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Reminder from last time

Convex functions:

• first-order condition: f(y) ≥ f(x) + 〈∇f |x, y − x〉,

• second-order condition: Hessian Hf positive semi-definite,

• convex functions are continuous on the relative interior,

• a function f is convex ⇐⇒ the epigraph of f is a convex set.

Extensions:

• quasiconvex functions have convex sublevel sets,

• log-concave/convex f : log f is concave/convex.
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Program of today/next lecture

Optimization:

• general definition and terminology

• convex optimization

• quasiconvex optimization

• linear optimization (linear programming (LP))

• quadratic optimization (quadratic programming (QP))

• geometric programming

• generalized inequality constraints

• semi-definite and cone programming
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Mathematical Programming

Definition 1. A general optimization problem has the form

min
x∈D

f(x),

subject to: gi(x) ≤ 0, i = 1, . . . , r

hj(x) = 0, j = 1, . . . , s.

• x is the optimization variable, f the objective (cost) function,

• x ∈ D is feasible if the inequality and equality constraints hold at x.

• the optimal value p∗ of the optimization problem

p∗ = inf{f(x) |x feasible }.

p∗ = −∞: problem is unbounded from below,

p∗ = ∞: problem is infeasible.
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Mathematical Programming II

Terminology:

• A point x is called locally optimal if there exists R > 0 such that

f(x) = inf{f(z) | ‖z − x‖ ≤ R, z feasible }.

• x is feasible,

gi(x) = 0: inequality constraint is active at x.

gi(x) < 0: is inactive.

A constraint is redundant if deleting it does not change the feasible set.

• If f ≡ 0 then the optimal value is either zero (feasible set is nonempty)

or ∞ (feasible set is empty). This problem is the feasibility problem.

find x

subject to: gi(x) ≤ 0, i = 1, . . . , r

hj(x) = 0, j = 1, . . . , s
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Equivalent Problems

Equivalent problems: Two problems are called equivalent if one can

obtain from the solution of one problem the solution of the other problem

and vice versa.

Transformations which lead to equivalent problems:

• Slack variables: gi(x) ≤ 0 ⇐⇒ ∃ si ≥ 0 such that gi(x) + si = 0.

min
x∈Rn, s∈Rr

f(x),

subject to: gi(x) + si = 0, i = 1, . . . , r

si ≥ 0, i = 1, . . . , r

hj(x) = 0, j = 1, . . . , s,

which has variables x ∈ R
n and s ∈ R

r.
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Equivalent Problems II

Transformations which lead to equivalent problems II:

• Epigraph problem form of the standard optimization problem:

min
x∈Rn, t∈R

t,

subject to: f(x) − t ≤ 0,

gi(x) ≤ 0, i = 1, . . . , r

hj(x) = 0, j = 1, . . . , s,

which has variables x ∈ R
n and t ∈ R.
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Convex Optimization

Definition 2. A convex optimization problem has the standard form

min
x∈D

f(x),

subject to: gi(x) ≤ 0, i = 1, . . . , r

〈aj , x〉 = bj , j = 1, . . . , s,

where f, g1, . . . , gr are convex functions.

Difference to the general problem:

• the objective function must be convex,

• the inequality constraint functions must be convex,

• the equality constraint functions must be linear.

=⇒ The feasible set of a convex optimization problem is convex.
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Convex Optimization II

Local and global minima

Theorem 1. Any locally optimal point of a convex optimization problem is

globally optimal.

Proof. Suppose x is locally optimal, that means x is feasible and ∃R > 0,

f(x) = inf{f(z) | ‖z − x‖ ≤ R, z feasible }.

Assume x is not globally optimal =⇒ ∃ feasible y such that f(y) < f(x).

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) < f(x),

for any 0 < λ < 1 =⇒ x is not locally optimal �. 2

Locally optimal points of quasiconvex problems are not generally globally

optimal.
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First-Order Condition for Optimality

First-Order Condition for Optimality:

Theorem 2. Suppose f is convex and continuously differentiable, Then x is

optimal if and only if x is feasible and

〈∇f |x, y − x〉 ≥ 0, ∀ y ∈ X.

