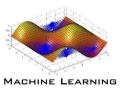
Convex Optimization and Modeling

Modeling

13th lecture, 07.07.2010

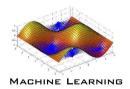
Jun.-Prof. Matthias Hein



Modeling:

- What is Modeling ?
- Loss/Penalty Functions for Approximation/Regression
- Properties

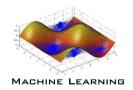
Modeling



Theory is done \implies All tools available

How to formulate optimization problems ? \downarrow Modeling

Modeling



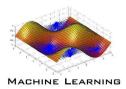
What is Modeling ? Transition of the practical problem into the mathematical formulation

- differential equation,
- optimization problem,
- . . .

Central question: How to enforce certain desired properties of the solution ?

- sparsity of the solution,
- robustness against small changes,

• • • •



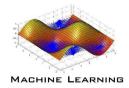
Properties of the mathematical formulation:

- Integration of all prior knowledge about the problem into the mathematical formulation. Examples:
 - desired solution is periodic,
 - desired solution is non-negative.
- The objective function corresponds to the criterion we are interested to minimize.

But: for some problems true objective is unknown or difficult to grasp into mathematical formulation.

Example: visual appealing reconstruction of noisy images.

- Is the problem of statistical nature:
 - Robustness against noise,
 - Worst-case versus average case.



Approximation/Regression: The norm approximation problem,

$$\min_{x \in \mathbb{R}^n} \left\| Ax - b \right\|.$$

General:
$$\min_{x \in \mathbb{R}^n} \sum_{i=1}^m \phi((Ax - b)_i) = \min_x \sum_{i=1}^m \phi\left(\sum_{j=1}^n A_{ij}x_j - b_i\right),$$

where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ and $\phi : \mathbb{R}_+ \to \mathbb{R}_+$ is a loss/penalty function.

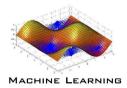
• **Projection** of b onto the subspace S spanned by the columns of A,

$$S = \Big\{ \sum_{i=1}^{n} a_i x_i \, | \, a_i \in \mathbb{R}^m, \quad A = (a_1, \dots, a_n) \Big\}.$$

• find linear function $f_w(x) = \langle w, x \rangle$ which fits m data points (x_i, y_i)

Regression problem:

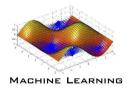
$$\min_{x} \sum_{i=1}^{m} \phi\Big(\langle w, x_i \rangle - y_i\Big).$$



Loss functions:

	$\phi(x)$		
squared loss	$ x ^2$,		
L_p - loss	$ x ^p$,		
σ -insensitive	$(x -\sigma)\mathbb{1}_{ x >\sigma}$,		
Huber's robust loss	$\begin{cases} \frac{1}{2\sigma} x ^2 & \text{if } x \le \sigma \\ x - \frac{\sigma}{2} & \text{if } x > \sigma, \end{cases},$		
log-barrier	$\begin{cases} -a^2 \log \left(1 - \left(\frac{ x }{a}\right)^2\right) \\ \infty \end{cases}$	if if	$\begin{aligned} x &\le a \\ x &> a. \end{aligned}$

Table 1: Loss functions for regression. The σ -insensitive loss is called deadzone-linear penalty function in BV.



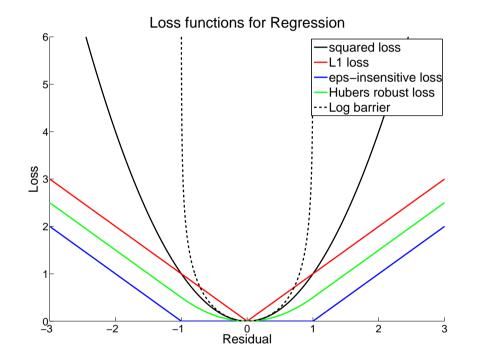
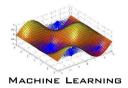


Figure 1: The log-barrier loss plotted for $a = 1 \implies$ unbounded for $|x| \ge 1$. Huber and σ -insensitive loss are both plotted for $\sigma = 1$.

