Convex Optimization and Modeling

Convex Optimization

Fourth lecture, 05.05.2010
Jun.-Prof. Matthias Hein

Convex functions:

- first-order condition: $f(y) \geq f(x)+\left\langle\left.\nabla f\right|_{x}, y-x\right\rangle$,
- second-order condition: Hessian $H f$ positive semi-definite,
- convex functions are continuous on the relative interior,
- a function f is convex \Longleftrightarrow the epigraph of f is a convex set.

Extensions:

- quasiconvex functions have convex sublevel sets,
- log-concave/convex $f: \log f$ is concave/convex.

Optimization:

- general definition and terminology
- convex optimization
- quasiconvex optimization
- linear optimization (linear programming (LP))
- quadratic optimization (quadratic programming (QP))
- geometric programming
- generalized inequality constraints
- semi-definite and cone programming

Definition 1. A general optimization problem has the form

$$
\begin{gathered}
\min _{x \in D} f(x) \\
\text { subject to: } g_{i}(x) \leq 0, i=1, \ldots, r \\
h_{j}(x)=0, j=1, \ldots, s
\end{gathered}
$$

- x is the optimization variable, f the objective (cost) function,
- $x \in D$ is feasible if the inequality and equality constraints hold at x.
- the optimal value p^{*} of the optimization problem

$$
p^{*}=\inf \{f(x) \mid x \text { feasible }\}
$$

$p^{*}=-\infty$: problem is unbounded from below,
$p^{*}=\infty$: problem is infeasible.

Terminology:

- A point x is called locally optimal if there exists $R>0$ such that

$$
f(x)=\inf \{f(z) \mid\|z-x\| \leq R, z \text { feasible }\} .
$$

- x is feasible,
$g_{i}(x)=0$: inequality constraint is active at x.
$g_{i}(x)<0$: is inactive.
A constraint is redundant if deleting it does not change the feasible set.
- If $f \equiv 0$ then the optimal value is either zero (feasible set is nonempty) or ∞ (feasible set is empty). This problem is the feasibility problem.
find x

$$
\begin{aligned}
\text { subject to: } & g_{i}(x) \leq 0, i=1, \ldots, r \\
& h_{j}(x)=0, j=1, \ldots, s
\end{aligned}
$$

Equivalent problems: Two problems are called equivalent if one can obtain from the solution of one problem the solution of the other problem and vice versa.

Transformations which lead to equivalent problems:

- Slack variables: $g_{i}(x) \leq 0 \Longleftrightarrow \exists s_{i} \geq 0$ such that $g_{i}(x)+s_{i}=0$.

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}, s \in \mathbb{R}^{r}} f(x) \\
& \text { subject to: } g_{i}(x)+s_{i}=0, i=1, \ldots, r \\
& s_{i} \geq 0, i=1, \ldots, r \\
& h_{j}(x)=0, j=1, \ldots, s
\end{aligned}
$$

which has variables $x \in \mathbb{R}^{n}$ and $s \in \mathbb{R}^{r}$.

Transformations which lead to equivalent problems II:

- Epigraph problem form of the standard optimization problem:

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}, t \in \mathbb{R}} t \\
& \text { subject to: } f(x)-t \leq 0 \\
& g_{i}(x) \leq 0, i=1, \ldots, r \\
& h_{j}(x)=0, j=1, \ldots, s
\end{aligned}
$$

which has variables $x \in \mathbb{R}^{n}$ and $t \in \mathbb{R}$.

Definition 2. A convex optimization problem has the standard form

$$
\begin{gathered}
\min _{x \in D} f(x) \\
\text { subject to: } g_{i}(x) \leq 0, i=1, \ldots, r \\
\quad\left\langle a_{j}, x\right\rangle=b_{j}, j=1, \ldots, s
\end{gathered}
$$

where f, g_{1}, \ldots, g_{r} are convex functions.

