G),
$$

where $\lambda \in S^{k}$ and thus the dual problem becomes

$$
\max _{\lambda, \mu} \operatorname{tr}(\lambda G)
$$

subject to: $c_{i}+\operatorname{tr}\left(\lambda F_{i}\right)=0, \quad i=1, \ldots, n$.

- Complementary slackness: One has

$$
\left\langle\lambda_{i}^{*}, g_{i}\left(x^{*}\right)\right\rangle=0, \quad i=1, \ldots, r .
$$

From this we deduce

$$
\lambda_{i}^{*} \succ_{K_{i}^{*}} 0 \quad \Longrightarrow \quad g_{i}\left(x^{*}\right)=0, \quad g_{i}\left(x^{*}\right) \prec_{K_{i}} 0 \quad \Longrightarrow \quad \lambda_{i}^{*}=0 .
$$

Important: the condition $\left\langle\lambda_{i}^{*}, g_{i}\left(x^{*}\right)\right\rangle=0$ can be fulfilled if $\lambda_{i}^{*} \neq 0$ and $g_{i}\left(x^{*}\right) \neq 0$.

- KKT conditions: f, g_{i} and h_{j} are differentiable:

Proposition 4. If strong duality holds, the following KKT-conditions are necessary conditions for primal x^{*} and dual optimal $\left(\lambda^{*}, \mu^{*}\right)$ points,

$$
\begin{aligned}
& g_{i}\left(x^{*}\right) \leq 0, i=1, \ldots, r, \quad h_{j}\left(x^{*}\right)=0, \quad j=1, \ldots, s, \\
& \lambda_{i}^{*} \succeq K_{i}^{*} 0, i=1, \ldots, r \quad\left\langle\lambda_{i}^{*}, g_{i}\left(x^{*}\right)\right\rangle=0, \quad i=1, \ldots, r \\
& \nabla f\left(x^{*}\right)+\sum_{i=1}^{r} D g_{i}\left(x^{*}\right)^{T} \lambda_{i}^{*}+\sum_{j=1}^{s} \mu_{j}^{*} \nabla h_{j}\left(x^{*}\right)=0 .
\end{aligned}
$$

If the problem is convex, then the KKT-conditions are necessary and sufficient for optimality of λ^{*}, μ^{*}.