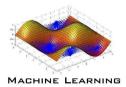


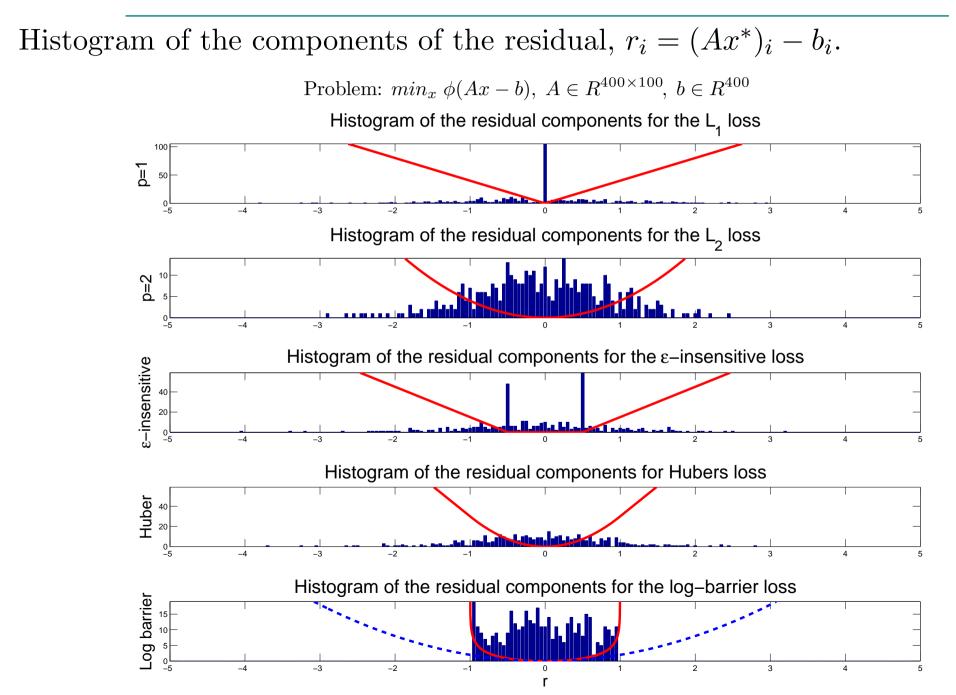
What is the influence of the loss function on the solution ?: The loss function quantifies how much we "dislike" the individual errors of each component,

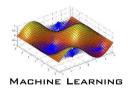
$$r_i = \sum_{j=1}^n A_{ij} x_j - b_i.$$

Given: solution $x^* = \underset{x}{\operatorname{arg\,min}} \sum_{i=1}^{m} \phi(r_i)$.

How does the **residual** $r = Ax^* - b$ change when we use different loss functions ?





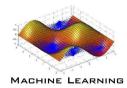


Properties of loss functions:

- The L_2 -loss avoids large residuals error is more evenly distributed,
- The L_1 -loss penalizes proportional to the size of the residuals, large residuals can counter small residuals
- The ε -insensitive loss ignores small residuals and behaves for large residuals as the L_1 -loss \Longrightarrow huge fraction of residuals is in $[-\varepsilon, \varepsilon]$,
- The Huber loss grows as the L_2 -loss for small residuals and as the L_1 -loss for large residuals \implies histogram of residuals is a mixture of the histograms of L_2 -loss and L_1 -loss,
- The log-barrier loss behaves as the L_2 -loss for small residuals,

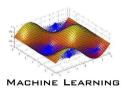
Taylor-approximation at
$$u = 0$$
: $\phi(u) \approx 2 \frac{u^2}{a^2}$,

and no residuals larger than a are allowed.



	L_1 -loss /Rel.	L_2 -loss/Rel.	ε -ins./Rel.	Huber-loss/Rel.
Solution $x_{L_1}^*$	$239.7 \ /1.00$	$323.7 \ /1.18$	$123.0\ /1.19$	$263.5 \ / 1.09$
Solution $x_{L_2}^*$	$262.0\ /1.09$	$274.6 \ /1.00$	$111.3 \ / 1.08$	$247.9\ /1.02$
Solution $x_{\varepsilon-\text{ins.}}^*$	$266.6 \ /1.11$	$294.5\ /1.07$	$103.3 \ / 1.00$	$250.7 \ / 1.03$
Solution x^*_{Huber}	$253.0\ /1.06$	$282.9\ /1.03$	$108.1 \ / 1.05$	$242.5 \ / 1.00$

Table 2: The loss of the optimal solution x^* with respect to the other loss function. The left column gives the absolute loss and the second column gives the relative difference to the best.



