Convex Optimization and Modeling

(Un)constrained minimization
9th lecture, 09.06.2010
Jun.-Prof. Matthias Hein

Descent Methods:

- steepest decsent: $x^{k+1}=x^{k}-\alpha \nabla f\left(x^{k}\right)$,
- general descent: $x^{k+1}=x^{k}+\alpha d^{k}$ where $\left\langle d^{k}, \nabla f\left(x^{k}\right)\right\rangle<0$,
- linear convergence (stepsize selection with Armijo rule),

Newton method:

- Newton's method: $x^{k+1}=x^{k}-\alpha\left(H f\left(x^{k}\right)\right)^{-1} \nabla f\left(x^{k}\right)$,
- Hessian is positive-(semi)-definite for convex functions $\Longrightarrow\left\langle\left(H f\left(x^{k}\right)\right)^{-1} \nabla f\left(x^{k}\right), \nabla f\left(x^{k}\right)\right\rangle \geq 0$,
- quadratic convergence

Convergence analysis: involves possibly unknown properties of the function, bound is not affinely invariant

Unconstrained Minimization (continued)

- Self-concordant functions:
- convergence analysis directly in terms of Newton decrement
- Subgradient Methods

Constrained Minimization:

- Equality constrained minimization:
- Newton method with equality constraints
- Newton method with infeasible start
- Interior point methods:
- barrier method

Problems of classical convergence analysis

- depends on unknown constants (m, L, \cdots),
- Newtons method is affine invariant but not the bound.

Convergence analysis via self-concordance (Nesterov and Nemirovski)

- does not depend on any unknown constants
- gives affine-invariant bound
- applies to special class of convex functions (self-concordant functions)
- developed to analyze polynomial-time interior-point methods for convex optimization

Self-concordant functions:

Definition 1. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is self-concordant if

$$
\left|f^{\prime \prime \prime}(x)\right| \leq 2 f^{\prime \prime}(x)^{\frac{3}{2}} .
$$

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is self-concordant if $t \mapsto f(x+t v)$ is self-concordant for every $x, v \in \mathbb{R}^{n}$.

Examples:

- linear and quadratic functions,
- negative logarithm $f(x)=-\log x$.

Properties:

- If f self-concordant, then also γf where $\gamma>0$.
- If f is self-concordant then $f(A x+b)$ is also self-concordant.

Convergence analysis for a strictly convex self-concordant function: Two phases: $0<\eta<\frac{1}{4}, \gamma>0$,

- damped Newton phase: $\lambda\left(x^{k}\right)>\eta$,

$$
\gamma>0, \quad f\left(x^{k+1}\right)-f\left(x^{k}\right) \leq-\gamma
$$

- pure Newton phase: $\lambda\left(x^{k}\right) \leq \eta$,

$$
2 \lambda\left(x^{k+1}\right) \leq\left(2 \lambda\left(x^{k}\right)\right)^{2}
$$

stepsize $\alpha^{k}=1 \Rightarrow$ pure Newton step for $l \geq k$

$$
f\left(x^{l}\right)-p^{*} \leq \lambda\left(x^{l}\right)^{2} \leq\left(\frac{1}{2}\right)^{2^{l-k+1}}
$$

\Longrightarrow complexity bound only depends on known constants !
\Longrightarrow does not imply that Newton's method works better for self-concordant functions!

Steepest Descent Method - f differentiable

 Minimize linear approximation: $f(x+\alpha d)=f(x)+\alpha\langle\nabla f, d\rangle$,$$
\min _{\|d\| \leq 1}\langle\nabla f, d\rangle=-\|\nabla f\|, \quad d^{*}=-\frac{\nabla f}{\|\nabla f\|} .
$$

Steepest Descent Method - f non-differentiable but convex Definition of subgradient/subdifferential,

$$
f(y) \geq f(x)+\langle g, y-x\rangle, \quad \forall y \in \mathbb{R}^{d}, g \in \partial f(x) .
$$

Directional derivative $f^{\prime}(x, d)$ of f into direction d,

$$
f^{\prime}(x, d)=\max _{g \in \partial f(x)}\langle g, d\rangle,
$$

Direction with steepest descent

$$
\min _{\|d\| \leq 1} \max _{g \in \partial f(x)}\langle g, d\rangle
$$

Min-Max Equality - Saddle-Point Theorems

Theorem 1. Let $f(x, y)$ be convex in $x \in X$ and concave in $y \in Y$ and suppose $\operatorname{dom} f \in X \times Y, f$ is continuous and X, Y are compact. Then,

$$
\sup _{y \in Y} \inf _{x \in X} f(x, y)=\inf _{x \in X} \sup _{y \in Y} f(x, y) .
$$

