Convex Optimization and Modeling
(Un)constrained minimization
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i os Reminder - Unconstrained Minimization

Descent Methods:
o steepest decsent: zFt! = zF — o V f(2F),
o general descent: x*t! = 2¥ + o d* where (d*, V f(z")) < 0,

e linear convergence (stepsize selection with Armijo rule),

Newton method:
o Newton’s method: zF! = 2% — o (H f(2F)) "1V f(2F),

e Hessian is positive-(semi)-definite for convex functions

— ((Hf(=*)71 Vf(a*), Vf(zh)) >0,

e quadratic convergence

Convergence analysis: involves possibly unknown properties of the

function, bound is not affinely invariant
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Unconstrained Minimization (continued)

e Self-concordant functions:

— convergence analysis directly in terms of Newton decrement

e Subgradient Methods

Constrained Minimization:

e Equality constrained minimization:
— Newton method with equality constraints

— Newton method with infeasible start

e Interior point methods:

— barrier method
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Problems of classical convergence analysis
e depends on unknown constants (m, L, --- ),

e Newtons method is affine invariant but not the bound.

Convergence analysis via self-concordance (Nesterov and

Nemirovski)
e does not depend on any unknown constants
e gives affine-invariant bound
e applies to special class of convex functions (self-concordant functions)

e developed to analyze polynomial-time interior-point methods for convex

optimization
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N o Self-concordance 11

Self-concordant functions:

Definition 1. A function f : R — R is self-concordant if

[ (@) < 2f"(x)2.

A function f:R"™ — R is self-concordant if t — f(x + tv) is

self-concordant for every x,v € R".

DN

Examples:
e linear and quadratic functions,

e negative logarithm f(r) = — logx.

Properties:
e If f self-concordant, then also v f where v > 0.

o If f is self-concordant then f(Ax + b) is also self-concordant.
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Convergence analysis for a strictly convex self-concordant function:

Two phases: 0 < n < i, v > 0,
e damped Newton phase: \(z*) > 7,

¥>0,  fEM) = fE") <.

e pure Newton phase: \(z¥) <7,

oA+ < (2A6H)

stepsize o = 1 = pure Newton step for [ > k

2l—k—{—1

fah) =5 < 22 < (3)

—> complexity bound only depends on known constants !
—> does not imply that Newton’s method works better for

self-concordant functions !
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Steepest Descent Method - f differentiable
Minimize linear approximation: f(z + ad) = f(z) + a(Vf,d),

: . Vf
min d) = — d = ———.
||d||§1<vf’ ) IV £, 7l

Steepest Descent Method - f non-differentiable but convex

Definition of subgradient /subdifferential,

fly) > flx) +(g,y —x), VyeR? gedf(x).

Directional derivative f'(x,d) of f into direction d,

"(z,d) = max (g,d),
f(@,d) geaf(x)@ )

Direction with steepest descent

min max (g,d).
ld]| <1 géaf(w)< >
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Steepest Descent with Subgradient
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Min-Max Equality - Saddle-Point Theorems

Theorem 1. Let f(x,y) be conver in x € X and concave iny € Y and

suppose dom f € X XY, f is continuous and X,Y are compact. Then,

inf f(z,y) = inf sup f(x,y).
Sggxlgxf( y) xexy@gf( y)

Application to steepest descent problem yields

min max (g,d) = max min (g,d) = max — ||g||,
ld]| <1 gE@f(fE)< > gedf(x) Hdl\§1< > gedf(x) ol
where d* = _Hg—zl\ if ||g*|| > 0, otherwise d* = 0.

Steepest Descent: z"T1 = 2% — o/ (g*)*.

Problem: Does not always converge to optimum with exact line search

(Exercise).
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Alternative approach:

Instead of descent in f(z*) — p* = descent in ||z% — z*|.

Warning: Later approach does not necessarily lead to a monotonically

decreasing sequence f(z*) !

Subgradient method:

Tt =gF —af gk af >0, g € 0F(2F).

o No stepsize selection ! o will be fixed initially.

e Any subgradient is 0.k. ! Do not have to know 0f(z") - one subgradient

for each point is sufficient.
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Main Theorem

e Forallye X, k>0,
2 2 2
[ =] < ot~y - 20t06h) = s 0 ]

o If f(y) < f(2¥) and 0 < o* < 21 o )Hf(y)) then
g

2 2
S I L

Proof: using f(y) — f(z*) > <gk,y — a:k>

2 2 2 2
e I A Il L e N Ut VAl o

< [l — o] 205 (st ~ £@)) + (@*)

—> we are interested in y = z* !
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Assumptions: Optimum is attained and unique, p* = f(z*)
C = Sgp{HgH g € f(a")} < oo

This holds if f is Lipschitz continuous with Lipschitz constant L < oo,

f(y) = f(2)| < Ly — x|
as ||g|]| < L for any x and g € 9f(x).