Difference to the general problem:

- the objective function must be convex,
- the inequality constraint functions must be convex,
- the equality constraint functions must be linear.
\Longrightarrow The feasible set of a convex optimization problem is convex.

Local and global minima
Theorem 1. Any locally optimal point of a convex optimization problem is globally optimal.

Proof. Suppose x is locally optimal, that means x is feasible and $\exists R>0$,

$$
f(x)=\inf \{f(z) \mid\|z-x\| \leq R, z \text { feasible }\} .
$$

Assume x is not globally optimal $\Longrightarrow \exists$ feasible y such that $f(y)<f(x)$.

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)<f(x),
$$

for any $0<\lambda<1 \Longrightarrow x$ is not locally optimal \downarrow.

Locally optimal points of quasiconvex problems are not generally globally optimal.

First-Order Condition for Optimality:

Theorem 2. Suppose f is convex and continuously differentiable, Then x is optimal if and only if x is feasible and

$$
\left\langle\left.\nabla f\right|_{x}, y-x\right\rangle \geq 0, \quad \forall y \in X
$$

Proof: Suppose $x \in X$ and $\left\langle\left.\nabla f\right|_{x}, y-x\right\rangle \geq 0, \quad \forall y \in X \Longrightarrow f(y) \geq f(x)$ for all $y \in X$ (first order condition).
Suppose that x is optimal but there is $y \in X$ such that

$$
\left\langle\left.\nabla f\right|_{x}, y-x\right\rangle<0 .
$$

Let $z=t y+(1-t) x$ with $t \in[0,1]$. Then $z(t)$ is feasible for all $t \in[0,1]$ and,

$$
\left.\frac{\partial f}{\partial t}\right|_{t=0}=\left\langle\left.\nabla f\right|_{x}, y-x\right\rangle<0
$$

so that for $t \ll 1$ we have $f(y)<f(x)$.

Geometric Interpretation:

- x^{*} on the boundary of the feasible set: $\left.\nabla f\right|_{x^{*}}$ defines a supporting hyperplane at x^{*}.
- x^{*} in the interior of the feasible set, $\left.\nabla f\right|_{x}=0$,
- Problem only with equality constraint $A x=b$, then x is optimal if

$$
\left\langle\left.\nabla f\right|_{x}, v\right\rangle=0, \quad \forall v \in \operatorname{ker}(A), \Longleftrightarrow \exists \nu \in \mathbb{R}^{s} \text { such that }\left.\nabla f\right|_{x}+A^{T} \nu=0
$$

Equivalent convex problems

$$
\begin{gathered}
\min _{x \in D} f(x) \\
\text { subject to: } g_{i}(x) \leq 0, i=1, \ldots, r \\
\quad\left\langle a_{j}, x\right\rangle=b_{j}, j=1, \ldots, s
\end{gathered}
$$

- Elimination of equality constraints: Let $F \in \mathbb{R}^{n \times k}$ and $x_{0} \in \mathbb{R}^{n}$ such that

$$
\begin{aligned}
& \qquad A x=b \quad \Longleftrightarrow x=F z+x_{0}, \quad z \in \mathbb{R}^{k}, \\
& \min f\left(F z+x_{0}\right), \\
& \text { subject to: } g_{i}\left(F z+x_{0}\right) \leq 0, i=1, \ldots, r
\end{aligned}
$$

This problem has only $n-\operatorname{dim}(\operatorname{ran}(A))$ or $\operatorname{dim}(\operatorname{ker} A)$ variables.

Transformations which preserve convexity

- Introduction of slack variables,
- Introduction of new linear equality constraints,
- Epigraph problem formulation,
- Minimization over some variables.

Definition 3. A quasiconvex optimization problem has the standard form

$$
\begin{aligned}
& \min _{x \in D} f(x), \\
& \text { subject to: } g_{i}(x) \leq 0, i=1, \ldots, r \\
&\left\langle a_{j}, x\right\rangle=b_{j}, j=1, \ldots, s,
\end{aligned}
$$

where f is quasiconvex and g_{1}, \ldots, g_{r} are convex functions.

