Convex Optimization and Modeling

(Un)constrained minimization

9th lecture, 09.06.2010

Jun.-Prof. Matthias Hein

Descent Methods:

- steepest decsent: $x^{k+1} = x^k \alpha \nabla f(x^k)$,
- general descent: $x^{k+1} = x^k + \alpha d^k$ where $\langle d^k, \nabla f(x^k) \rangle < 0$,
- linear convergence (stepsize selection with Armijo rule),

Newton method:

- Newton's method: $x^{k+1} = x^k \alpha (Hf(x^k))^{-1} \nabla f(x^k)$,
- Hessian is positive-(semi)-definite for convex functions $\implies \left\langle (Hf(x^k))^{-1} \nabla f(x^k), \nabla f(x^k) \right\rangle \ge 0,$
- quadratic convergence

Convergence analysis: involves possibly unknown properties of the function, bound is not affinely invariant

Unconstrained Minimization (continued)

- Self-concordant functions:
 - convergence analysis directly in terms of Newton decrement
- Subgradient Methods

Constrained Minimization:

- Equality constrained minimization:
 - Newton method with equality constraints
 - Newton method with infeasible start
- Interior point methods:
 - barrier method

Problems of classical convergence analysis

- depends on unknown constants (m, L, \cdots) ,
- Newtons method is affine invariant but not the bound.

Convergence analysis via self-concordance (Nesterov and Nemirovski)

- does not depend on any unknown constants
- gives affine-invariant bound
- applies to special class of convex functions (self-concordant functions)
- developed to analyze polynomial-time interior-point methods for convex optimization

Self-concordant functions:

Definition 1. A function $f : \mathbb{R} \to \mathbb{R}$ is self-concordant if

$$|f'''(x)| \le 2f''(x)^{\frac{3}{2}}.$$

A function $f : \mathbb{R}^n \to \mathbb{R}$ is self-concordant if $t \mapsto f(x + tv)$ is self-concordant for every $x, v \in \mathbb{R}^n$.

Examples:

- linear and quadratic functions,
- negative logarithm $f(x) = -\log x$.

Properties:

- If f self-concordant, then also γf where $\gamma > 0$.
- If f is self-concordant then f(Ax + b) is also self-concordant.

Convergence analysis for a strictly convex self-concordant function: Two phases: $0 < \eta < \frac{1}{4}, \ \gamma > 0$,

• damped Newton phase: $\lambda(x^k) > \eta$,

$$\gamma > 0, \qquad f(x^{k+1}) - f(x^k) \le -\gamma.$$

• pure Newton phase: $\lambda(x^k) \leq \eta$,

$$2\lambda(x^{k+1}) \le \left(2\lambda(x^k)\right)^2.$$

stepsize $\alpha^k = 1 \Rightarrow$ pure Newton step for $l \ge k$

$$f(x^{l}) - p^{*} \le \lambda(x^{l})^{2} \le \left(\frac{1}{2}\right)^{2^{l-k+1}}$$

 \implies complexity bound only depends on known constants ! \implies does not imply that Newton's method works better for self-concordant functions !

Steepest Descent Method - f **differentiable** Minimize linear approximation: $f(x + \alpha d) = f(x) + \alpha \langle \nabla f, d \rangle$,

$$\min_{\|d\|\leq 1} \langle \nabla f, d \rangle = - \|\nabla f\|, \qquad d^* = -\frac{\nabla f}{\|\nabla f\|}.$$

Steepest Descent Method - f non-differentiable but convex Definition of subgradient/subdifferential,

$$f(y) \ge f(x) + \langle g, y - x \rangle, \quad \forall y \in \mathbb{R}^d, \ g \in \partial f(x).$$

Directional derivative f'(x, d) of f into direction d,

$$f'(x,d) = \max_{g \in \partial f(x)} \langle g, d \rangle,$$

Direction with steepest descent

 $\min_{\|d\| \le 1} \max_{g \in \partial f(x)} \langle g, d \rangle.$

Min-Max Equality - Saddle-Point Theorems

Theorem 1. Let f(x, y) be convex in $x \in X$ and concave in $y \in Y$ and suppose dom $f \in X \times Y$, f is continuous and X, Y are compact. Then,

$$\sup_{y \in Y} \inf_{x \in X} f(x, y) = \inf_{x \in X} \sup_{y \in Y} f(x, y).$$

Application to steepest descent problem yields

 $\min_{\|d\| \le 1} \max_{g \in \partial f(x)} \langle g, d \rangle = \max_{g \in \partial f(x)} \min_{\|d\| \le 1} \langle g, d \rangle = \max_{g \in \partial f(x)} - \|g\|,$ where $d^* = -\frac{g^*}{\|g^*\|}$ if $\|g^*\| > 0$, otherwise $d^* = 0$.