Sparsity:

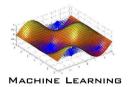
- compression setting fit the data with less coefficients,
- regression setting non-zero weights correspond to important features.

The L_1 -norm is the best **convex** approximation of the cardinality function

$$\operatorname{card}(x) = \lim_{p \to 0} \|x\|_p^p = \sum_{i=1}^n \mathbb{1}_{|x_i| > 0},$$

among all L_p -norms,

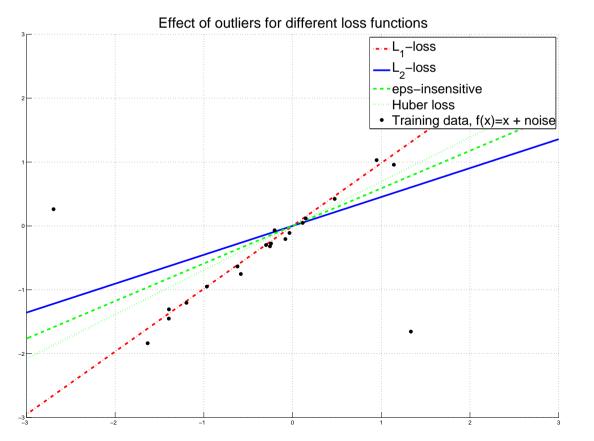
$$||x||_{p}^{p} = \sum_{i=1}^{n} |x_{i}|^{p}.$$



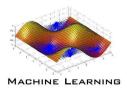
Sensitivity to outliers in a regression problem:

Model for data generation: output y_i is equal to true underlying function $f(x_i)$ plus an additive noise term ε_i (measurement noise),

$$y_i = f(x_i) + \varepsilon_i.$$

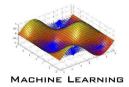


A regression problem in \mathbb{R} , where the true function is linear. The outputs are disturbed by small Gaussian noise and two outliers have been added. The L_1 -loss is insensitive to the outliers whereas the L_2 -loss is very much affected.



Sensitivity to outliers in a regression problem:

- the L_2 -loss is very much affected by outliers since large residuals are heavily penalized,
- the L_1 -loss is much less affected by outliers than the L_2 -loss,
- the ε -insensitive loss forces the fitted linear function away from the "regular" training data towards the outliers. Basically, so that at all residuals of the "regular" training data are at the ε -boundary,
- the **Huber loss** is between L_1 -loss and L_2 -loss
- the **log-barrier loss** produces in this case no feasible solution



Regularization:

Not always a good idea just to minimize the loss \implies bicriterion problem

 $\min\{\|Ax - b\|, \|x\|\},\$

Justification of the new criterion:

- limits the influence of a single dimension/feature x_i ,
- sparse solution x e.g. by using $||x||_1$ as regularizer.

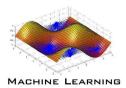
Pareto-optimal solutions of multi-criterion problems via scalarization,

$$\min_{x} \lambda_1 \left\| Ax - b \right\| + \lambda_2 \left\| x \right\|,$$

Since $\lambda_1, \lambda_2 > 0$ we can eliminate λ_1 and get

$$\min_{x} \left\| Ax - b \right\| + \lambda \left\| x \right\|,$$

where $\lambda = \frac{\lambda_2}{\lambda_1} \Longrightarrow \lambda$ is called **regularization parameter**.