Quasiconvex inequality functions can be reduced to convex inequality functions with the same 0 -sublevel set.

Theorem 3. Let X denote the feasible set of a quasiconvex optimization problem with a differentiable objective function f. Then $x \in X$ is optimal if

$$
\left\langle\left.\nabla f\right|_{x}, y-x\right\rangle>0, \quad \forall y \in X, y \neq x
$$

A quasi-convex function with $\left.\nabla f\right|_{x_{0}}=0$ but x_{0} is not optimal.

How to solve a quasiconvex optimization problem ?
Representation of the sublevel sets of a quasiconvex functions via sublevel sets of convex functions.

For $t \in \mathbb{R}$ let $\phi_{t}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a family of convex functions such that

$$
f(x) \leq t \quad \Longleftrightarrow \quad \phi_{t}(x) \leq 0,
$$

and for each x in the domain

$$
\phi_{s}(x) \geq \phi_{t}(x) \quad \text { for all } \quad s \leq t
$$

Solve the convex feasibility problem:
find x

$$
\begin{array}{ll}
\text { subject to: } & \phi_{t}(x) \leq 0 \\
& g_{i}(x) \leq 0, i=1, \ldots, r \\
& A x=b
\end{array}
$$

Two cases:

- a feasible point exists \Longrightarrow optimal value $p^{*} \leq t$
- problem is infeasible \Longrightarrow optimal value $p^{*} \geq t$

Solution procedure:

- assume $p^{*} \in[a, b]$ and use bisection $t=\frac{b+a}{2}$,
- after k-th iteration interval has length $\frac{b-a}{2^{k}}$,
- $k=\log _{2} \frac{b-a}{\epsilon}$ iterations in order to find an ϵ-approximation of p^{*}.

Definition 4. A general linear optimization problem (linear program (LP)) has the form

$$
\begin{array}{r}
\min \langle c, x\rangle \\
\text { subject to: } G x \preceq h, \\
A x=b,
\end{array}
$$

where $c \in \mathbb{R}^{n}, G \in \mathbb{R}^{r \times n}$ with $h \in \mathbb{R}^{r}$ and $A \in \mathbb{R}^{s \times n}$ with $b \in \mathbb{R}^{s}$.

A linear program is a convex optimization problem with

- affine cost function and linear inequality constraints
- The feasible set is a polyhedron.

The standard form of an LP

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}}\langle c, x\rangle \\
& \text { subject to: } A x=b, \\
& x \succeq 0 .
\end{aligned}
$$

Conversion of a general linear program into the standard form:

- introduce slack variables,
- decompose $x=x^{+}-x^{-}$with $x^{+} \succeq 0$ and $x^{-} \succeq 0$.

$$
\min _{x \in \mathbb{R}^{n}, s \in \mathbb{R}^{r}}\langle c, x\rangle
$$

$$
\min _{x^{+} \in \mathbb{R}^{n}, x^{-} \in \mathbb{R}^{n}, s \in \mathbb{R}^{r}}\left\langle c, x^{+}\right\rangle-\left\langle c, x^{-}\right\rangle
$$

subject to: $G x+s=h$,

$$
\begin{aligned}
& A x=b \\
& s \succeq 0
\end{aligned}
$$

$$
\begin{aligned}
\text { subject to: } & G x^{+}-G x^{-}+s=h, \\
& A x^{+}-A x^{-}=b, \\
& s \succeq 0, x^{+} \succeq 0, x^{-} \succeq 0
\end{aligned}
$$

Examples of LPs

The diet problem:

- A healthy diet has m different nutrients in quantities at least equal to b_{1}, \ldots, b_{m},
- n different kind of food and x_{1}, \ldots, x_{n} is the amount of them and has $\operatorname{costs} c_{1}, \ldots, c_{n}$,
- The food j contains an amount of $a_{i j}$ of nutrient i.
- Goal: find the cheapest diet that satisfies the nutritional requirements

$$
\begin{aligned}
& \min \langle c, x\rangle \\
& \text { subject to: } A x \succeq b, \\
& x \succeq 0 .
\end{aligned}
$$