Application to steepest descent problem yields

$$
\min _{\|d\| \leq 1} \max _{g \in \partial f(x)}\langle g, d\rangle=\max _{g \in \partial f(x)} \min _{\|d\| \leq 1}\langle g, d\rangle=\max _{g \in \partial f(x)}-\|g\|,
$$

where $d^{*}=-\frac{g^{*}}{\left\|g^{*}\right\|}$ if $\left\|g^{*}\right\|>0$, otherwise $d^{*}=0$.
Steepest Descent: $x^{k+1}=x^{k}-\alpha\left(g^{*}\right)^{k}$.
Problem: Does not always converge to optimum with exact line search (Exercise).

Alternative approach:

Instead of descent in $f\left(x^{k}\right)-p^{*} \Longrightarrow$ descent in $\left\|x^{k}-x^{*}\right\|$.

Warning: Later approach does not necessarily lead to a monotonically decreasing sequence $f\left(x^{k}\right)$!

Subgradient method:

$$
x^{k+1}=x^{k}-\alpha^{k} g^{k}, \quad \alpha^{k}>0, g_{k} \in \partial f\left(x^{k}\right) .
$$

- No stepsize selection! α^{k} will be fixed initially.
- Any subgradient is o.k. ! Do not have to know $\partial f\left(x^{k}\right)$ - one subgradient for each point is sufficient.

Main Theorem

- For all $y \in X, k \geq 0$,

$$
\left\|x^{k+1}-y\right\|^{2} \leq\left\|x^{k}-y\right\|^{2}-2 \alpha^{k}\left(f\left(x^{k}\right)-f(y)\right)+\alpha^{k}\left\|g^{k}\right\|^{2} .
$$

- If $f(y)<f\left(x^{k}\right)$ and $0<\alpha^{k}<\frac{2\left(f\left(x^{k}\right)-f(y)\right)}{\left\|g^{k}\right\|^{2}}$, then

$$
\left\|x^{k+1}-y\right\|^{2} \leq\left\|x^{k}-y\right\|^{2}
$$

Proof: using $f(y)-f\left(x^{k}\right) \geq\left\langle g^{k}, y-x^{k}\right\rangle$.

$$
\begin{aligned}
\left\|x^{k+1}-y\right\|^{2} & =\left\|x^{k}-\alpha^{k} g^{k}-y\right\|^{2}=\left\|x^{k}-y\right\|^{2}-2 \alpha^{k}\left\langle g^{k}, x^{k}-y\right\rangle+\left(\alpha^{k}\right)^{2}\left\|g^{k}\right\|^{2} \\
& \leq\left\|x^{k}-y\right\|^{2}-2 \alpha^{k}\left(f\left(x^{k}\right)-f(y)\right)+\left(\alpha^{k}\right)^{2}\left\|g^{k}\right\|^{2}
\end{aligned}
$$

\Longrightarrow we are interested in $y=x^{*}$!

Assumptions: Optimum is attained and unique, $p^{*}=f\left(x^{*}\right)$

$$
C:=\sup _{k}\left\{\|g\| \mid g \in \partial f\left(x^{k}\right)\right\}<\infty .
$$

This holds if f is Lipschitz continuous with Lipschitz constant $L<\infty$,

$$
|f(y)-f(x)| \leq L\|y-x\|
$$

as $\|g\| \leq L$ for any x and $g \in \partial f(x)$.
Recursive application:

$$
\begin{gathered}
\left\|x^{k+1}-x^{*}\right\|^{2} \leq\left\|x^{0}-x^{*}\right\|^{2}-2 \sum_{s=0}^{k} \alpha^{s}\left(f\left(x^{s}\right)-f\left(x^{*}\right)\right)+C^{2} \sum_{s=0}^{k}\left(\alpha^{s}\right)^{2} \\
\Longrightarrow \min _{s=1, \ldots, k} f\left(x^{s}\right)-f\left(x^{*}\right) \leq \frac{\left\|x^{0}-x^{*}\right\|^{2}+C^{2} \sum_{s=0}^{k}\left(\alpha^{s}\right)^{2}}{2 \sum_{s=0}^{k} \alpha^{s}}
\end{gathered}
$$

Question: Choice of α^{k} ?

