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Reminder - Unconstrained Minimization

Descent Methods:

• steepest decsent: xk+1 = xk − α∇f(xk),

• general descent: xk+1 = xk + αdk where
〈

dk,∇f(xk)
〉

< 0,

• linear convergence (stepsize selection with Armijo rule),

Newton method:

• Newton’s method: xk+1 = xk − α (Hf(xk))−1∇f(xk),

• Hessian is positive-(semi)-definite for convex functions

=⇒
〈

(Hf(xk))−1 ∇f(xk),∇f(xk)
〉

≥ 0,

• quadratic convergence

Convergence analysis: involves possibly unknown properties of the

function, bound is not affinely invariant
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Program of today

Unconstrained Minimization (continued)

• Self-concordant functions:

– convergence analysis directly in terms of Newton decrement

• Subgradient Methods

Constrained Minimization:

• Equality constrained minimization:

– Newton method with equality constraints

– Newton method with infeasible start

• Interior point methods:

– barrier method
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Self-concordance

Problems of classical convergence analysis

• depends on unknown constants (m,L, · · · ),

• Newtons method is affine invariant but not the bound.

Convergence analysis via self-concordance (Nesterov and

Nemirovski)

• does not depend on any unknown constants

• gives affine-invariant bound

• applies to special class of convex functions (self-concordant functions)

• developed to analyze polynomial-time interior-point methods for convex

optimization
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Self-concordance II

Self-concordant functions:

Definition 1. A function f : R → R is self-concordant if

|f ′′′(x)| ≤ 2f ′′(x)
3
2 .

A function f : R
n → R is self-concordant if t 7→ f(x + tv) is

self-concordant for every x, v ∈ R
n.

Examples:

• linear and quadratic functions,

• negative logarithm f(x) = − log x.

Properties:

• If f self-concordant, then also γ f where γ > 0.

• If f is self-concordant then f(Ax + b) is also self-concordant.
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Convergence analysis for self-concordant functions

Convergence analysis for a strictly convex self-concordant function:

Two phases: 0 < η < 1
4 , γ > 0,

• damped Newton phase: λ(xk) > η,

γ > 0, f(xk+1) − f(xk) ≤ −γ.

• pure Newton phase: λ(xk) ≤ η,

2λ(xk+1) ≤
(

2λ(xk)
)2

.

stepsize αk = 1 ⇒ pure Newton step for l ≥ k

f(xl) − p∗ ≤ λ(xl)2 ≤
(1

2

)2l−k+1

.

=⇒ complexity bound only depends on known constants !

=⇒ does not imply that Newton’s method works better for

self-concordant functions !
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Non-differentiable Objective - Subgradient Methods

Steepest Descent Method - f differentiable

Minimize linear approximation: f(x + αd) = f(x) + α 〈∇f, d〉,

min
‖d‖≤1

〈∇f, d〉 = −‖∇f‖ , d∗ = −
∇f

‖∇f‖
.

Steepest Descent Method - f non-differentiable but convex

Definition of subgradient/subdifferential,

f(y) ≥ f(x) + 〈g, y − x〉 , ∀ y ∈ R
d, g ∈ ∂f(x).

Directional derivative f ′(x, d) of f into direction d,

f ′(x, d) = max
g∈∂f(x)

〈g, d〉 ,

Direction with steepest descent

min
‖d‖≤1

max
g∈∂f(x)

〈g, d〉 .
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Steepest Descent with Subgradient

Min-Max Equality - Saddle-Point Theorems

Theorem 1. Let f(x, y) be convex in x ∈ X and concave in y ∈ Y and

suppose dom f ∈ X × Y , f is continuous and X,Y are compact. Then,

sup
y∈Y

inf
x∈X

f(x, y) = inf
x∈X

sup
y∈Y

f(x, y).

Application to steepest descent problem yields

min
‖d‖≤1

max
g∈∂f(x)

〈g, d〉 = max
g∈∂f(x)

min
‖d‖≤1

〈g, d〉 = max
g∈∂f(x)

−‖g‖ ,

where d∗ = − g∗

‖g∗‖ if ‖g∗‖ > 0, otherwise d∗ = 0.

Steepest Descent: xk+1 = xk − α (g∗)k.

Problem: Does not always converge to optimum with exact line search

(Exercise).
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Subgradient Method I

Alternative approach:

Instead of descent in f(xk) − p∗ =⇒ descent in
∥

∥xk − x∗
∥

∥.

Warning: Later approach does not necessarily lead to a monotonically

decreasing sequence f(xk) !