Examples of LPs II

Chebychev center of a polyhedron:

- find the largest Euclidean ball and its center which fits into a polyhedron

$$
P=\left\{x \in \mathbb{R}^{n} \mid\left\langle a_{i}, x\right\rangle \leq b_{i}, i=1, \ldots, r\right\} .
$$

- constraint that the ball $B=\left\{x_{c}+u \mid\|u\| \leq R\right\}$ lies in one half-space

$$
\forall u \in \mathbb{R}^{n},\|u\| \leq R \quad \Longrightarrow \quad\left\langle a_{i}, x_{c}+u\right\rangle \leq b_{i} .
$$

With $\sup \left\{\left\langle a_{i}, u\right\rangle \mid\|u\| \leq R\right\}=R\left\|a_{i}\right\|_{2}$ the constraint can be rewritten as

$$
\left\langle a_{i}, x_{c}\right\rangle+R\left\|a_{i}\right\|_{2} \leq b_{i} .
$$

Thus the problem can be reformulated as

$$
\max _{x \in \mathbb{R}^{n}, R \in \mathbb{R}} R
$$

subject to: $\left\langle a_{i}, x_{c}\right\rangle+R\left\|a_{i}\right\|_{2} \leq b_{i}, \quad i=1, \ldots, r$.

Definition 5. A general quadratic program (QP) has the form

$$
\min \frac{1}{2}\langle x, P x\rangle+\langle q, x\rangle+c
$$

subject to: $G x \preceq h$,

$$
A x=b
$$

where $P \in S_{+}^{n}, G \in \mathbb{R}^{r \times n}$ and $A \in \mathbb{R}^{s \times n}$.
With quadratic inequality constraints:

$$
\frac{1}{2}\left\langle x, P_{i} x\right\rangle+\left\langle q_{i}, x\right\rangle+c_{i} \leq 0, \quad \text { with } P_{i} \in S_{+}^{n}, i=1, \ldots, r
$$

we have a quadratically constrained quadratic program (QCQP).
$\mathbf{L P} \subset \quad \mathbf{Q P} \subset \quad$ QCQP.

- Least Squares: Minimizing $\|A x-b\|_{2}^{2}=\left\langle x, A^{T} A x\right\rangle-2\langle b, A x\rangle+\langle b, b\rangle$ is an unconstrained QP. Analytical solution: $x=A^{\dagger} b$.
- Linear Program with random cost:
$-c$ is random with: $\bar{c}=\mathbb{E}[c]$, and covariance $\Sigma=\mathbb{E}\left[(c-\bar{c})(c-\bar{c})^{T}\right]$.

$$
\min \langle c, x\rangle
$$

subject to: $G x \preceq h$,

$$
A x=b
$$

- the cost $\langle c, x\rangle$ is random with mean $\mathbb{E}[\langle c, x\rangle]=\langle\bar{c}, x\rangle$ and variance

$$
\operatorname{Var}[\langle c, x\rangle]=\langle x, \Sigma x\rangle
$$

Risk-sensitive cost: $\mathbb{E}[\langle c, x\rangle]+\gamma \operatorname{Var}[\langle c, x\rangle]=\langle\bar{c}, x\rangle+\gamma\langle x, \Sigma x\rangle$,
We get the following QP:

$$
\begin{gathered}
\min \langle\bar{c}, x\rangle+\gamma\langle x, \Sigma x\rangle \\
\text { subject to: } G x \preceq h, \\
A x=b .
\end{gathered}
$$