- Constant stepsize: $\alpha^{k}=\alpha$,

$$
\min _{s=1, \ldots, k} f\left(x^{s}\right)-f\left(x^{*}\right) \leq \frac{R^{2}+k C^{2} \alpha^{2}}{2 k \alpha}
$$

As $k \rightarrow \infty, \min _{s=1, \ldots, k} f\left(x^{s}\right)-f\left(x^{*}\right) \leq \frac{C^{2} \alpha}{2}$ - no convergence !
For desired accuracy ε set $\alpha=\frac{\varepsilon}{C^{2}}$, then $k=\left(\frac{R C}{\varepsilon}\right)^{2}$.

- Square summable but not summable stepsizes α^{k}

$$
\begin{aligned}
& \sum_{s=0}^{\infty}\left(\alpha_{s}\right)^{2}<\infty, \quad \sum_{s=0}^{\infty} \alpha_{s}=\infty \\
& \Longrightarrow \quad \lim _{k \rightarrow \infty} \min _{s=1, \ldots, k} f\left(x^{s}\right)=f\left(x^{*}\right)
\end{aligned}
$$

Example: $\alpha^{s}=\frac{1}{s^{p}}$ diverges for $p \leq 1$ and converges for $p>1$. Use $\frac{1}{2}<p \leq 1$.

Convex optimization problem with equality constraint:

$$
\begin{gathered}
\min _{x \in \mathbb{R}^{n}} f(x) \\
\text { subject to: } A x=b .
\end{gathered}
$$

Assumptions:

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex and twice differentiable,
- $A \in \mathbb{R}^{p \times n}$ with $\operatorname{rank} A=p<n$,
- optimal solution x^{*} exists and $p^{*}=\inf \{f(x) \mid A x=b\}$.

Reminder: A pair $\left(x^{*}, \mu^{*}\right)$ is primal-dual optimal if and only if

$$
A x^{*}=b, \quad \nabla f\left(x^{*}\right)+A^{T} \mu^{*}=0, \quad \text { (KKT-conditions). }
$$

Primal and dual feasibility equations.

How to solve an equality constrained minimization problem?

- elimination of equality constraint - unconstrained optimization over

$$
\{\hat{x}+z \mid z \in \operatorname{ker}(A)\}
$$

where $A \hat{x}=b$.

- solve the unconstrained dual problem,

$$
\max _{\mu \in \mathbb{R}^{p}} q(\mu) .
$$

- direct extension of Newton's method for equality constrained minimization.

Quadratic function with linear equality constraints - $P \in S_{+}^{n}$

$$
\min \frac{1}{2}\langle x, P x\rangle+\langle q, x\rangle+r,
$$

subject to: $A x=b$.
KKT conditions: $A x^{*}=b, \quad P x^{*}+q+A^{T} \mu^{*}=0$.

$$
\Longrightarrow \quad \text { KKT-system: } \quad\left(\begin{array}{cc}
P & A^{T} \\
A & 0
\end{array}\right)\binom{x^{*}}{\mu^{*}}=\binom{-q}{b} .
$$

Cases:

- KKT-matrix nonsingular \Longrightarrow unique primal-dual optimal pair $\left(x^{*}, \mu^{*}\right)$,
- KKT-matrix singular:
- no solution: quadratic objective is unbounded from below,
- a whole subspace of possible solutions.

Nonsingularity of the KKT matrix:

- P and A have no (non-trivial) common nullspace,

$$
\operatorname{ker}(A) \cap \operatorname{ker}(P)=\{0\} .
$$

- P is positive definite on the nullspace of $A(\operatorname{ker}(A))$,

$$
A x=0, x \neq 0 \quad \Longrightarrow \quad\langle x, P x\rangle>0
$$

If $P \succ 0$ the KKT-matrix is always non-singular.

Assumptions:

- initial point $x^{(0)}$ is feasible, that is $A x^{(0)}=b$.