Subgradient method:

xk+1 = xk − αk gk, αk > 0, gk ∈ ∂f(xk).

• No stepsize selection ! αk will be fixed initially.

• Any subgradient is o.k. ! Do not have to know ∂f(xk) - one subgradient

for each point is sufficient.
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Subgradient Method II

Main Theorem

• For all y ∈ X, k ≥ 0,

∥

∥

∥xk+1 − y
∥

∥

∥

2
≤

∥

∥

∥xk − y
∥

∥

∥

2
− 2αk(f(xk) − f(y)) + αk

∥

∥

∥gk
∥

∥

∥

2
.

• If f(y) < f(xk) and 0 < αk <
2(f(xk)−f(y))

‖gk‖
2 , then

∥

∥

∥xk+1 − y
∥

∥

∥

2
≤

∥

∥

∥xk − y
∥

∥

∥

2
.

Proof: using f(y) − f(xk) ≥
〈

gk, y − xk
〉

.

∥

∥

∥
xk+1 − y

∥

∥

∥

2
=

∥

∥

∥
xk − αk gk − y

∥

∥

∥

2
=

∥

∥

∥
xk − y

∥

∥

∥

2
− 2αk

〈

gk, xk − y
〉

+ (αk)2
∥

∥

∥
gk

∥

∥

∥

2

≤
∥

∥

∥
xk − y

∥

∥

∥

2
− 2αk(f(xk) − f(y)) + (αk)2

∥

∥

∥
gk

∥

∥

∥

2
,

=⇒ we are interested in y = x∗ !
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Subgradient Method III

Assumptions: Optimum is attained and unique, p∗ = f(x∗)

C := sup
k

{‖g‖ | g ∈ ∂f(xk)} < ∞.

This holds if f is Lipschitz continuous with Lipschitz constant L < ∞,

|f(y) − f(x)| ≤ L ‖y − x‖ .

as ‖g‖ ≤ L for any x and g ∈ ∂f(x).

Recursive application:

∥

∥

∥xk+1 − x∗
∥

∥

∥

2
≤

∥

∥x0 − x∗
∥

∥

2
− 2

k
∑

s=0

αs(f(xs) − f(x∗)) + C2
k

∑

s=0

(αs)2.

=⇒ min
s=1,...,k

f(xs) − f(x∗) ≤

∥

∥x0 − x∗
∥

∥

2
+ C2

∑k
s=0(α

s)2

2
∑k

s=0 αs
.

Question: Choice of αk ?
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Subgradient Method - Choice of stepsize αk

• Constant stepsize: αk = α,

min
s=1,...,k

f(xs) − f(x∗) ≤
R2 + k C2 α2

2 k α
.

As k → ∞, mins=1,...,k f(xs) − f(x∗) ≤ C2α
2 - no convergence !

For desired accuracy ε set α = ε
C2 , then k =

(

RC
ε

)2

.

• Square summable but not summable stepsizes αk

∞
∑

s=0

(αs)
2 < ∞,

∞
∑

s=0

αs = ∞,

=⇒ lim
k→∞

min
s=1,...,k

f(xs) = f(x∗).

Example: αs = 1
sp diverges for p ≤ 1 and converges for p > 1. Use

1
2 < p ≤ 1.
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Equality constrained minimization

Convex optimization problem with equality constraint:

min
x∈Rn

f(x)

subject to: Ax = b.

Assumptions:

• f : R
n → R is convex and twice differentiable,

• A ∈ R
p×n with rankA = p < n,

• optimal solution x∗ exists and p∗ = inf{f(x) |Ax = b}.

Reminder: A pair (x∗, µ∗) is primal-dual optimal if and only if

Ax∗ = b, ∇f(x∗) + AT µ∗ = 0, (KKT-conditions).

Primal and dual feasibility equations.
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Equality constrained minimization II

How to solve an equality constrained minimization problem ?

• elimination of equality constraint - unconstrained optimization over

{x̂ + z | z ∈ ker(A)},

where Ax̂ = b.

• solve the unconstrained dual problem,

max
µ∈Rp

q(µ).

• direct extension of Newton’s method for equality constrained

minimization.
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Equality constrained minimization III

Quadratic function with linear equality constraints - P ∈ Sn
+

min
1

2
〈x, Px〉 + 〈q, x〉 + r ,

subject to: Ax = b.

KKT conditions: Ax∗ = b, Px∗ + q + AT µ∗ = 0.

=⇒ KKT-system:





P AT

A 0









x∗

µ∗



 =





−q

b



 .

