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S Reminder from last time

Convex functions:
e first-order condition: f(y) > f(x) +(Vfls,y — x),
e second-order condition: Hessian H f positive semi-definite,

e convex functions are continuous on the relative interior,

e a function f is convex <= the epigraph of f is a convex set.

Extensions:
e quasiconvex functions have convex sublevel sets,

e log-concave/convex f: log f is concave/convex.
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Program of today/next lecture

Optimization:

general definition and terminology

convex optimization

quasiconvex optimization

linear optimization (linear programming (LP))
quadratic optimization (quadratic programming (QP))
geometric programming

generalized inequality constraints

semi-definite and cone programming

MACHINE LEARNING
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Mathematical Programming

Definition 1. A general optimization problem has the form

min f(z),

subject to: g;(x) <0, i=1,...,7

e 1z is the optimization variable, f the objective (cost) function,
e r € D is feasible if the inequality and equality constraints hold at =.

e the optimal value p* of the optimization problem
p* =inf{f(z) |z feasible }.

p* = —o0: problem is unbounded from below,

p* = oo: problem is infeasible.
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Terminology:

e A point zx is called locally optimal if there exists R > 0 such that
f(x) =inf{f(2)]| ||z — «|| < R, z feasible }.

e 1 is feasible,
g;(x) = 0: inequality constraint is active at x.
gi(r) < 0: is inactive.
A constraint is redundant if deleting it does not change the feasible set.

e If f =0 then the optimal value is either zero (feasible set is nonempty)

or oo (feasible set is empty). This problem is the feasibility problem.

find x
subject to: g;(z) <0, i=1,...,r
hj(a:):O, jZl,...,S
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Equivalent problems: Two problems are called equivalent if one can
obtain from the solution of one problem the solution of the other problem

and vice versa.

Transformations which lead to equivalent problems:

e Slack variables: g;(z) < 0 <= Js; > 0 such that g;(z) + s; = 0.

a:ERI}ll,IEERT f(ZC),

subject to: g;(x)+s;, =0, i=1,...,r
SZ‘ZO, iZl,...,T
hj(ll)):(), jZl,...,S,

which has variables £ € R™ and s € R".
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Transformations which lead to equivalent problems II:

e Epigraph problem form of the standard optimization problem:

min ¢,
reR™, teR

subject to: f(x) —t <0,
gi(x) <0,i=1,...,r
hj(x) :O, jZl,...,S,

which has variables x € R™ and ¢t € R.
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Definition 2. A convex optimization problem has the standard form

min f(z),
subject to: g;(x) <0, i=1,...,r

<aj,x> :bj, jIl,...,S,

where f, g1,...,9, are convexr functions.

Difference to the general problem:
e the objective function must be convex,
e the inequality constraint functions must be convex,
e the equality constraint functions must be linear.

— The feasible set of a convex optimization problem is convex.
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Local and global minima

Theorem 1. Any locally optimal point of a convexr optimization problem 1is

globally optimal.

Proof. Suppose z is locally optimal, that means «x is feasible and 3 R > 0,
f(x) =inf{f(2)]| ||z — «|| < R, z feasible }.
Assume z is not globally optimal = 3 feasible y such that f(y) < f(x).

fAz+ (1 =Ny) < Af(x) + (1= A)f(y) < f(=),

for any 0 < A <1 = z is not locally optimal %. O

Locally optimal points of quasiconvex problems are not generally globally

optimal.
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First-Order Condition for Optimality:

Theorem 2. Suppose f is convexr and continuously differentiable, Then x is

optimal if and only if x 1s feasible and

(Vfle;y—2) >0, VyeX.

Proof: Suppose r € X and (Vf|,,y—z) >0, Vye X = f(y) > f(x)
for all y € X (first order condition).
Suppose that x is optimal but there is y € X such that

(Vflz,y —x) <O.

Let z =ty 4+ (1 — t)z with ¢t € [0,1]. Then z(¢) is feasible for all ¢ € [0, 1] and,
of
Ot 1t=0
so that for ¢ < 1 we have f(y) < f(z) 5.



First-Order Condition for Optimality
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e z* on the boundary of the feasible set: V f|,« defines a supporting
hyperplane at z*.

e z* in the interior of the feasible set, V f|, = 0,

e Problem only with equality constraint Ax = b, then x is optimal if

(Vfle,v) =0, Vo eker(A), —<= Fv € R® such that Vf|, + Alv =0.
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Equivalent convex problems

min f(z),
subject to: g;(z) <0, i=1,...,r

<aj,:c> :bj, jZl,...,S,

e Elimination of equality constraints:
Let F € R™* and xy € R™ such that

Ar=b <<= ax=Fz+uz9 2R

min f(Fz + xg),
subject to: ¢g;(Fz+x9) <0,1=1,...,r

This problem has only n — dim(ran(A)) or dim(ker A) variables.