Newton direction - second order approximation:

$$
\min _{d \in \mathbb{R}^{n}} \hat{f}(x+d)=f(x)+\langle\nabla f(x), d\rangle+\frac{1}{2}\langle d, H f(x) d\rangle
$$

subject to: $A(x+d)=b$.
Newton step $d_{N T}$ is the minimizer of this quadratic optimization problem:

$$
\left(\begin{array}{cc}
H f(x) & A^{T} \\
A & 0
\end{array}\right)\binom{d_{N T}}{w}=\binom{-\nabla f(x)}{0} .
$$

- x is feasible $\Rightarrow A d=0$.
- Newton step lies in the null-space of A.
- $x+\alpha d$ is feasible (stepsize selection by Armijo rule)

Necessary and sufficient condition for optimality:

$$
A x^{*}=b, \quad \nabla f\left(x^{*}\right)+A^{T} \mu^{*}=0
$$

Linearized optimality condition:
Next point $x^{\prime}=x+d$ solves linearized optimality condition:

$$
A(x+d)=b, \quad \nabla f(x+d)+A^{T} w \approx \nabla f(x)+H f(x) d+A^{T} w=0 .
$$

With $A x=b$ (initial condition) this leads again to:

$$
\left(\begin{array}{cc}
H f(x) & A^{T} \\
A & 0
\end{array}\right)\binom{d_{N T}}{w}=\binom{-\nabla f(x)}{0} .
$$

Properties:

- Newton step is affine invariant, $x=S y \bar{f}(y)=f(S y)$.

$$
\nabla \bar{f}(y)=S^{T} \nabla f(S y), \quad H \bar{f}(y)=S^{T} H f(T y) S,
$$

feasibility: $A S y=b$
Newton step: $S d_{N T}^{y}=d_{N T}^{x}$.

- Newton decrement: $\lambda(x)^{2}=\left\langle d_{N T}, H f(x) d_{N T}\right\rangle$.

1. Stopping criterion: $\hat{f}(x+d)=f(x)+\langle\nabla f(x), d\rangle+\frac{1}{2}\langle d, H f(x) d\rangle$

$$
f(x)-\inf \{\hat{f}(x+v) \mid A x=b\}=\frac{1}{2} \lambda^{2}(x) .
$$

\Longrightarrow estimate of the difference $f(x)-p^{*}$.
2. Stepsize selection: $\frac{d}{d t} f\left(x+t d_{N T}\right)=\left\langle\nabla f(x), d_{N T}\right\rangle=-\lambda(x)^{2}$.

Assumption replacing $H f(x) \succeq m \mathbb{1}$:

$$
\left\|\left(\begin{array}{cc}
H f(x) & A^{T} \\
A & 0
\end{array}\right)^{-1}\right\|_{2} \leq K
$$

Result: Elimination yields the same Newton step.
\Longrightarrow convergence analysis of unconstrained problem applies.

- linear convergence (damped Newton phase),
- quadratic convergence (pure Newton phase).

Self-concordant Objectives - required steps bounded by:

$$
\frac{20-8 \sigma}{\sigma \beta(1-2 \sigma)^{2}}\left(f\left(x^{(0)}\right)-p^{*}\right)+\log _{2} \log _{2}\left(\frac{1}{\varepsilon}\right),
$$

where α, β are the backtracking parameters (Armijo rule: σ is α).

Do we have to ensure feasibility of x ?

Necessary and sufficient condition for optimality:

$$
A x^{*}=b, \quad \nabla f\left(x^{*}\right)+A^{T} \mu^{*}=0 .
$$

Linearized optimality condition:
Next point $x^{\prime}=x+d$ solves linearized optimality condition:

$$
A(x+d)=b, \quad \nabla f(x+d)+A^{T} w \approx \nabla f(x)+H f(x) d+A^{T} w=0 .
$$

This results in

$$
\left(\begin{array}{cc}
H f(x) & A^{T} \\
A & 0
\end{array}\right)\binom{d_{I F N T}}{w}=-\binom{\nabla f(x)}{A x-b} .
$$

Definition 2. In a primal-dual method both the primal variable x and the dual variable μ are updated.

- Primal residual: $r_{\text {pri }}(x, \mu)=A x-b$,
- Dual residual: $r_{\text {dual }}(x, \mu)=\nabla f(x)+A^{T} \mu$,
- Residual: $r(x, \mu)=\left(r_{\text {dual }}(x, \mu), r_{\text {pri }}(x, \mu)\right)$.

Primal-dual optimal point: $\left(x^{*}, \mu^{*}\right) \Longleftrightarrow r\left(x^{*}, \mu^{*}\right)=0$.