Steepest Descent: $x^{k+1} = x^k - \alpha (g^*)^k$. **Problem:** Does not always converge to optimum with exact line search (Exercise).

Alternative approach:

Instead of descent in $f(x^k) - p^* \implies$ descent in $||x^k - x^*||$.

Warning: Later approach does not necessarily lead to a monotonically decreasing sequence $f(x^k)$!

Subgradient method:

$$x^{k+1} = x^k - \alpha^k g^k, \quad \alpha^k > 0, \ g_k \in \partial f(x^k).$$

- No stepsize selection ! α^k will be fixed initially.
- Any subgradient is o.k. ! Do not have to know $\partial f(x^k)$ one subgradient for each point is sufficient.

Main Theorem

• For all
$$y \in X, k \ge 0$$
,
 $\|x^{k+1} - y\|^2 \le \|x^k - y\|^2 - 2\alpha^k (f(x^k) - f(y)) + \alpha^k \|g^k\|^2$.
• If $f(y) < f(x^k)$ and $0 < \alpha^k < \frac{2(f(x^k) - f(y))}{\|g^k\|^2}$, then
 $\|x^{k+1} - y\|^2 \le \|x^k - y\|^2$.
Proof: using $f(y) - f(x^k) \ge \langle g^k, y - x^k \rangle$.

$$\begin{aligned} \left\| x^{k+1} - y \right\|^2 &= \left\| x^k - \alpha^k \, g^k - y \right\|^2 = \left\| x^k - y \right\|^2 - 2\alpha^k \left\langle g^k, x^k - y \right\rangle + (\alpha^k)^2 \left\| g^k \right\|^2 \\ &\leq \left\| x^k - y \right\|^2 - 2\alpha^k (f(x^k) - f(y)) + (\alpha^k)^2 \left\| g^k \right\|^2, \end{aligned}$$

 \implies we are interested in $y = x^*$!

Assumptions: Optimum is attained and unique, $p^* = f(x^*)$

$$C := \sup_{k} \{ \|g\| \mid g \in \partial f(x^k) \} < \infty.$$

This holds if f is Lipschitz continuous with Lipschitz constant $L < \infty$,

$$|f(y) - f(x)| \le L ||y - x||.$$

as $||g|| \leq L$ for any x and $g \in \partial f(x)$.

Recursive application:

$$\begin{aligned} \left\| x^{k+1} - x^* \right\|^2 &\leq \left\| x^0 - x^* \right\|^2 - 2\sum_{s=0}^k \alpha^s (f(x^s) - f(x^*)) + C^2 \sum_{s=0}^k (\alpha^s)^2. \end{aligned}$$
$$\implies \min_{s=1,\dots,k} f(x^s) - f(x^*) \leq \frac{\left\| x^0 - x^* \right\|^2 + C^2 \sum_{s=0}^k (\alpha^s)^2}{2\sum_{s=0}^k \alpha^s}. \end{aligned}$$

Question: Choice of α^k ?

• Constant stepsize: $\alpha^k = \alpha$,

$$\min_{s=1,\dots,k} f(x^s) - f(x^*) \le \frac{R^2 + k C^2 \alpha^2}{2 k \alpha}.$$

As $k \to \infty$, $\min_{s=1,\dots,k} f(x^s) - f(x^*) \le \frac{C^2 \alpha}{2}$ - no convergence !

For desired accuracy
$$\varepsilon$$
 set $\alpha = \frac{\varepsilon}{C^2}$, then $k = \left(\frac{RC}{\varepsilon}\right)^2$.

• Square summable but not summable stepsizes α^k

$$\sum_{s=0}^{\infty} (\alpha_s)^2 < \infty, \qquad \sum_{s=0}^{\infty} \alpha_s = \infty,$$
$$\implies \lim_{k \to \infty} \min_{s=1, \dots, k} f(x^s) = f(x^*).$$

Example: $\alpha^s = \frac{1}{s^p}$ diverges for $p \le 1$ and converges for p > 1. Use $\frac{1}{2} .$

Convex optimization problem with equality constraint:

 $\min_{x \in \mathbb{R}^n} f(x)$
subject to: Ax = b.