Proof: Suppose x ∈ X and 〈∇f |x, y − x〉 ≥ 0, ∀ y ∈ X =⇒ f(y) ≥ f(x)

for all y ∈ X (first order condition).

Suppose that x is optimal but there is y ∈ X such that

〈∇f |x, y − x〉 < 0.

Let z = ty + (1− t)x with t ∈ [0, 1]. Then z(t) is feasible for all t ∈ [0, 1] and,

∂f

∂t

∣

∣

∣

t=0
= 〈∇f |x, y − x〉 < 0,

so that for t ≪ 1 we have f(y) < f(x) �.
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First-Order Condition for Optimality

Geometric Interpretation:

• x∗ on the boundary of the feasible set: ∇f |x∗ defines a supporting

hyperplane at x∗.

• x∗ in the interior of the feasible set, ∇f |x = 0,

• Problem only with equality constraint Ax = b, then x is optimal if

〈∇f |x, v〉 = 0, ∀ v ∈ ker(A), ⇐⇒ ∃ ν ∈ R
s such that ∇f |x + AT ν = 0.
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Equivalent convex problems

Equivalent convex problems

min
x∈D

f(x),

subject to: gi(x) ≤ 0, i = 1, . . . , r

〈aj , x〉 = bj , j = 1, . . . , s,

• Elimination of equality constraints:

Let F ∈ R
n×k and x0 ∈ R

n such that

Ax = b ⇐⇒ x = Fz + x0, z ∈ R
k,

min f(Fz + x0),

subject to: gi(Fz + x0) ≤ 0, i = 1, . . . , r

This problem has only n − dim(ran(A)) or dim(kerA) variables.
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Equivalent convex problems II

Transformations which preserve convexity

• Introduction of slack variables,

• Introduction of new linear equality constraints,

• Epigraph problem formulation,

• Minimization over some variables.
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Quasiconvex Optimization

Definition 3. A quasiconvex optimization problem has the standard

form

min
x∈D

f(x),

subject to: gi(x) ≤ 0, i = 1, . . . , r

〈aj , x〉 = bj , j = 1, . . . , s,

where f is quasiconvex and g1, . . . , gr are convex functions.

Quasiconvex inequality functions can be reduced to convex inequality

functions with the same 0-sublevel set.

13



Quasiconvex Optimization II

Theorem 3. Let X denote the feasible set of a quasiconvex optimization

problem with a differentiable objective function f . Then x ∈ X is optimal if

〈∇f |x, y − x〉 > 0, ∀ y ∈ X, y 6= x.

A quasi-convex function with ∇f |x0
= 0 but x0 is not optimal.
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Quasiconvex Optimization III

How to solve a quasiconvex optimization problem ?

Representation of the sublevel sets of a quasiconvex functions via sublevel

sets of convex functions.

For t ∈ R let φt : R
n → R be a family of convex functions such that

f(x) ≤ t ⇐⇒ φt(x) ≤ 0,

and for each x in the domain

φs(x) ≥ φt(x) for all s ≤ t.
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Quasiconvex Optimization IV

Solve the convex feasibility problem:

find x

subject to: φt(x) ≤ 0

gi(x) ≤ 0, i = 1, . . . , r

Ax = b,

Two cases:

• a feasible point exists =⇒ optimal value p∗ ≤ t

• problem is infeasible =⇒ optimal value p∗ ≥ t

Solution procedure:

• assume p∗ ∈ [a, b] and use bisection t = b+a
2

,

• after k-th iteration interval has length b−a
2k ,

• k = log2
b−a

ǫ
iterations in order to find an ǫ-approximation of p∗.
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Linear Programming

Definition 4. A general linear optimization problem (linear program

(LP)) has the form

min 〈c, x〉

subject to: Gx � h,

Ax = b,

where c ∈ R
n, G ∈ R

r×n with h ∈ R
r and A ∈ R

s×n with b ∈ R
s.

A linear program is a convex optimization problem with

• affine cost function and linear inequality constraints

• The feasible set is a polyhedron.
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Linear Programming II

The standard form of an LP

min
x∈Rn

〈c, x〉

subject to: Ax = b,

x � 0.