Recursive application:

k k

<o = 2*|F =23 et (@) - F2) + C?D (%),

s=0 s=0

— min f(z®) — f(z™) < Ha: :1: H +kC > _s—0(a”) |
s=1,....k 22 OQS

S—

2

ka—l—l oyt

Question: Choice of o ?
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iEjos Subgradient Method - Choice of stepsize a*

e Constant stepsize: of = a,
R? + kC?o?
; ) — flz*) < .
A T

As k — oo, ming—; _ f(2®) — f(z*) < CTQO‘ - no convergence !

€

2
For desired accuracy € set a = &5, then k = (R—C) :

e Square summable but not summable stepsizes a”

[®.@) @)
Z(&3)2 < 00, Zas = 00,
s=0 s=0

—> lim min f(z%) = f(z").

k—oo s=1,....,k

Example: o® = Sip diverges for p < 1 and converges for p > 1. Use
% <p< 1
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Convex optimization problem with equality constraint:

min f(z)

subject to: Az = b.

Assumptions:
e f:R"™ — R is convex and twice differentiable,
o A c RP*" with rank A = p < n,

e optimal solution z* exists and p* = inf{ f(x) | Ax = b}.

Reminder: A pair (z*, u*) is primal-dual optimal if and only if
Ax™ = b, Vi) + A =0, (KKT-conditions).

Primal and dual feasibility equations.
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Equality constrained minimization II
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How to solve an equality constrained minimization problem 7

e climination of equality constraint - unconstrained optimization over
{2+ 2|2z € ker(A)},

where Az = b.

e solve the unconstrained dual problem,

max q(p).

e direct extension of Newton’s method for equality constrained

minimization.
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Equality constrained minimization III

Quadratic function with linear equality constraints - P € S

1
min 5 (x, Px) + {(q,x) + 1,

subject to: Az = b.
KKT conditions: Az* = b, Pz* 4+ q+ AT p* = 0.

P AT x* —q
—> KKT-system: =
A 0 L b

Cases:
e KKT-matrix nonsingular = unique primal-dual optimal pair (z*, u*),

e KKT-matrix singular:
— no solution: quadratic objective is unbounded from below,

— a whole subspace of possible solutions.



Menily  UNIVERSITAT
{5y DES
SAARLANDES

Equality constrained minimization IV

Nonsingularity of the KKT matrix:

e P and A have no (non-trivial) common nullspace,
ker(A) Nker(P) = {0}.
e P is positive definite on the nullspace of A (ker(A)),
Ar =0, 2#0 =— (z,Px)>0.

If P> 0 the KKT-matrix is always non-singular.
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Newton’s method with equality constraints

Assumptions:
e initial point 29 is feasible, that is Az(®) = b.

Newton direction - second order approximation:

win f(z -+ d) = f(2) + (Vf(@),d) + 5 (d Hf(x)d)

subject to: A(x 4+ d) = b.
Newton step dy7 is the minimizer of this quadratic optimization problem:

Hf(:lj) AT dNT —Vf(ZIJ)

A 0 W 0

e 1 is feasible = Ad = 0.
e Newton step lies in the null-space of A.

e = + ad is feasible (stepsize selection by Armijo rule)
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Other Interpretation

Necessary and sufficient condition for optimality:
Ax* = b, Viz*)+ Al pu* = 0.

Linearized optimality condition:

Next point ' = z + d solves linearized optimality condition:

A(x +d) = b, Viz+d +ATw ~ Vf(z)+ Hf(x)d+ AT w = 0.

With Az = b (initial condition) this leads again to:

Hf(:c) AT dNT —Vf(x)

A 0 W 0
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Properties:

o Newton step is affine invariant, z = Sy f(y) = f(Sy).
Vi) =5"Vf(Sy), Hf(y)=S"Hf(Ty)S,
feasibility: ASy = b
Newton step: S dy = dyr.
o Newton decrement: \(x)? = (dn1, Hf(x)dnT).
1. Stopping criterion: f(z +d) = f(z) + (Vf(z),d) + & (d, H f(x)d)
(@) — inf{ f(z +v) | Az = b} = %v(:ﬁ).

—> estimate of the difference f(z) — p*.
2. Stepsize selection: < f(x + tdyr) = (Vf(z),dnt) = —A(2)%
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B s o Convergence analysis

Assumption replacing H f(x) = m1:

Hi) AT\

A 0

Result: Elimination yields the same Newton step.