Assumptions:

- $f: \mathbb{R}^n \to \mathbb{R}$ is convex and twice differentiable,
- $A \in \mathbb{R}^{p \times n}$ with rank A = p < n,
- optimal solution x^* exists and $p^* = \inf\{f(x) | Ax = b\}$.

Reminder: A pair (x^*, μ^*) is primal-dual optimal if and only if

$$Ax^* = b, \qquad \nabla f(x^*) + A^T \mu^* = 0, \qquad$$
(KKT-conditions).

Primal and **dual feasibility** equations.

How to solve an equality constrained minimization problem ?

• elimination of equality constraint - unconstrained optimization over

$$\{\hat{x} + z \,|\, z \in \ker(A)\},\$$

where $A\hat{x} = b$.

• solve the unconstrained dual problem,

 $\max_{\mu \in \mathbb{R}^p} q(\mu).$

• direct extension of Newton's method for equality constrained minimization.

Quadratic function with linear equality constraints - $P \in S^n_+$

$$\min \frac{1}{2} \langle x, Px \rangle + \langle q, x \rangle + r ,$$
 subject to: $Ax = b$.

KKT conditions: $Ax^* = b$, $Px^* + q + A^T \mu^* = 0$.

$$\implies \mathbf{KKT-system:} \qquad \begin{pmatrix} P & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} x^* \\ \mu^* \end{pmatrix} = \begin{pmatrix} -q \\ b \end{pmatrix}$$

Cases:

- KKT-matrix nonsingular \implies unique primal-dual optimal pair (x^*, μ^*) ,
- KKT-matrix singular:
 - no solution: quadratic objective is unbounded from below,
 - a whole subspace of possible solutions.

Nonsingularity of the KKT matrix:

• P and A have no (non-trivial) common nullspace,

 $\ker(A) \cap \ker(P) = \{0\}.$

• P is positive definite on the nullspace of A (ker(A)),

$$Ax = 0, x \neq 0 \implies \langle x, Px \rangle > 0.$$

If $P \succ 0$ the KKT-matrix is always non-singular.

Assumptions:

• initial point $x^{(0)}$ is feasible, that is $Ax^{(0)} = b$.

Newton direction - second order approximation:

$$\min_{d \in \mathbb{R}^n} \hat{f}(x+d) = f(x) + \langle \nabla f(x), d \rangle + \frac{1}{2} \langle d, Hf(x) d \rangle,$$

subject to: $A(x+d) = b.$

Newton step d_{NT} is the minimizer of this quadratic optimization problem:

$$\begin{pmatrix} Hf(x) & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} d_{NT} \\ w \end{pmatrix} = \begin{pmatrix} -\nabla f(x) \\ 0 \end{pmatrix}$$

- x is feasible $\Rightarrow Ad = 0.$
- Newton step lies in the null-space of A.
- $x + \alpha d$ is feasible (stepsize selection by Armijo rule)

Necessary and sufficient condition for optimality:

$$Ax^* = b, \qquad \nabla f(x^*) + A^T \mu^* = 0.$$

Linearized optimality condition: Next point x' = x + d solves linearized optimality condition:

$$A(x+d) = b, \qquad \nabla f(x+d) + A^T w \approx \nabla f(x) + H f(x) d + A^T w = 0.$$

With Ax = b (initial condition) this leads again to:

$$\begin{pmatrix} Hf(x) & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} d_{NT} \\ w \end{pmatrix} = \begin{pmatrix} -\nabla f(x) \\ 0 \end{pmatrix}$$

Properties:

• Newton step is affine invariant, $x = Sy \ \overline{f}(y) = f(Sy)$.

$$\nabla \bar{f}(y) = S^T \nabla f(Sy), \qquad H \bar{f}(y) = S^T H f(Ty) S,$$

feasibility: ASy = b

Newton step: $S d_{NT}^y = d_{NT}^x$.

- Newton decrement: $\lambda(x)^2 = \langle d_{NT}, Hf(x)d_{NT} \rangle$.
 - 1. Stopping criterion: $\hat{f}(x+d) = f(x) + \langle \nabla f(x), d \rangle + \frac{1}{2} \langle d, Hf(x)d \rangle$

$$f(x) - \inf\{\hat{f}(x+v) \,|\, Ax = b\} = \frac{1}{2}\lambda^2(x).$$

 \implies estimate of the difference $f(x) - p^*$.