Definition 6. A second-order cone problem (SOCP) has the form

$$
\begin{aligned}
\min & \langle f, x\rangle \\
\text { subject to: } & \left\|A_{i} x+b_{i}\right\| \leq\left\langle c_{i}, x\right\rangle+d_{i}, i=1, \ldots, r \\
& F x=g
\end{aligned}
$$

where $A_{i} \in \mathbb{R}^{n_{i} \times n}, b \in \mathbb{R}^{n_{i}}$ and $F \in \mathbb{R}^{p \times n}$.

$$
\|A x+b\|_{2} \leq\langle c, x\rangle+d
$$

with $A \in \mathbb{R}^{k \times n}$ is a second-order cone constraint. The function

$$
\mathbb{R}^{n} \rightarrow \mathbb{R}^{k+1}, \quad x \mapsto(A x+b,\langle c, x\rangle+d)
$$

is required lie in the second order cone in \mathbb{R}^{k+1}. $c_{i}=0,1 \leq i \leq r$: reduces to a QCQP, $\quad A_{i}=0,1 \leq i \leq r$: reduces to a LP. QCQP $\subset \quad$ SOCP.

Robust linear programming: robust wrt to uncertainty in parameters,

- Consider the linear program

$$
\begin{gathered}
\min \langle c, x\rangle \\
\text { subject to: }\left\langle a_{i}, x\right\rangle \leq b_{i},
\end{gathered}
$$

- $a_{i} \in E_{i}=\left\{\bar{a}_{i}+P_{i} u \mid\|u\|_{2} \leq 1\right\}$ where $P_{i} \in S_{+}^{n}$,

$$
\min \langle c, x\rangle
$$

$$
\text { subject to: }\left\langle a_{i}, x\right\rangle \leq b_{i}, \quad \forall a_{i} \in E_{i}
$$

- $\sup \left\{\left\langle a_{i}, x\right\rangle \mid a_{i} \in E_{i}\right\}=\left\langle\bar{a}_{i}, x\right\rangle+\left\|P_{i} x\right\|_{2}$. Thus,

$$
\begin{gathered}
\left\langle\bar{a}_{i}, x\right\rangle+\left\|P_{i} x\right\|_{2} \leq b_{i} \quad(\text { second-order constraint) } . \\
\min \langle c, x\rangle \\
\text { subject to: }\left\langle\bar{a}_{i}, x\right\rangle+\left\|P_{i} x\right\|_{2} \leq b_{i} .
\end{gathered}
$$

Linear Programming with random constraints: $a_{i} \sim N\left(\bar{a}_{i}, \Sigma_{i}\right)$. The linear program with random constraints

$$
\begin{gathered}
\min \langle c, x\rangle \\
\text { subject to: } \mathrm{P}\left(\left\langle a_{i}, x\right\rangle \leq b_{i}\right) \geq \eta, \quad i=1, \ldots, r
\end{gathered}
$$

can be expressed as SOCP

$$
\min \langle c, x\rangle
$$

subject to: $\left\langle\bar{a}_{i}, x\right\rangle+\Phi^{-1}(\eta)\left\|\Sigma_{i}^{\frac{1}{2}} x\right\|_{2} \leq b_{i}, \quad i=1, \ldots, r$,
where $\phi(z)=\mathrm{P}(X \leq z)$ with $X \sim N(0,1)$.

Definition 7. A convex optimization problem with generalized inequality constraints has the standard form

$$
\begin{aligned}
& \min _{x \in D} f(x), \\
& \text { subject to: } g_{i}(x) \preceq_{K_{i}} 0, \quad i=1, \ldots, r \\
& A x=b,
\end{aligned}
$$

where f is convex, $K_{i} \subseteq \mathbb{R}^{k_{i}}$ are proper cones, $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k_{i}}$ are K_{i}-convex.

Properties:

- The feasible set and the optimal set are convex,
- Any locally optimal point is also globally optimal,
- The optimality condition for differentiable f holds without change.