Primal-dual Newton step minimizes first-order Taylor approx. of $r(x, \mu)$:

$$
\begin{aligned}
r\left(x+d_{x}, \mu+d_{\mu}\right) & \approx r(x, \mu)+\left.D r\right|_{(x, \mu)}\binom{d_{x}}{d_{\mu}}=0 \\
\left.\Longrightarrow \quad D r\right|_{(x, \mu)}\binom{d_{x}}{d_{\mu}} & =-r(x, \mu) .
\end{aligned}
$$

Primal-dual Newton step

Primal-dual Newton step:

$$
\left.\operatorname{Dr}\right|_{(x, \mu)}\binom{d_{x}}{d_{\mu}}=-r(x, \mu)
$$

$$
\begin{aligned}
& \text { We have } \\
& \qquad\left.D r\right|_{(x, \mu)}=\left(\begin{array}{cc}
\nabla_{x} r_{\text {dual }} & \nabla_{\mu} r_{\text {dual }} \\
\nabla_{x} r_{\text {pri }} & \nabla_{\mu} r_{\text {pri }}
\end{array}\right)=\left(\begin{array}{cc}
H f(x) & A^{T} \\
A & 0
\end{array}\right) \\
& \Longrightarrow\left(\begin{array}{cc}
H f(x) & A^{T} \\
A & 0
\end{array}\right)\binom{d_{x}}{d_{\mu}}=-\binom{r_{\text {dual }}(x, \mu)}{r_{\text {pri }}(x, \mu)}=-\binom{\nabla f(x)+A^{T} \mu}{A x-b} .
\end{aligned}
$$

and get with $\mu^{+}=\mu+d_{\mu}$

$$
\left(\begin{array}{cc}
H f(x) & A^{T} \\
A & 0
\end{array}\right)\binom{d_{x}}{\mu^{+}}=-\binom{\nabla f(x)}{A x-b} .
$$

The primal-dual step is not necessarily a descent direction:

$$
\begin{aligned}
\left.\frac{d}{d t} f\left(x+t d_{x}\right)\right|_{t=0} & =\left\langle\nabla f(x), d_{x}\right\rangle=-\left\langle H f(x) d_{x}+A^{T} w, d_{x}\right\rangle \\
& =-\left\langle d_{x}, H f(x) d_{x}\right\rangle+\langle w, A x-b\rangle
\end{aligned}
$$

where we have used, $\nabla f(x)+H f(x) d_{x}+A^{T} w=0$, and, $A d_{x}=b-A x$.

BUT: it reduces the residual,

$$
\left.\frac{d}{d t}\left\|r\left(x+t d_{x}, \mu+t d_{\mu}\right)\right\|\right|_{t=0}=-\|r(x, \mu)\|
$$

Towards feasibility: we have $A d_{x}=b-A x$
$r_{\text {pri }}^{+}=A\left(x+t d_{x}\right)-b=(1-t)(A x-b)=(1-t) r_{\text {pri }} \quad \Longrightarrow \quad r_{\text {pri }}^{(k)}=\left(\prod_{i=0}^{k-1}\left(1-t^{(i)}\right)\right) r^{(0)}$.

Require: an initial starting point x^{0} and μ^{0},
1: repeat
2: \quad compute the primal and dual Newton step d_{x}^{k} and d_{μ}^{k}
3: Backtracking Line Search:
4: $\quad t=1$
5: \quad while $\left\|r\left(x+t d_{x}^{k}, \mu+t d_{\mu}^{k}\right)\right\|>(1-\sigma) t\|r(x, \mu)\|$ do
6: $\quad t=\beta t$
7: end while
8: $\quad \alpha^{k}=t$
9: UPDATE: $x^{k+1}=x^{k}+\alpha^{k} d_{x}^{k}$ and $\mu^{k+1}=\mu^{k}+\alpha^{k} d_{\mu}^{k}$.
10: until $A x^{k}=b$ and $\left\|r\left(x^{k}, \mu^{k}\right)\right\| \leq \varepsilon$

$$
\min _{x \in \mathbb{R}^{2}} f\left(x_{1}, x_{2}\right)=e^{x_{1}+3 x_{2}-0.1}+e^{x_{1}-3 x_{2}-0.1}+e^{-x_{1}+0.1}
$$

subject to: $\frac{x_{1}}{2}+x_{2}=1$.

The constrained Newton method with feasible starting point.

The infeasible Newton method - note that the function value does not decrease.