Conversion of a general linear program into the standard form:

• introduce slack variables,

• decompose x = x+ − x− with x+ � 0 and x− � 0.

min
x∈Rn, s∈Rr

〈c, x〉

subject to: Gx + s = h,

Ax = b,

s � 0.

min
x+∈Rn, x−∈Rn, s∈Rr

〈

c, x+
〉

−
〈

c, x−
〉

subject to: Gx+ − Gx− + s = h,

Ax+ − Ax− = b,

s � 0, x+ � 0, x− � 0.
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Examples of LPs

The diet problem:

• A healthy diet has m different nutrients in quantities at least equal to

b1, . . . , bm,

• n different kind of food and x1, . . . , xn is the amount of them and has

costs c1, . . . , cn,

• The food j contains an amount of aij of nutrient i.

• Goal: find the cheapest diet that satisfies the nutritional requirements

min 〈c, x〉

subject to: Ax � b,

x � 0.
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Examples of LPs II

Chebychev center of a polyhedron:

• find the largest Euclidean ball and its center which fits into a polyhedron

P = {x ∈ R
n | 〈ai, x〉 ≤ bi, i = 1, . . . , r}.

• constraint that the ball B = {xc + u | ‖u‖ ≤ R} lies in one half-space

∀u ∈ R
n, ‖u‖ ≤ R =⇒ 〈ai, xc + u〉 ≤ bi.

With sup{〈ai, u〉 | ‖u‖ ≤ R} = R ‖ai‖2
the constraint can be rewritten as

〈ai, xc〉 + R ‖ai‖2
≤ bi.

Thus the problem can be reformulated as

max
x∈Rn, R∈R

R

subject to: 〈ai, xc〉 + R ‖ai‖2
≤ bi, i = 1, . . . , r.
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Quadratic Programming

Definition 5. A general quadratic program (QP) has the form

min
1

2
〈x, Px〉 + 〈q, x〉 + c

subject to: Gx � h,

Ax = b,

where P ∈ Sn
+, G ∈ R

r×n and A ∈ R
s×n.

With quadratic inequality constraints:

1

2
〈x, Pix〉 + 〈qi, x〉 + ci ≤ 0, with Pi ∈ Sn

+, i = 1, . . . , r

we have a quadratically constrained quadratic program (QCQP).

LP ⊂ QP ⊂ QCQP.
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Examples for a QP

• Least Squares: Minimizing ‖Ax − b‖2

2
=

〈

x,AT Ax
〉

− 2 〈b,Ax〉 + 〈b, b〉

is an unconstrained QP. Analytical solution: x = A†b.

• Linear Program with random cost:

min 〈c, x〉

subject to: Gx � h,

Ax = b,

– c is random with: c̄ = E[c], and

covariance Σ = E[(c − c̄)(c − c̄)T ].

– the cost 〈c, x〉 is random with mean

E[〈c, x〉] = 〈c̄, x〉 and variance

Var[〈c, x〉] = 〈x,Σx〉 .

Risk-sensitive cost: E[〈c, x〉] + γ Var[〈c, x〉] = 〈c̄, x〉 + γ 〈x,Σx〉,

We get the following QP:

min 〈c̄, x〉 + γ 〈x,Σx〉

subject to: Gx � h,

Ax = b.
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Second-order cone problem

Definition 6. A second-order cone problem (SOCP) has the form

min 〈f, x〉

subject to: ‖Aix + bi‖ ≤ 〈ci, x〉 + di, i = 1, . . . , r

Fx = g,

where Ai ∈ R
ni×n, b ∈ R

ni and F ∈ R
p×n.

‖Ax + b‖
2
≤ 〈c, x〉 + d,

with A ∈ R
k×n is a second-order cone constraint. The function

R
n → R

k+1, x 7→ (Ax + b, 〈c, x〉 + d)

is required lie in the second order cone in R
k+1.

ci = 0, 1 ≤ i ≤ r: reduces to a QCQP, Ai = 0, 1 ≤ i ≤ r: reduces to a LP.