2. Stepsize selection: $\frac{d}{dt}f(x+td_{NT}) = \langle \nabla f(x), d_{NT} \rangle = -\lambda(x)^2$.

Assumption replacing $Hf(x) \succeq m\mathbb{1}$:

$$\left\| \begin{pmatrix} Hf(x) & A^T \\ A & 0 \end{pmatrix}^{-1} \right\|_2 \le K.$$

Result: Elimination yields the same Newton step.

- \implies convergence analysis of unconstrained problem applies.
 - linear convergence (damped Newton phase),
 - quadratic convergence (pure Newton phase).

Self-concordant Objectives - required steps bounded by:

$$\frac{20-8\sigma}{\sigma\beta(1-2\sigma)^2} \left(f(x^{(0)}) - p^* \right) + \log_2 \log_2 \left(\frac{1}{\varepsilon}\right),$$

where α, β are the backtracking parameters (Armijo rule: σ is α).

Do we have to ensure feasibility of x?

Necessary and sufficient condition for optimality:

$$Ax^* = b, \qquad \nabla f(x^*) + A^T \mu^* = 0.$$

Linearized optimality condition:

Next point x' = x + d solves linearized optimality condition:

$$A(x+d) = b, \qquad \nabla f(x+d) + A^T w \approx \nabla f(x) + H f(x) d + A^T w = 0.$$

This results in

$$\begin{pmatrix} Hf(x) & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} d_{IFNT} \\ w \end{pmatrix} = - \begin{pmatrix} \nabla f(x) \\ Ax - b \end{pmatrix}$$

Definition 2. In a *primal-dual* method both the primal variable x and the dual variable μ are updated.

- **Primal residual:** $r_{\text{pri}}(x,\mu) = Ax b$,
- **Dual residual:** $r_{\text{dual}}(x,\mu) = \nabla f(x) + A^T \mu$,
- **Residual:** $r(x,\mu) = (r_{dual}(x,\mu), r_{pri}(x,\mu)).$ Primal-dual optimal point: $(x^*,\mu^*) \iff r(x^*,\mu^*) = 0.$

Primal-dual Newton step minimizes first-order Taylor approx. of $r(x, \mu)$:

$$r(x + d_x, \mu + d_\mu) \approx r(x, \mu) + Dr|_{(x,\mu)} \begin{pmatrix} d_x \\ d_\mu \end{pmatrix} = 0$$
$$\implies Dr|_{(x,\mu)} \begin{pmatrix} d_x \\ d_\mu \end{pmatrix} = -r(x, \mu).$$

Primal-dual Newton step:

$$Dr|_{(x,\mu)} \begin{pmatrix} d_x \\ d_\mu \end{pmatrix} = -r(x,\mu).$$

We have

$$Dr|_{(x,\mu)} = \begin{pmatrix} \nabla_x r_{\text{dual}} & \nabla_\mu r_{\text{dual}} \\ \nabla_x r_{\text{pri}} & \nabla_\mu r_{\text{pri}} \end{pmatrix} = \begin{pmatrix} Hf(x) & A^T \\ A & 0 \end{pmatrix}$$
$$\implies \begin{pmatrix} Hf(x) & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} d_x \\ d_\mu \end{pmatrix} = - \begin{pmatrix} r_{\text{dual}}(x,\mu) \\ r_{\text{pri}}(x,\mu) \end{pmatrix} = - \begin{pmatrix} \nabla f(x) + A^T \mu \\ Ax - b \end{pmatrix}.$$

and get with $\mu^+ = \mu + d_{\mu}$

$$\begin{pmatrix} Hf(x) & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} d_x \\ \mu^+ \end{pmatrix} = - \begin{pmatrix} \nabla f(x) \\ Ax - b \end{pmatrix}$$

٠

The primal-dual step is not necessarily a descent direction:

$$\frac{d}{dt}f(x+td_x)\big|_{t=0} = \langle \nabla f(x), d_x \rangle = -\langle Hf(x)d_x + A^Tw, d_x \rangle$$
$$= -\langle d_x, Hf(x)d_x \rangle + \langle w, Ax - b \rangle.$$

where we have used, $\nabla f(x) + Hf(x)d_x + A^Tw = 0$, and, $Ad_x = b - Ax$.