—> convergence analysis of unconstrained problem applies.
e linear convergence (damped Newton phase),
e quadratic convergence (pure Newton phase).

Self-concordant Objectives - required steps bounded by:

20 — 8o 1
31— 20)° (f(2@) = p*) + log, log, ( )

€

where «, 0 are the backtracking parameters (Armijo rule: o is «).
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i os Infeasible start Newton method
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Do we have to ensure feasibility of « 7

YN
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Necessary and sufficient condition for optimality:
Ax* = b, Viz*)+ A p* = 0.

Linearized optimality condition:

Next point ' = z + d solves linearized optimality condition:
A(x +d) = b, Viz+d) +ATw ~ Vf(z)+ Hf(z)d+ Alw =0.
This results in

Hf(x) A\ [drpnt Vi(x)
A 0 w Ax — b

Payal
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Interpretation as primal-dual Newton step
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Definition 2. In a primal-dual method both the primal variable x and the

dual variable p are updated.

e Primal residual: rp(x, ) = Az — b,
e Dual residual: rqu.(z, p) = Vf(z) + Al p,

e Residual: 7(z,u) = (rdual(z, 1), rpsi(z, 1)).
Primal-dual optimal point: (z*, u*) < r(a*,u*) = 0.

Primal-dual Newton step minimizes first-order Taylor approx. of r(x, u):

T

r( +dg, p+dy) = r(x, 1) + Drlep S =0
)

T

= Dr|g, = —r(x, 1).

o
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Primal-dual Newton step
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Primal-dual Newton step:

X

Dr‘(w,,u) — —T(ZIJ,,U).
dy
We have
Dr] Vardual VpuTdual Hf(zx) A"
T T, — —
() Vm T'pri Vv ! pri A 0
. Hf(z) A\ [d. B Tdual(T, 1) | Vf(z)+ Al p
A 0 d, pri (2, 1) Ax — b

and get with put = p+d,

Hf(x) A"\ [ da Vf(z)
A 0 ut Az — b

'2 XD )
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Stepsize selection for primal-dual Newton step

The primal-dual step is not necessarily a descent direction:

d T

— [l + tde)|,_, = (Vf(2),de) = = (Hf(x)dy + A'w, dy)
= — <d$7 Hf(:l))dx> + <w7A33 — b> -

where we have used, Vf(z) + H f(z)d, + A'w = 0, and, Ad, = b — Ax.

BUT: it reduces the residual,

d
dt H?“(:Ij + tdg, o+ td,u)” ‘t:O - HT(ZB”M)H '

Towards feasibility: we have Ad, = b — Ax

k—1
rto= A(gttdy)—b = (1—t)(Az—b) = (1—t)rps = 7~<’“>:(H(1—t<i>))r<0>.

pri pri
1=0
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Require: an initial starting point z° and uY,

1: repeat

2:  compute the primal and dual Newton step d’; and d/’j
3: Backtracking Line Search:

4: t=1

5. while ||r(x +tdi, p+tdy)|| > (1 —o)t||r(z, p)| do
6 t=pt

7. end while

8 af=t

9:  UPDATE: 2" =24 oFdf and "' = 1% 4 oFd}.
10: until Az* = b and Hr(mk,,uk)H <e¢



™ UNIVERSITAT
- DES
57 SAARLANDES

Comparison of both methods
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mi% Flan, 19) = em1 37201 4 o1 —322—0.1 4 o—21+0.1
reR

subject to: % + 29 = 1.

f(z*) Path of the sequence
20- o

10
1

I I I I I I I I I ]
15 2 25 3 35 4 45 5 5.5 6

k

The constrained Newton method with feasible starting point.

xac f(a*) logio([r(, w)I)

111

10r

! 1 | |
© o S N =) N > o

w S o ) ~ ® ©

iy
o

0 2 4 6 8 10 h 0 2 4 6 8 10

k k

The infeasible Newton method - note that the function value does not decrease.

oy ™
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H AT v g
Solution of the KKT system: — —
A 0 W h

e Direct solution: symmetric, but not positive definite.
LDL"-factorization costs 5(n + p)>.
e Elimination: Hv+ Alw =—-g = v=—-H g+ Alw].
and AH 'ATw+ AH lg=h = w=(AH1AT)[h — AH 1g].
1. build H'AT and H g, factorization of H and p+1 rhs
= cost: f+ (p+1)s,
2. form S = AH ' A" matrix multiplication = cost: p°n,
3. solve Sw = [h — AH!g], factorization of S = cost %p?’ + p?,
4. solve Hv = g + AT w, cost: 2np + s.
Total cost: f + ps + p?n + %pS (leading terms).