Trade-off curve for different regularizers: L_2 -loss for the term Ax - b and L_1 - or L_2 -regularizer,

$$\min_{x} \left\| Ax - b \right\|_{2} + \lambda \left\| x \right\|,$$

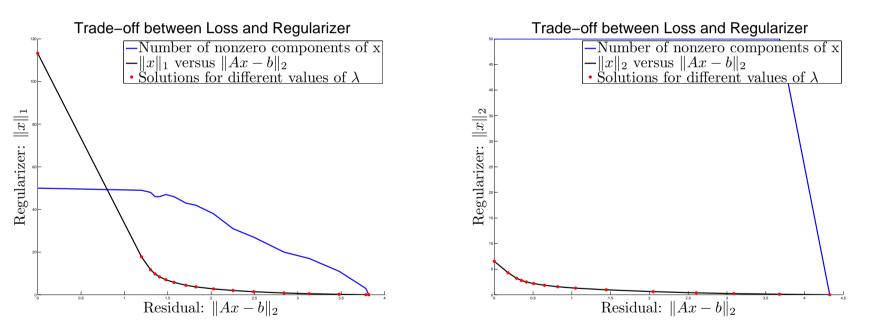
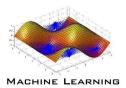


Figure 3: The optimization problem is solved for different values of λ , basically $\lambda \in \{2^k \mid k = -12, \ldots, 12\}$, which gives the red markers. The whole trade-off curves is obtained by linear interpolation. $x \in \mathbb{R}^{50}$ and $A \in \mathbb{R}^{50 \times 50}$ has full rank $\Rightarrow x^* = A^{-1}b$ minimizes ||Ax - b||.



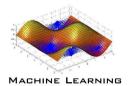
How to represent functions: $f : \mathbb{R}^d \to \mathbb{R}$

Problem: All functions are an infinite-dimensional space !

- Parameterized function class: $f(x) = \sum_{i=1}^{d} w_i \phi_i(x)$, where ϕ_i is a set of basis functions (usually linearly independent),
 - 1. linear functions $\phi_i(x) = x_i$,
 - 2. polynomials (second order $\phi_{ij}(x) = x_i x_j$),
 - 3. trigonometric basis on $[0, 2\pi]$, $\phi = \{1, \sin(x), \cos(x), \sin(2x), \ldots\}$,
 - In **RBF networks** one has for each training point X_i , i = 1, ..., N,

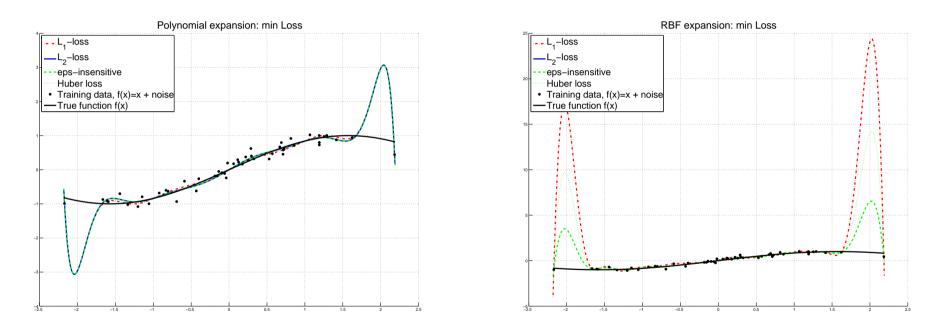
$$\phi_i(x) = e^{-\|x - X_i\|^2 / (2\sigma^2)}, \quad i = 1, \dots, N.$$

• Discretize space (e.g. grid) \Longrightarrow function is defined by values on the grid. $[0,1]^d$ discretized with spacing h yields $\left(\frac{1}{h}\right)^d$ points \Rightarrow only possible in low dimension d.

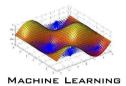


Parameterized function classes:

More degrees of freedom \implies data can be fitted much better !

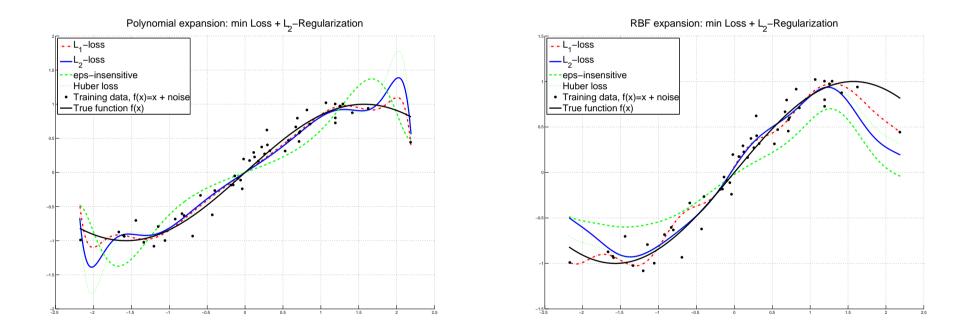


Left: Polynomials up to 7th order, Right: RBF network.
Single data points affect largely the solution - Why ?
⇒ use regularization to limit influence of one single parameter.