Equivalent convex problems 11
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Transformations which preserve convexity
e Introduction of slack variables,
e Introduction of new linear equality constraints,
e Epigraph problem formulation,

e Minimization over some variables.



Quasiconvex Optimization
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Definition 3. A quasiconvex optimization problem has the standard

form
min f(x
xeD f( )’
subject to: g;(x) <0, i=1,...,r
<aj,x> — 0y, j: 1,...,8,
where [ is quasiconver and qi,..., g, are convex functions.

Quasiconvex inequality functions can be reduced to convex inequality

functions with the same 0-sublevel set.
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Theorem 3. Let X denote the feasible set of a quasiconvexr optimization

problem with a differentiable objective function f. Then x € X 1is optimal if

<Vf‘a;,y—£l3>>0, \V/yGX,y#ﬁU

A quasi-convex function with V f|,, = 0 but x¢ is not optimal.
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How to solve a quasiconvex optimization problem 7
Representation of the sublevel sets of a quasiconvex functions via sublevel
sets of convex functions.
For t € R let ¢; : R — R be a family of convex functions such that

flz) <t = ¢ulz) <0,
and for each x in the domain

¢s(x) > pe(x) forall s<t.
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Solve the convex feasibility problem:

find x
subject to: ¢¢(x) <0

Two cases:
e a feasible point exists — optimal value p* <t

e problem is infeasible =—  optimal value p* >t

Solution procedure:

e assume p* € [a,b] and use bisection t = 22,
e after k-th iteration interval has length 2k :

e k= log, %a iterations in order to find an e-approximation of p*.



Linear Programming

MACHINE LEARNING

Definition 4. A general linear optimization problem (linear program
(LP)) has the form

min (c, x)
subject to: Gx = h,
Ax = b,

where ¢ € R", G € R™™ with h € R" and A € R**™ with b € R®.

A linear program is a convex optimization problem with
e affine cost function and linear inequality constraints

e The feasible set is a polyhedron.
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Linear Programming 11

The standard form of an LP

min (c,x
reR™ < ’ >
subject to: Az = b,

x >~ 0.

Conversion of a general linear program into the standard form:
e introduce slack variables,

e decompose z =z — 2~ with 7 > 0 and 2= > 0.

. . _I_ —
min c.xmy — (e, x
xERIE}?ERT <C’ :1:> rTcR", x— R, scR" < ’ > < ’ >
subject to: Gx + s = h, subject to: Got — Ga™ + s = h,
Az =D, Azt — Az~ =D,

s = Q0. s>=0,z7 >0, 2~ =0.

o
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The diet problem:

e A healthy diet has m different nutrients in quantities at least equal to

b17 R bm7
e n different kind of food and z1,...,x, is the amount of them and has
costs ¢1,...,Cp,

e The food j contains an amount of a;; of nutrient <.

e Goal: find the cheapest diet that satisfies the nutritional requirements

min (c, )
subject to: Az > b,
x >~ 0.
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Chebychev center of a polyhedron:
e find the largest Euclidean ball and its center which fits into a polyhedron

P={xeR"| (aj,z) <b;, i=1,...,r}
e constraint that the ball B = {z. + u| ||u|| < R} lies in one half-space
Vue R" Jlul| <R = (aj,zc+u) <b.
With sup{(a;,u) | ||u|]] < R} = R ||a;||, the constraint can be rewritten as

(i, ze) + R ailly < b

Thus the problem can be reformulated as

max R
JZGR”, ReR

subject to: (ai,zc) + R||aills < by, 1=1,...,7

YN
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Definition 5. A general quadratic program (QP) has the form

1
min 5 (x, Px) + {(q,x) + ¢

subject to: Gx = h,
Ax = b,

where P € S, G € R™" and A € R®*"™,

With quadratic inequality constraints:

1
§<377Pi55>+<%‘,$>+6z' <0, withP,eSy, i=1,...,r

we have a quadratically constrained quadratic program (QCQP).

LP Cc QP C QCQP.
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Examples for a QP

e Least Squares: Minimizing ||Az — b||5 = (x, AT Az)y — 2 (b, Az) + (b, ])

is an unconstrained QP. Analytical solution: z = ATb.
e Linear Program with random cost:

— ¢ is random with: ¢ = E|¢|, and

covariance ¥ = E[(c — ¢)(c — &)1].
min (c, x)
. — the cost (¢, ) is random with mean
subject to: Gz = h, _ ,
E[{c,x)] = (¢, x) and variance
Ax = b,

Var|{c,x)] = (x, Xx) .