' WAl
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Interior point methods

General convex optimization problem:

min
reR"™ ( )
subject to: g;(z) <0, i=1,...,m,
Ax =b.
Assumptions:
e f.g1,...,0, are convex and twice differentiable,

o A c RP*" with rank(A) = p,
e there exists an optimal z* such that f(z*) = p*,

e the problem is strictly feasible (Slater’s constraint qualification holds).

) + z:)\*gZ )+ AT =0, A gi(2™) = 0.

)y P~
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Interior point methods II
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What are interior point methods 7
e solve a sequence of equality constrained problem using Newton’s method,

e solution is always strictly feasible = lies in the interior of the constraint
set S ={z|gi(x) <0,1=1,...,m}.

e basically the inequality constraints are added to the objective such that

the solution is forced to be away from the boundary.

Hierarchy of convex optimization algorithms:
e quadratic objective with linear equality constraints =- analytic solution,

e ceneral objective with linear eq. const. = solve sequence of problems

with quadratic objective and linear equality constraints,

e general convex optimization problem =- solve a sequence of problems

with general objective and linear equality constraints.

YO
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Interior point methods III

Equivalent formulation of general convex optimization problem:

The logarithmic barrier function

m 10r
1 —t=0.5
win f(2)+ 31 (5:(0)) -
1=1 | e
subject to: Ax = b, —Indicator
0
0, u<0
where I_(u) = {
oo, u > 0. . | | | |

Basic idea: approximate indicator function with a differentiable function

with closed level sets.
~ 1 n
I _(u) = —(z) log(—u), dom I ={x|x < 0}.

where t is a parameter controlling the accuracy of the approximation.

YN
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Interior point methods IV

Definition: ¢(x) = —> " log(—g:i(x)).

Approximate formulation:

min ¢ f(z) + ¢(z)

reR"™
subject to: Axr = b,

Derivatives of ¢:
o Vo(z) = -3, —LVgi(a)
o Ho(w) = 0, Lo Vgi(0)Vai(a)” - S0, L Hoi(a).

Definition 3. Let x*(t) be the optimal point of the above problem, which is
called central point. The central path is the set of points {x*(t)|t > 0}.
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Figure 1: The central path for an LP. The dashed lines are the the contour

lines of ¢. The central path converges to x* as t — oc.
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Central points (opt. cond.): Az*(t)=0b, gi(z*(t) <0,i=1,...,m,

m

Define: A} (t) = —tgi(xl*(t)) and p*(t) = %

— (A*(t), u*(t)) are dual feasible for the original problem
and x*(t) is minimizer of Lagrangian !

o Lagragian: L(z, A\, n) = f(x) + >0 Aigi(x) + (1, Az — b).
e Dual function evaluated at (A\*(t), u*(¢)):

qA* (1), p* (1) = fz"(t)) + Z Ai () gi(z™ (1)) + (", Az™(t) — b) = f(a™(t)) —

m
t
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Interpretation of logarithmic barrier

Interpretation via KK'T conditions:
* * 1
X (il (1) = -

— for ¢ large the original KKT conditions are approximately satisfied.

Force field interpretation (no equality constraints):

1
Force for each constraint: Fj(x) = —V(—log(—g;(x))) = 7i(7) Vgi(x),
generated by the potential ¢: F; = —Vo(x).
e Fj(x) is moving the particle away from the boundary,
o Fy(x) = —tV f(x) is moving particle towards smaller values of f.

e at the central point x*(¢) = forces are in equilibrium.

) O
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The barrier method (direct): set ¢ = = then
f(x*(t)) — p® <e. = generally does not work well.

Barrier method or path-following method:

Require: strictly feasible z°, v, t = t0) > 0, tolerance € > 0.
1: repeat
2:  Centering step: compute x*(¢) by minimizing

min ¢ f(z) + ¢(z)

reR”
subject to: Ax = b,

where previous central point is taken as starting point.
3:  UPDATE: x = x*(t).
4: = ~t.

5: until @ <€
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e Accuracy of centering: Exact centering (that is very accurate

solution of the centering step) is not necessary but also does not harm.

e Choice of ~: for a small v the last center point will be a good starting
point for the new centering step, whereas for large v the last center point

is more or less an arbitrary initial point.
trade-off between inner and outer iterations

— turns out that for 3 < v < 100 the total number of Newton steps is

almost constant.

e Choice of t0): 2 ~ f(z(V)) — p*.

o Infeasible Newton method: start with 2(°) which fulfills inequality
constraints but not necessarily equality constraints. Then when feasible

point is found continue with normal barrier method.
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