BUT: it reduces the residual,

$$\frac{d}{dt} \left\| r(x + td_x, \mu + td_\mu) \right\| \Big|_{t=0} = - \left\| r(x, \mu) \right\|.$$

Towards feasibility: we have $Ad_x = b - Ax$

$$r_{\rm pri}^{+} = A(x + td_x) - b = (1 - t)(Ax - b) = (1 - t)r_{\rm pri} \implies r_{\rm pri}^{(k)} = \left(\prod_{i=0}^{k-1} (1 - t^{(i)})\right)r^{(0)}$$

Require: an initial starting point x^0 and μ^0 ,

- 1: repeat
- 2: compute the primal and dual Newton step d_x^k and d_μ^k
- 3: Backtracking Line Search:
- 4: t = 1
- 5: while $||r(x + td_x^k, \mu + td_\mu^k)|| > (1 \sigma)t ||r(x, \mu)||$ do 6: $t = \beta t$
- 7: end while
- 8: $\alpha^k = t$
- 9: **UPDATE:** $x^{k+1} = x^k + \alpha^k d_x^k$ and $\mu^{k+1} = \mu^k + \alpha^k d_\mu^k$. 10: **until** $Ax^k = b$ and $||r(x^k, \mu^k)|| \le \varepsilon$

Comparison of both methods

The constrained Newton method with feasible starting point.

The infeasible Newton method - note that the function value does not decrease.

Solution of the KKT system:

$$\begin{pmatrix} H & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} v \\ w \end{pmatrix} = - \begin{pmatrix} g \\ h \end{pmatrix}$$

- **Direct solution:** symmetric, but not positive definite. LDL^{T} -factorization costs $\frac{1}{3}(n+p)^{3}$.
- Elimination: $Hv + A^T w = -g \implies v = -H^{-1}[g + A^T w].$ and $AH^{-1}A^T w + AH^{-1}g = h \implies w = (AH^{-1}A^T)[h - AH^{-1}g].$
 - 1. build $H^{-1}A^T$ and $H^{-1}g$, factorization of H and p+1 rhs \Rightarrow cost: f + (p+1)s,
 - 2. form $S = AH^{-1}A^T$, matrix multiplication \Rightarrow cost: p^2n ,
 - 3. solve $Sw = [h AH^{-1}g]$, factorization of $S \Rightarrow \cos \frac{1}{3}p^3 + p^2$,
 - 4. solve $Hv = g + A^T w$, cost: 2np + s.

Total cost: $f + ps + p^2n + \frac{1}{3}p^3$ (leading terms).

General convex optimization problem:

 $\min_{x \in \mathbb{R}^n} f(x)$ subject to: $g_i(x) \le 0, \quad i = 1, \dots, m,$ Ax = b.

Assumptions:

- f, g_1, \ldots, g_m are convex and twice differentiable,
- $A \in \mathbb{R}^{p \times n}$ with rank(A) = p,
- there exists an optimal x^* such that $f(x^*) = p^*$,
- the problem is strictly feasible (Slater's constraint qualification holds).

$$Ax^* = b, \qquad g_i(x^*) \le 0, \ i = 1, \dots, m, \qquad \lambda \succeq 0,$$
$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* g_i(x^*) + A^T \mu^* = 0, \qquad \lambda_i^* g_i(x^*) = 0.$$

What are interior point methods ?

- solve a sequence of equality constrained problem using Newton's method,
- solution is always strictly feasible \Rightarrow lies in the **interior** of the constraint set $S = \{x \mid g_i(x) \le 0, i = 1, ..., m\}.$
- basically the inequality constraints are added to the objective such that the solution is forced to be away from the boundary.

Hierarchy of convex optimization algorithms:

- quadratic objective with linear equality constraints \Rightarrow analytic solution,
- general objective with linear eq. const. ⇒ solve sequence of problems with quadratic objective and linear equality constraints,
- general convex optimization problem ⇒ solve a sequence of problems with general objective and linear equality constraints.

Equivalent formulation of general convex optimization problem:

Basic idea: approximate indicator function with a differentiable function with closed level sets.

$$\hat{I}_{-}(u) = -\left(\frac{1}{t}\right)\log(-u), \quad \text{dom } \hat{I} = \{x \mid x < 0\}.$$

where t is a parameter controlling the accuracy of the approximation.