Cases:

• KKT-matrix nonsingular =⇒ unique primal-dual optimal pair (x∗, µ∗),

• KKT-matrix singular:

– no solution: quadratic objective is unbounded from below,

– a whole subspace of possible solutions.
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Equality constrained minimization IV

Nonsingularity of the KKT matrix:

• P and A have no (non-trivial) common nullspace,

ker(A) ∩ ker(P ) = {0}.

• P is positive definite on the nullspace of A (ker(A)),

Ax = 0, x 6= 0 =⇒ 〈x, Px〉 > 0.

If P ≻ 0 the KKT-matrix is always non-singular.
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Newton’s method with equality constraints

Assumptions:

• initial point x(0) is feasible, that is Ax(0) = b.

Newton direction - second order approximation:

min
d∈Rn

f̂(x + d) = f(x) + 〈∇f(x), d〉 +
1

2
〈d,Hf(x) d〉 ,

subject to: A(x + d) = b.

Newton step dNT is the minimizer of this quadratic optimization problem:




Hf(x) AT

A 0









dNT

w



 =





−∇f(x)

0



 .

• x is feasible ⇒ Ad = 0.

• Newton step lies in the null-space of A.

• x + αd is feasible (stepsize selection by Armijo rule)
16



Other Interpretation

Necessary and sufficient condition for optimality:

Ax∗ = b, ∇f(x∗) + AT µ∗ = 0.

Linearized optimality condition:

Next point x′ = x + d solves linearized optimality condition:

A(x + d) = b, ∇f(x + d) + AT w ≈ ∇f(x) + Hf(x)d + AT w = 0.

With Ax = b (initial condition) this leads again to:




Hf(x) AT

A 0









dNT

w



 =





−∇f(x)

0



 .
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Properties of Newton step

Properties:

• Newton step is affine invariant, x = Sy f̄(y) = f(Sy).

∇f̄(y) = ST∇f(Sy), Hf̄(y) = ST Hf(Ty)S,

feasibility: ASy = b

Newton step: S d
y
NT = dx

NT .

• Newton decrement: λ(x)2 = 〈dNT ,Hf(x)dNT 〉.

1. Stopping criterion: f̂(x + d) = f(x) + 〈∇f(x), d〉 + 1
2 〈d,Hf(x)d〉

f(x) − inf{f̂(x + v) |Ax = b} =
1

2
λ2(x).

=⇒ estimate of the difference f(x) − p∗.

2. Stepsize selection: d
dt

f(x + tdNT ) = 〈∇f(x), dNT 〉 = −λ(x)2.
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Convergence analysis

Assumption replacing Hf(x) � m1:
∥

∥

∥

∥

∥

∥





Hf(x) AT

A 0





−1∥
∥

∥

∥

∥

∥

2

≤ K.

Result: Elimination yields the same Newton step.

=⇒ convergence analysis of unconstrained problem applies.

• linear convergence (damped Newton phase),

• quadratic convergence (pure Newton phase).

Self-concordant Objectives - required steps bounded by:

20 − 8σ

σβ(1 − 2σ)2
(

f(x(0)) − p∗
)

+ log2 log2

(1

ε

)

,

where α, β are the backtracking parameters (Armijo rule: σ is α).
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Infeasible start Newton method

Do we have to ensure feasibility of x ?
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Infeasible start Newton method

Necessary and sufficient condition for optimality:

Ax∗ = b, ∇f(x∗) + AT µ∗ = 0.

Linearized optimality condition:

Next point x′ = x + d solves linearized optimality condition:

A(x + d) = b, ∇f(x + d) + AT w ≈ ∇f(x) + Hf(x)d + AT w = 0.

This results in




Hf(x) AT

A 0









dIFNT

w



 = −





∇f(x)

Ax − b



 .
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Interpretation as primal-dual Newton step

Definition 2. In a primal-dual method both the primal variable x and the

dual variable µ are updated.

• Primal residual: rpri(x, µ) = Ax − b,

• Dual residual: rdual(x, µ) = ∇f(x) + AT µ,

• Residual: r(x, µ) =
(

rdual(x, µ), rpri(x, µ)
)

.

Primal-dual optimal point: (x∗, µ∗) ⇐⇒ r(x∗, µ∗) = 0.

Primal-dual Newton step minimizes first-order Taylor approx. of r(x, µ):

r(x + dx, µ + dµ) ≈ r(x, µ) + Dr|(x,µ)





dx

dµ



 = 0

=⇒ Dr|(x,µ)





dx

dµ



 = −r(x, µ).
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Primal-dual Newton step

Primal-dual Newton step:

Dr|(x,µ)





dx

dµ



 = −r(x, µ).