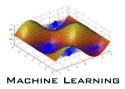


Parameterized function classes:

Regularization with $||x||_2 \implies$ solution less influenced by outliers !



Left: Polynomials up to 7th order, Right: RBF network. The regularizer limits the influence of single outliers on the solution.

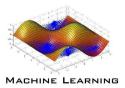


Problems with regularization of the weights:

- Regularization just on the parameters is unintuitive,
- requires that weights are comparable (scale-problem),

Solution:

- we want basically a smooth solution !
- enforce smoothness using regularization,
- use ||Df|| as regularizer, where D is a differential operator.



Why do we want a smooth solution ?

The observed outputs/measurements Y are contaminated by noise ε_i

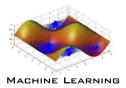
$$Y = f(X_i) + \varepsilon_i,$$

where

- f is the "true" underlying function,
- ε_i is a noise distribution e.g. Gaussian, shot-noise,...

Exact fit of the data means that we fit the noise but not the true function ! Overfitting !!!

> A smooth function will not fit the noise ! The level of smoothness depends on the noise level.



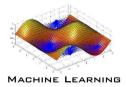
Functions on a grid:

• discretization of [-1, 1] $x = -1, -1 + h, -1 + 2h, \dots, 1 - 2h, 1 - h, 1,$

- function values are determined on the grid (apart from that no restrictions !)
- for simplicity: linear interpolation of f between grid points

How can we incorporate smoothness ?

- approximate derivatives using finite differences,
- different regularizers lead to different behavior,



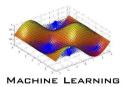
Finite differences:

•
$$\frac{\partial f}{\partial x}\Big|_i = \frac{1}{h}\Big(f(i) - f(i-1)\Big)$$
 or $\frac{\partial f}{\partial x}\Big|_i = \frac{1}{2h}\Big(f(i+1) - f(i-1)\Big),$
• $\frac{\partial^2 f}{\partial x^2}\Big|_i = \frac{1}{h^2}\Big(f(i+1) - 2f(i) + f(i-1)\Big)$

 \Longrightarrow approximated derivatives are just matrix multiplications with the discretized f

$$D = \begin{pmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{pmatrix} \qquad Df = \begin{pmatrix} f(2)-f(1) \\ f(3)-f(2) \\ f(4)-f(3) \\ f(5)-f(4) \end{pmatrix}$$

 \Rightarrow Regularize with: $||Df||_2^2$ (linear splines), $||Df||_1$ (total variation).



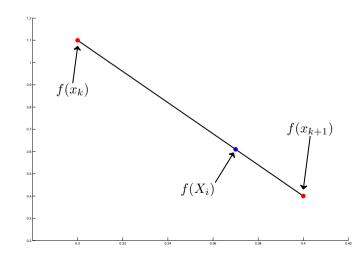
What is the effect of the different norms ?

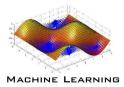
$$\min_{f} \|If - Y\|_2^2 + \lambda \phi(Df).$$

Note that the training data (X_i, Y_i) need not lie on grid points. \implies Interpolate f linearly at training data points.

$$f(X_i) = \frac{1}{h} \Big((x_{k+1} - X_i) f(x_k) + (X_i - x_k) f(x_{k+1}) \Big),$$

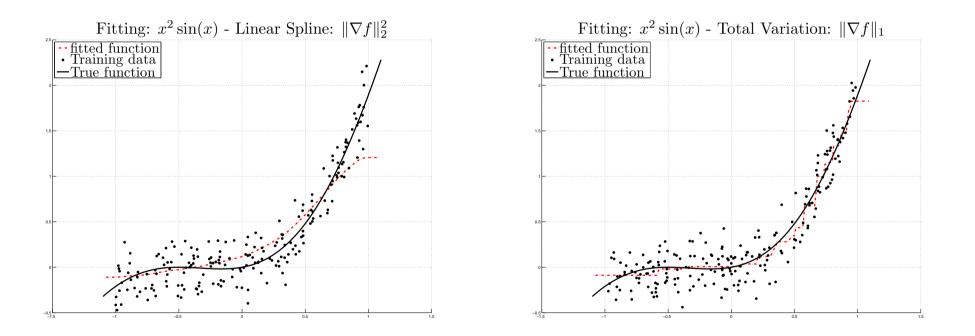
where x_k is largest grid point smaller than X_i .