Risk-sensitive cost: E[(c,x)| + v Var[(c,z)] = (¢, z) + 7 (x, Xx),
We get the following QP:
min (¢, z) + v (x, Xx)
subject to: Gx <X h,
Az =b.

'2 XD )
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Second-order cone problem

Definition 6. A second-order cone problem (SOCP) has the form

min (f,z)
subject to: ||Asx + bi|| < (cijyx) +d;, i =1,...,r
Fx =g,
where A; € R"*™ b € R™ and F € RP*"™,
| Az + b, < (e,2) +d,
with A € RF*X" i5 3 second-order cone constraint. The function

R" — R g (Az 4+ b, (¢, z) + d)

is required lie in the second order cone in RF*1.
c; =0, 1< <r:reduces toa QCQP, A, =0, 1<:<r: reduces to a LP.
QCQP <c SOCP.

Yy O
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Robust linear programming: robust wrt to uncertainty in parameters,

e Consider the linear program
min (c, )

subject to: (a;,x) < b;,
o a; € By ={a; + Pu| ||ul|y, <1} where P; € S7,

min (c, )

subject to: (a;,z) <b;, Va; € F;
o sup{(ai,:@ ‘a@' - EZ} = <C_7J@',£IJ> + HPZZIJHQ Thus,
(a;,x) + ||Pix|l, < b  (second-order constraint) .

min (c, )

subject to: (a;,z) + || Pix|ly < b;.
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Linear Programming with random constraints: a; ~ N(a;, ;).

The linear program with random constraints

min (c, )

subject to: P({a;,xz) <b;) >n, i=1,...,r
can be expressed as SOCP
min (c, )

1
subject to: (@;,x) + ® 1 (n) HEZ?:C

where ¢(z) = P(X < z) with X ~ N(0,1).
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Generalized Inequality Constraints

Definition 7. A convex optimization problem with generalized

imequality constraints has the standard form

min f(z),
subject to: gi(x) <k, 0, 1=1,...,r

Ax = b,

where f is convex, K; C R are proper cones, g; : R* — R¥ are K;-conver.

Properties:
e The feasible set and the optimal set are convex,
e Any locally optimal point is also globally optimal,
e The optimality condition for differentiable f holds without change.

' WAl
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Conic Program
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Definition 8. A conic-form problem or conic program has the form

min (c, )
subject to: Fx 4+ g g 0,
Ax = b,

where F' € R™™ with g € R" and K s a proper cone in R".

K = positive-orthant = the conic program reduces to a linear program.

)y P~
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Semi-definite Program

Definition 9. A semai-definite program (SDP) has the form

min (c, x)

n
subject to: ZZB@FZ +G jS—’T— 0,
i=1
Ax = b,

where G, Fy, ..., F. € S¥ and A € RS*"™.

The standard form of an SDP (similar to the LP standard form):

min tr(CX)
Xesn

subject to: tr(A;X)=0b;, 1=1,...,s
X =0,

where C. A{.....A. € S™ and A € R$*",

YO
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Fastest mixing Markov chain on an undirected graph:
o Let G=(V,FE) where |V|=nand £ C{1,...,n} x{1,...,n},
e Markov chain on the graph with states X (¢) with transition probabilities

Py =P(X(t+1) =i X(t) = j),

from vertex j to vertex ¢ (note that (i, ) has to be in F).
The matrix P should satisfy P;; = 0 for all (¢,7) ¢ E and

P;>0,i,j=1,....,n, 1'P=1" pP=p

e Since P is symmetric and 17 P = 17" we have P1 = 1.

Uniform distribution p; = % is an equilibrium of the Markov chain.

Convergence rate is determined by r = max{\2, —\,, }, where

T=X > > ... >\,

P B I T A 2D PR,
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Fastest mixing Markov chain on an undirected graph: We have

1
— HP —
2,2 n

)

1 1
r=QPQl,, = H(n - E11T)P(11 — —11%)
2.2

n

where () = 1 — %11T is the projection matrix on the subspace orthogonal to

1. Thus the mixing rate r is a convex function of P.

1 min ¢
min ||P — =117 teR, pes™
’ subject to: —t1 X P — —11" <Xt1

subject to: P1 =1, n
. P1=1,
P; >0, ¢7=1,...,n,

.. PZZO, i,jzl,...,n,
Py=0, (i,j)¢E ! o
Pi;=0, (1,j)¢FE
The right problem is an SDP.

DM
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