We have

Dr|(x,µ) =





∇xrdual ∇µrdual

∇xrpri ∇µrpri



 =





Hf(x) AT

A 0





=⇒





Hf(x) AT

A 0









dx

dµ



 = −





rdual(x, µ)

rpri(x, µ)



 = −





∇f(x) + AT µ

Ax − b



 .

and get with µ+ = µ + dµ





Hf(x) AT

A 0









dx

µ+



 = −





∇f(x)

Ax − b



 .
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Stepsize selection for primal-dual Newton step

The primal-dual step is not necessarily a descent direction:

d

dt
f(x + tdx)

∣

∣

t=0
= 〈∇f(x), dx〉 = −

〈

Hf(x)dx + AT w , dx

〉

= −〈dx,Hf(x)dx〉 + 〈w,Ax − b〉 .

where we have used, ∇f(x) + Hf(x)dx + AT w = 0, and, Adx = b − Ax.

BUT: it reduces the residual,

d

dt
‖r(x + tdx, µ + tdµ)‖

∣

∣

t=0
= −‖r(x, µ)‖ .

Towards feasibility: we have Adx = b − Ax

r+
pri = A(x+tdx)−b = (1−t)(Ax−b) = (1−t)rpri =⇒ r

(k)
pri =

(

k−1
∏

i=0

(1−t(i))
)

r(0).
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Infeasible start Newton method

Require: an initial starting point x0 and µ0,

1: repeat

2: compute the primal and dual Newton step dk
x and dk

µ

3: Backtracking Line Search:

4: t = 1

5: while
∥

∥r(x + tdk
x, µ + tdk

µ)
∥

∥ > (1 − σ)t ‖r(x, µ)‖ do

6: t = βt

7: end while

8: αk = t

9: UPDATE: xk+1 = xk + αkdk
x and µk+1 = µk + αkdk

µ.

10: until Axk = b and
∥

∥r(xk, µk)
∥

∥ ≤ ε
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Comparison of both methods

min
x∈R2

f(x1, x2) = ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1+0.1

subject to:
x1

2
+ x2 = 1.
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The constrained Newton method with feasible starting point.
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Path of the sequence

The infeasible Newton method - note that the function value does not decrease.
25



Implementation

Solution of the KKT system:





H AT

A 0









v

w



 = −





g

h



 .

• Direct solution: symmetric, but not positive definite.

LDLT -factorization costs 1
3(n + p)3.

• Elimination: Hv + AT w = −g =⇒ v = −H−1[g + AT w].

and AH−1AT w + AH−1g = h =⇒ w = (AH−1AT )[h − AH−1g].

1. build H−1AT and H−1g, factorization of H and p+1 rhs

⇒ cost: f + (p + 1)s,

2. form S = AH−1AT , matrix multiplication ⇒ cost: p2n,

3. solve Sw = [h − AH−1g], factorization of S ⇒ cost 1
3p3 + p2,

4. solve Hv = g + AT w, cost: 2np + s.

Total cost: f + ps + p2n + 1
3p3 (leading terms).
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Interior point methods

General convex optimization problem:

min
x∈Rn

f(x)

subject to: gi(x) ≤ 0, i = 1, . . . ,m,

Ax = b.

Assumptions:
• f ,g1, . . . , gm are convex and twice differentiable,

• A ∈ R
p×n with rank(A) = p,

• there exists an optimal x∗ such that f(x∗) = p∗,

• the problem is strictly feasible (Slater’s constraint qualification holds).

Ax∗ = b, gi(x
∗) ≤ 0, i = 1, . . . ,m, λ � 0,

∇f(x∗) +

m
∑

i=1

λ∗
i gi(x

∗) + AT µ∗ = 0, λ∗
i gi(x

∗) = 0.
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Interior point methods II

What are interior point methods ?

• solve a sequence of equality constrained problem using Newton’s method,

• solution is always strictly feasible ⇒ lies in the interior of the constraint

set S = {x | gi(x) ≤ 0, i = 1, . . . ,m}.

• basically the inequality constraints are added to the objective such that

the solution is forced to be away from the boundary.

Hierarchy of convex optimization algorithms:

• quadratic objective with linear equality constraints ⇒ analytic solution,

• general objective with linear eq. const. ⇒ solve sequence of problems

with quadratic objective and linear equality constraints,

• general convex optimization problem ⇒ solve a sequence of problems

with general objective and linear equality constraints.
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Interior point methods III

Equivalent formulation of general convex optimization problem:

min
x∈Rn

f(x) +
m

∑

i=1

I−(gi(x))

subject to: Ax = b,

where I−(u) =
{ 0, u ≤ 0

∞, u > 0.
.