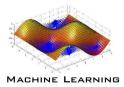


What is the effect of the different norms ?

$$\min_{f} \|If - Y\|_2^2 + \lambda \phi(Df).$$

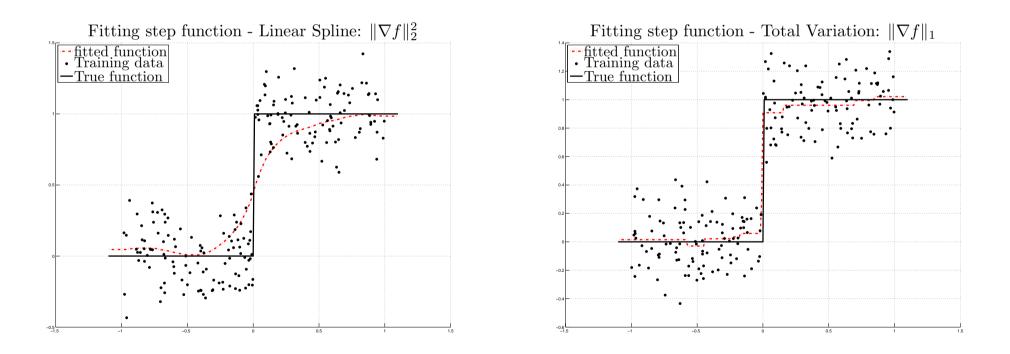


Setting: 200 samples of true function $x^2 \sin(x)$ with Gaussian noise $\sigma = 0.2$ Left: Linear Splines $\|Df\|_2^2$, Right: Total Variation $\|Df\|_1$.

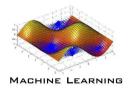


What is the effect of the different norms ?

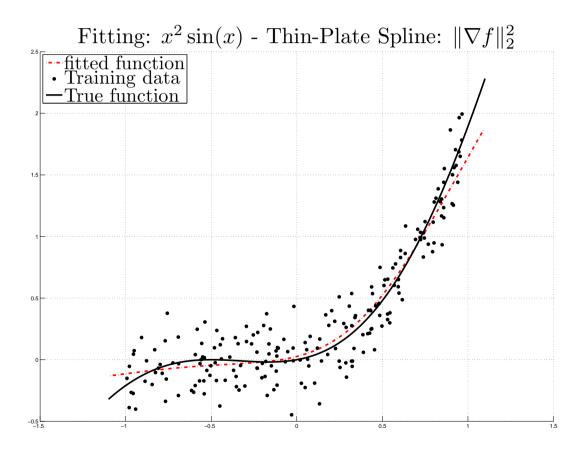
$$\min_{f} \|If - Y\|_2^2 + \lambda \phi(Df).$$



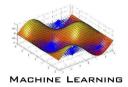
Setting: 200 samples of true function $\mathbb{1}_{x>0}$ with Gaussian noise $\sigma = 0.2$ Left: Linear Splines $\|Df\|_2^2$, Right: Total Variation $\|Df\|_1$.



Higher order derivatives: Penalization of second-order derivatives leads to thin-plate splines.



Setting: 200 samples of true function $x^2 \sin(x)$ with Gaussian noise $\sigma = 0.2$ Thin-Plate-Regularizer penalizes second derivative (change of the first one) !



The null space of a differential operator D:

 $\{f \mid Df = 0\},\$

is the set of functions **not** penalized by the regularizer.

It does not cost anything to fit the data with functions from the null space ! Any deviation from the null space is penalized !

Null space of:

- first-order derivative: constant functions,
- second-order derivative: linear functions,
- k-th order derivative: k 1-order polynomials.