Definition:
$$\phi(x) = -\sum_{i=1}^{m} \log(-g_i(x)).$$

Approximate formulation:

$$\min_{x \in \mathbb{R}^n} t f(x) + \phi(x)$$

subject to: $Ax = b$,

Derivatives of ϕ :

•
$$\nabla \phi(x) = -\sum_{i=1}^{m} \frac{1}{g_i(x)} \nabla g_i(x),$$

• $H \phi(x) = \sum_{i=1}^{m} \frac{1}{g_i(x)^2} \nabla g_i(x) \nabla g_i(x)^T - \sum_{i=1}^{m} \frac{1}{g_i(x)} H g_i(x)$

Definition 3. Let $x^*(t)$ be the optimal point of the above problem, which is called **central point**. The **central path** is the set of points $\{x^*(t) | t > 0\}$.

Central Path

Figure 1: The central path for an LP. The dashed lines are the the contour lines of ϕ . The central path converges to x^* as $t \to \infty$.

Central points (opt. cond.): $Ax^{*}(t) = b$, $g_{i}(x^{*}(t)) < 0$, i = 1, ..., m,

$$0 = t\nabla f(x^*(t)) + \nabla \phi(x^*(t)) + A^T \hat{\mu} = t\nabla f(x^*(t)) + \sum_{i=1}^m -\frac{1}{g_i(x^*(t))} \nabla g_i(x^*(t)) + A^T \hat{\mu}$$

m

- **Define:** $\lambda_i^*(t) = -\frac{1}{tg_i(x^*(t))}$ and $\mu^*(t) = \frac{\hat{\mu}}{t}$. $\implies (\lambda^*(t), \mu^*(t))$ are dual feasible for the original problem and $x^*(t)$ is minimizer of Lagrangian !
 - Lagragian: $L(x, \lambda, \mu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \langle \mu, Ax b \rangle.$
 - **Dual function** evaluated at $(\lambda^*(t), \mu^*(t))$:

$$q(\lambda^*(t),\mu^*(t)) = f(x^*(t)) + \sum_{i=1}^m \lambda_i^*(t)g_i(x^*(t)) + \langle \mu^*, Ax^*(t) - b \rangle = f(x^*(t)) - \frac{m}{t}.$$

• Weak duality: $p^* \ge q(\lambda^*(t), \mu^*(t)) = f(x^*(t)) - \frac{m}{t}$.

$$f(x^*(t)) - p^* \le \frac{m}{t}.$$

Interpretation via KKT conditions:

$$-\lambda_i^*(t)g_i(x^*(t)) = \frac{1}{t}.$$

 \implies for t large the original KKT conditions are approximately satisfied.

Force field interpretation (no equality constraints):

Force for each constraint: $F_i(x) = -\nabla(-\log(-g_i(x))) = \frac{1}{g_i(x)}\nabla g_i(x),$

generated by the potential ϕ : $F_i = -\nabla \phi(x)$.

- $F_i(x)$ is moving the particle away from the boundary,
- $F_0(x) = -t\nabla f(x)$ is moving particle towards smaller values of f.
- at the central point $x^*(t) \Longrightarrow$ forces are in equilibrium.

The barrier method (direct): set $t = \frac{\varepsilon}{m}$ then

 $f(x^*(t)) - p^* \leq \varepsilon$. \Rightarrow generally does not work well.

Barrier method or path-following method:

Require: strictly feasible x^0 , γ , $t = t^{(0)} > 0$, tolerance $\varepsilon > 0$.

- 1: repeat
- 2: Centering step: compute $x^*(t)$ by minimizing

$$\min_{x \in \mathbb{R}^n} t f(x) + \phi(x)$$

subject to: $Ax = b$,

where previous central point is taken as starting point.

- 3: **UPDATE:** $x = x^*(t)$.
- 4: $t = \gamma t$.
- 5: until $\frac{m\gamma}{t} < \varepsilon$

- Accuracy of centering: Exact centering (that is very accurate solution of the centering step) is not necessary but also does not harm.
- Choice of γ: for a small γ the last center point will be a good starting point for the new centering step, whereas for large γ the last center point is more or less an arbitrary initial point.

trade-off between inner and outer iterations

 \implies turns out that for $3 < \gamma < 100$ the total number of Newton steps is almost constant.

- Choice of $t^{(0)}$: $\frac{m}{t^{(0)}} \approx f(x^{(0)}) p^*$.
- Infeasible Newton method: start with $x^{(0)}$ which fulfills inequality constraints but not necessarily equality constraints. Then when feasible point is found continue with normal barrier method.