Solution of the KKT system: $\left(\begin{array}{cc}H & A^{T} \\ A & 0\end{array}\right)\binom{v}{w}=-\binom{g}{h}$.

- Direct solution: symmetric, but not positive definite.
$L D L^{T}$-factorization costs $\frac{1}{3}(n+p)^{3}$.
- Elimination: $H v+A^{T} w=-g \Longrightarrow v=-H^{-1}\left[g+A^{T} w\right]$. and $A H^{-1} A^{T} w+A H^{-1} g=h \Longrightarrow w=\left(A H^{-1} A^{T}\right)\left[h-A H^{-1} g\right]$.

1. build $H^{-1} A^{T}$ and $H^{-1} g$, factorization of H and $p+1$ rhs
\Rightarrow cost: $f+(p+1) s$,
2. form $S=A H^{-1} A^{T}$, matrix multiplication \Rightarrow cost: $p^{2} n$,
3. solve $S w=\left[h-A H^{-1} g\right]$, factorization of $S \Rightarrow \operatorname{cost} \frac{1}{3} p^{3}+p^{2}$,
4. solve $H v=g+A^{T} w$, cost: $2 n p+s$.

Total cost: $f+p s+p^{2} n+\frac{1}{3} p^{3}$ (leading terms).

General convex optimization problem:

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} f(x) \\
& \text { subject to: } g_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{aligned}
$$

Assumptions:

- f, g_{1}, \ldots, g_{m} are convex and twice differentiable,
- $A \in \mathbb{R}^{p \times n}$ with $\operatorname{rank}(A)=p$,
- there exists an optimal x^{*} such that $f\left(x^{*}\right)=p^{*}$,
- the problem is strictly feasible (Slater's constraint qualification holds).

$$
\begin{aligned}
& A x^{*}=b, \quad g_{i}\left(x^{*}\right) \leq 0, i=1, \ldots, m, \quad \lambda \succeq 0 \\
& \nabla f\left(x^{*}\right)+\sum_{i}^{m} \lambda_{i}^{*} g_{i}\left(x^{*}\right)+A^{T} \mu^{*}=0, \quad \lambda_{i}^{*} g_{i}\left(x^{*}\right)=0
\end{aligned}
$$

What are interior point methods?

- solve a sequence of equality constrained problem using Newton's method,
- solution is always strictly feasible \Rightarrow lies in the interior of the constraint set $S=\left\{x \mid g_{i}(x) \leq 0, i=1, \ldots, m\right\}$.
- basically the inequality constraints are added to the objective such that the solution is forced to be away from the boundary.

Hierarchy of convex optimization algorithms:

- quadratic objective with linear equality constraints \Rightarrow analytic solution,
- general objective with linear eq. const. \Rightarrow solve sequence of problems with quadratic objective and linear equality constraints,
- general convex optimization problem \Rightarrow solve a sequence of problems with general objective and linear equality constraints.

Equivalent formulation of general convex optimization problem:

$$
\min _{x \in \mathbb{R}^{n}} f(x)+\sum_{i=1}^{m} I_{-}\left(g_{i}(x)\right)
$$

subject to: $A x=b$,
where $I_{-}(u)=\left\{\begin{array}{cc}0, & u \leq 0 \\ \infty, & u>0 .\end{array}\right.$.

Basic idea: approximate indicator function with a differentiable function with closed level sets.

$$
\hat{I}_{-}(u)=-\left(\frac{1}{t}\right) \log (-u), \quad \operatorname{dom} \hat{I}=\{x \mid x<0\} .
$$

where t is a parameter controlling the accuracy of the approximation.

Definition: $\phi(x)=-\sum_{i=1}^{m} \log \left(-g_{i}(x)\right)$.

Approximate formulation:

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} t f(x)+\phi(x) \\
& \text { subject to: } A x=b
\end{aligned}
$$

Derivatives of ϕ :

- $\nabla \phi(x)=-\sum_{i=1}^{m} \frac{1}{g_{i}(x)} \nabla g_{i}(x)$,
- $H \phi(x)=\sum_{i=1}^{m} \frac{1}{g_{i}(x)^{2}} \nabla g_{i}(x) \nabla g_{i}(x)^{T}-\sum_{i=1}^{m} \frac{1}{g_{i}(x)} H g_{i}(x)$.

Definition 3. Let $x^{*}(t)$ be the optimal point of the above problem, which is called central point. The central path is the set of points $\left\{x^{*}(t) \mid t>0\right\}$.