QCQP ⊂ SOCP.
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Example for SOCP

Robust linear programming: robust wrt to uncertainty in parameters,

• Consider the linear program

min 〈c, x〉

subject to: 〈ai, x〉 ≤ bi,

• ai ∈ Ei = {āi + Piu | ‖u‖
2
≤ 1} where Pi ∈ Sn

+,

min 〈c, x〉

subject to: 〈ai, x〉 ≤ bi, ∀ ai ∈ Ei

• sup{〈ai, x〉 | ai ∈ Ei} = 〈āi, x〉 + ‖Pix‖2
. Thus,

〈āi, x〉 + ‖Pix‖2
≤ bi (second-order constraint) .

min 〈c, x〉

subject to: 〈āi, x〉 + ‖Pix‖2
≤ bi.
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Example for SOCP II

Linear Programming with random constraints: ai ∼ N(āi,Σi).

The linear program with random constraints

min 〈c, x〉

subject to: P(〈ai, x〉 ≤ bi) ≥ η, i = 1, . . . , r,

can be expressed as SOCP

min 〈c, x〉

subject to: 〈āi, x〉 + Φ−1(η)

∥

∥

∥

∥

Σ
1

2

i x

∥

∥

∥

∥

2

≤ bi, i = 1, . . . , r,

where φ(z) = P(X ≤ z) with X ∼ N(0, 1).
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Generalized Inequality Constraints

Definition 7. A convex optimization problem with generalized

inequality constraints has the standard form

min
x∈D

f(x),

subject to: gi(x) �Ki
0, i = 1, . . . , r

Ax = b,

where f is convex, Ki ⊆ R
ki are proper cones, gi : R

n → R
ki are Ki-convex.

Properties:

• The feasible set and the optimal set are convex,

• Any locally optimal point is also globally optimal,

• The optimality condition for differentiable f holds without change.
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Conic Program

Definition 8. A conic-form problem or conic program has the form

min 〈c, x〉

subject to: Fx + g �K 0,

Ax = b,

where F ∈ R
r×n with g ∈ R

r and K is a proper cone in R
r.

K = positive-orthant ⇒ the conic program reduces to a linear program.
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Semi-definite Program

Definition 9. A semi-definite program (SDP) has the form

min 〈c, x〉

subject to:

n
∑

i=1

xiFi + G �Sk
+

0,

Ax = b,

where G,F1, . . . , Fr ∈ Sk and A ∈ R
s×n.

The standard form of an SDP (similar to the LP standard form):

min
X∈Sn

tr(CX)

subject to: tr(AiX) = bi, i = 1, . . . , s

X � 0,

where C,A1, . . . , As ∈ Sn and A ∈ R
s×n.
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Example of SDP

Fastest mixing Markov chain on an undirected graph:

• Let G = (V,E) where |V | = n and E ⊂ {1, . . . , n} × {1, . . . , n},

• Markov chain on the graph with states X(t) with transition probabilities

Pij = P
(

X(t + 1) = i |X(t) = j
)

,

from vertex j to vertex i (note that (i, j) has to be in E).

The matrix P should satisfy Pij = 0 for all (i, j) 6∈ E and

Pij ≥ 0, i, j = 1, . . . , n, 1T P = 1T , P = P T .

• Since P is symmetric and 1T P = 1T we have P1 = 1.

Uniform distribution pi = 1

n
is an equilibrium of the Markov chain.

Convergence rate is determined by r = max{λ2,−λn}, where

1 = λ1 ≥ λ2 ≥ . . . ≥ λn,

are the eigenvalues of P . 29



Example of SDP II

Fastest mixing Markov chain on an undirected graph: We have

r = ‖QPQ‖
2,2 =

∥

∥

∥

∥

(1−
1

n
11T )P (1−

1

n
11T )

∥

∥

∥

∥

2,2

=

∥

∥

∥

∥

P −
1

n
11T

∥

∥

∥

∥

2,2

,

where Q = 1− 1

n
11T is the projection matrix on the subspace orthogonal to

1. Thus the mixing rate r is a convex function of P .

min
P∈Sn

∥

∥

∥

∥

P −
1

n
11T

∥

∥

∥

∥

2,2

subject to: P1 = 1,

Pij ≥ 0, i, j = 1, . . . , n,

Pij = 0, (i, j) 6∈ E

min
t∈R,P∈Sn

t

subject to: − t1 � P −
1

n
11T � t1

P1 = 1,

Pij ≥ 0, i, j = 1, . . . , n,

Pij = 0, (i, j) 6∈ E

The right problem is an SDP.
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