Definition 8. A conic-form problem or conic program has the form

$$
\begin{gathered}
\min \langle c, x\rangle \\
\text { subject to: } F x+g \preceq_{K} 0, \\
A x=b,
\end{gathered}
$$

where $F \in \mathbb{R}^{r \times n}$ with $g \in \mathbb{R}^{r}$ and K is a proper cone in \mathbb{R}^{r}.
$K=$ positive-orthant \Rightarrow the conic program reduces to a linear program.

Definition 9. A semi-definite program (SDP) has the form

$$
\begin{gathered}
\min \langle c, x\rangle \\
\text { subject to: } \sum_{i=1}^{n} x_{i} F_{i}+G \preceq_{S_{+}^{k}} 0, \\
A x=b,
\end{gathered}
$$

where $G, F_{1}, \ldots, F_{r} \in S^{k}$ and $A \in \mathbb{R}^{s \times n}$.

The standard form of an SDP (similar to the LP standard form):

$$
\begin{aligned}
\min _{X \in S^{n}} & \operatorname{tr}(C X) \\
\text { subject to: } & \operatorname{tr}\left(A_{i} X\right)=b_{i}, \quad i=1, \ldots, s \\
& X \succeq 0,
\end{aligned}
$$

where $C, A_{1}, \ldots, A_{s} \in S^{n}$ and $A \in \mathbb{R}^{s \times n}$.

Example of SDP

Fastest mixing Markov chain on an undirected graph:

- Let $G=(V, E)$ where $|V|=n$ and $E \subset\{1, \ldots, n\} \times\{1, \ldots, n\}$,
- Markov chain on the graph with states $X(t)$ with transition probabilities

$$
P_{i j}=\mathrm{P}(X(t+1)=i \mid X(t)=j)
$$

from vertex j to vertex i (note that (i, j) has to be in E).
The matrix P should satisfy $P_{i j}=0$ for all $(i, j) \notin E$ and

$$
P_{i j} \geq 0, i, j=1, \ldots, n, \quad \mathbf{1}^{T} P=\mathbf{1}^{T}, \quad P=P^{T} .
$$

- Since P is symmetric and $\mathbf{1}^{T} P=\mathbf{1}^{T}$ we have $P \mathbf{1}=\mathbf{1}$.

Uniform distribution $p_{i}=\frac{1}{n}$ is an equilibrium of the Markov chain.
Convergence rate is determined by $r=\max \left\{\lambda_{2},-\lambda_{n}\right\}$, where

$$
1=\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}
$$

Example of SDP II

Fastest mixing Markov chain on an undirected graph: We have

$$
r=\|Q P Q\|_{2,2}=\left\|\left(\mathbb{1}-\frac{1}{n} \mathbf{1 1}^{T}\right) P\left(\mathbb{1}-\frac{1}{n} \mathbf{1 1}^{T}\right)\right\|_{2,2}=\left\|P-\frac{1}{n} \mathbf{1 1}^{T}\right\|_{2,2},
$$

where $Q=\mathbb{1}-\frac{1}{n} \mathbf{1 1}^{T}$ is the projection matrix on the subspace orthogonal to 1. Thus the mixing rate r is a convex function of P.

$$
\min _{P \in S^{n}}\left\|P-\frac{1}{n} \mathbf{1 1} 1^{T}\right\|_{2,2}
$$

subject to: $P \mathbf{1}=\mathbf{1}$,

$$
\begin{aligned}
& P_{i j} \geq 0, \quad i, j=1, \ldots, n \\
& P_{i j}=0, \quad(i, j) \notin E
\end{aligned}
$$

$$
\begin{gathered}
\min _{t \in \mathbb{R}, P \in S^{n}} t \\
\text { subject to: }-t \mathbb{1} \preceq P-\frac{1}{n} \mathbf{1 1}^{T} \preceq t \mathbb{1}
\end{gathered}
$$

$$
\begin{aligned}
& P \mathbf{1}=1 \\
& P_{i j} \geq 0, \quad i, j=1, \ldots, n \\
& P_{i j}=0, \quad(i, j) \notin E
\end{aligned}
$$

The right problem is an SDP.