Figure 1: The central path for an LP. The dashed lines are the the contour lines of ϕ. The central path converges to x^{*} as $t \rightarrow \infty$.

Central points (opt. cond.): $\quad A x^{*}(t)=b, \quad g_{i}\left(x^{*}(t)\right)<0, i=1, \ldots, m$,
$0=t \nabla f\left(x^{*}(t)\right)+\nabla \phi\left(x^{*}(t)\right)+A^{T} \hat{\mu}=t \nabla f\left(x^{*}(t)\right)+\sum_{i=1}^{m}-\frac{1}{g_{i}\left(x^{*}(t)\right)} \nabla g_{i}\left(x^{*}(t)\right)+A^{T} \hat{\mu}$
Define: $\lambda_{i}^{*}(t)=-\frac{1}{t g_{i}\left(x^{*}(t)\right)}$ and $\mu^{*}(t)=\frac{\hat{\mu}}{t}$.
$\Longrightarrow \quad\left(\lambda^{*}(t), \mu^{*}(t)\right)$ are dual feasible for the original problem and $x^{*}(t)$ is minimizer of Lagrangian!

- Lagragian: $L(x, \lambda, \mu)=f(x)+\sum_{i=1}^{m} \lambda_{i} g_{i}(x)+\langle\mu, A x-b\rangle$.
- Dual function evaluated at $\left(\lambda^{*}(t), \mu^{*}(t)\right)$:

$$
q\left(\lambda^{*}(t), \mu^{*}(t)\right)=f\left(x^{*}(t)\right)+\sum_{i=1}^{m} \lambda_{i}^{*}(t) g_{i}\left(x^{*}(t)\right)+\left\langle\mu^{*}, A x^{*}(t)-b\right\rangle=f\left(x^{*}(t)\right)-\frac{m}{t} .
$$

- Weak duality: $p^{*} \geq q\left(\lambda^{*}(t), \mu^{*}(t)\right)=f\left(x^{*}(t)\right)-\frac{m}{t}$.

$$
f\left(x^{*}(t)\right)-p^{*} \leq \frac{m}{t} .
$$

Interpretation via KKT conditions:

$$
-\lambda_{i}^{*}(t) g_{i}\left(x^{*}(t)\right)=\frac{1}{t} .
$$

\Longrightarrow for t large the original KKT conditions are approximately satisfied.

Force field interpretation (no equality constraints):
Force for each constraint: $F_{i}(x)=-\nabla\left(-\log \left(-g_{i}(x)\right)\right)=\frac{1}{g_{i}(x)} \nabla g_{i}(x)$,
generated by the potential $\phi: F_{i}=-\nabla \phi(x)$.

- $F_{i}(x)$ is moving the particle away from the boundary,
- $F_{0}(x)=-t \nabla f(x)$ is moving particle towards smaller values of f.
- at the central point $x^{*}(t) \Longrightarrow$ forces are in equilibrium.

The barrier method (direct): set $t=\frac{\varepsilon}{m}$ then

$$
f\left(x^{*}(t)\right)-p^{*} \leq \varepsilon . \Rightarrow \text { generally does not work well. }
$$

Barrier method or path-following method:
Require: strictly feasible $x^{0}, \gamma, t=t^{(0)}>0$, tolerance $\varepsilon>0$.
1: repeat
2: Centering step: compute $x^{*}(t)$ by minimizing

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} t f(x)+\phi(x) \\
& \text { subject to: } A x=b,
\end{aligned}
$$

where previous central point is taken as starting point.
3: UPDATE: $x=x^{*}(t)$.
4: $\quad t=\gamma t$.
5: until $\frac{m \gamma}{t}<\varepsilon$

- Accuracy of centering: Exact centering (that is very accurate solution of the centering step) is not necessary but also does not harm.
- Choice of γ : for a small γ the last center point will be a good starting point for the new centering step, whereas for large γ the last center point is more or less an arbitrary initial point.

trade-off between inner and outer iterations

\Longrightarrow turns out that for $3<\gamma<100$ the total number of Newton steps is almost constant.

- Choice of $t^{(0)}: \frac{m}{t^{(0)}} \approx f\left(x^{(0)}\right)-p^{*}$.
- Infeasible Newton method: start with $x^{(0)}$ which fulfills inequality constraints but not necessarily equality constraints. Then when feasible point is found continue with normal barrier method.