−3 −2 −1 0 1
−5

0

5

10
The logarithmic barrier function

 

 

t=0.5
t=1
t=1.5
t=2
Indicator

Basic idea: approximate indicator function with a differentiable function

with closed level sets.

Î−(u) = −
(1

t

)

log(−u), dom Î = {x |x < 0}.

where t is a parameter controlling the accuracy of the approximation.
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Interior point methods IV

Definition: φ(x) = −
∑m

i=1 log(−gi(x)).

Approximate formulation:

min
x∈Rn

t f(x) + φ(x)

subject to: Ax = b,

Derivatives of φ:

• ∇φ(x) = −
∑m

i=1
1

gi(x)∇gi(x),

• Hφ(x) =
∑m

i=1
1

gi(x)2
∇gi(x)∇gi(x)T −

∑m
i=1

1
gi(x)Hgi(x).

Definition 3. Let x∗(t) be the optimal point of the above problem, which is

called central point. The central path is the set of points {x∗(t) | t > 0}.
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Central Path

Figure 1: The central path for an LP. The dashed lines are the the contour

lines of φ. The central path converges to x∗ as t → ∞.
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Interior point methods V

Central points (opt. cond.): Ax∗(t) = b, gi(x
∗(t)) < 0, i = 1, . . . ,m,

0 = t∇f(x∗(t)) + ∇φ(x∗(t)) + AT µ̂ = t∇f(x∗(t)) +
m

∑

i=1

−
1

gi(x∗(t))
∇gi(x

∗(t)) + AT µ̂

Define: λ∗
i (t) = − 1

tgi(x∗(t)) and µ∗(t) = µ̂
t
.

=⇒ (λ∗(t), µ∗(t)) are dual feasible for the original problem

and x∗(t) is minimizer of Lagrangian !

• Lagragian: L(x, λ, µ) = f(x) +
∑m

i=1 λigi(x) + 〈µ,Ax − b〉.

• Dual function evaluated at (λ∗(t), µ∗(t)):

q(λ∗(t), µ∗(t)) = f(x∗(t)) +
m

∑

i=1

λ∗

i
(t)gi(x

∗(t)) + 〈µ∗, Ax∗(t) − b〉 = f(x∗(t)) −
m

t
.

• Weak duality: p∗ ≥ q(λ∗(t), µ∗(t)) = f(x∗(t)) − m
t
.

f(x∗(t)) − p∗ ≤
m

t
.
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Interpretation of logarithmic barrier

Interpretation via KKT conditions:

−λ∗
i (t)gi(x

∗(t)) =
1

t
.

=⇒ for t large the original KKT conditions are approximately satisfied.

Force field interpretation (no equality constraints):

Force for each constraint: Fi(x) = −∇(− log(−gi(x))) =
1

gi(x)
∇gi(x),

generated by the potential φ: Fi = −∇φ(x).

• Fi(x) is moving the particle away from the boundary,

• F0(x) = −t∇f(x) is moving particle towards smaller values of f .

• at the central point x∗(t) =⇒ forces are in equilibrium.

33



The barrier method

The barrier method (direct): set t = ε
m

then

f(x∗(t)) − p∗ ≤ ε. ⇒ generally does not work well.

Barrier method or path-following method:

Require: strictly feasible x0, γ, t = t(0) > 0, tolerance ε > 0.

1: repeat

2: Centering step: compute x∗(t) by minimizing

min
x∈Rn

t f(x) + φ(x)

subject to: Ax = b,

where previous central point is taken as starting point.

3: UPDATE: x = x∗(t).

4: t = γt.

5: until mγ
t

< ε
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The barrier method - Implementation

• Accuracy of centering: Exact centering (that is very accurate

solution of the centering step) is not necessary but also does not harm.

• Choice of γ: for a small γ the last center point will be a good starting

point for the new centering step, whereas for large γ the last center point

is more or less an arbitrary initial point.

trade-off between inner and outer iterations

=⇒ turns out that for 3 < γ < 100 the total number of Newton steps is

almost constant.

• Choice of t(0): m
t(0)

≈ f(x(0)) − p∗.

• Infeasible Newton method: start with x(0) which fulfills inequality

constraints but not necessarily equality constraints. Then when feasible

point is found continue with normal barrier method.
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