
Short Introduction to Spectral Clustering
MLSS 2007

Practical Session on Graph Based Algorithms for Machine
Learning

Matthias Hein and Ulrike von Luxburg

August 2007



M
a
tt

h
ia

s
H

ei
n

a
n
d

U
lr
ik

e
vo

n
L
u
xb

u
rg

:
S
h
o
rt

In
tr

o
d
u
ct

io
n

to
S
p
ec

tr
a
l
C
lu

st
er

in
g

A
u
g
u
st

2
0
0
7

1

What is clustering, intuitively?

Given:

• Data set of “objects”
• Some relations between those objects (similarities, distances,

neighborhoods, connections, ... )

Intuitive goal: Find meaningful groups of objects such that

• objects in the same group are “similar”

• objects in different groups are “dissimilar”

Reason to do this:

• exploratory data analysis

• reducing the complexity of the data

• many more
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Example: Clustering gene expression data
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Clustering Gene Expression Data

M. Eisen et al., PNAS, 1998
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Example: Social networks

Corporate email communication (Adamic and Adar, 2005)
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Example: Image segmentation

Figure 6: Automatic image segmentation. Fully automatic intensity based image segmen-
tation results using our algorithm.

More experiments and results on real data sets can be found on our web-page
http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html

5 Discussion & Conclusions

Spectral clustering practitioners know that selecting good parameters to tune the cluster-
ing process is an art requiring skill and patience. Automating spectral clustering was the
main motivation for this study. The key ideas we introduced are three: (a) using a local
scale, rather than a global one, (b) estimating the scale from the data, and (c) rotating the
eigenvectors to create the maximally sparse representation. We proposed an automated
spectral clustering algorithm based on these ideas: it computes automatically the scale and
the number of groups and it can handle multi-scale data which are problematic for previous
approaches.

Some of the choices we made in our implementation were motivated by simplicity and are
perfectible. For instance, the local scale σ might be better estimated by a method which
relies on more informative local statistics. Another example: the cost function in Eq. (3) is
reasonable, but by no means the only possibility (e.g. the sum of the entropy of the rows
Zi might be used instead).
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Spectral clustering on one slide

• Given: data points X1, ..., Xn, pairwise similarities wij = s(Xi , Xj)

• Build similarity graph: vertices = data points, edges = similarities

• clustering = find a cut through the graph

◦ define a cut objective function

◦ solve it

; spectral clustering
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Graph notation

• W = (wij) adjacency matrix of the graph

• di =
∑

j wij degree of a vertex

• D = diag(d1, . . . , dn) degree matrix

• |A| = number of vertices in A

• vol(A) =
∑

i∈A di

In the following: vector f = (f1, ..., fn) interpreted as function on
the graph with f (Xi) = fi .
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Clustering using graph cuts

Clustering: within-similarity high, between similarity low
minimize cut(A, B) :=

∑
i∈A,j∈B wij

Balanced cuts:
RatioCut(A, B) := cut(A, B)( 1

|A| + 1
|B|)

Ncut(A, B) := cut(A, B)( 1
vol(A)

+ 1
vol(B)

)

Mincut can be solved efficiently, but RatioCut or Ncut is NP hard.
Spectral clustering: relaxation of RatioCut or Ncut, respectively.
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Unnormalized graph Laplacian

Defined as
L = D −W

Key property: for all f ∈ R
n

f ′Lf = f ′Df − f ′Sf

=
∑

i

di f
2
i −

∑
i ,j

fi fjwij

=
1

2

(∑
i

(
∑

j

wij)f
2
i − 2

∑
ij

fi fjwij +
∑

j

(
∑

i

wij)f
2
j

)

=
1

2

∑
ij

wij(fi − fj)
2
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Unnormalized graph Laplacian (2)
Spectral properties:
• L is symmetric (by assumption) and positive semi-definite (by

key property)

• Smallest eigenvalue of L is 0, corresponding eigenvector is 1

• Thus eigenvalues 0 = λ1 ≤ λ2 ≤ ... ≤ λn.

First relation between spectrum and clusters:
• Multiplicity of eigenvalue 0 = number k of connected

components A1, ..., Ak of the graph.

• eigenspace is spanned by the characteristic functions 1A1 , ..., 1Ak

of those components (so all eigenvectors are piecewise constant).

Proof: Exercise
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Normalized graph Laplacians

Row sum (random walk) normalization:

Lrw = D−1L = I − D−1S

Symmetric normalization:

Lsym = D−1/2LD−1/2 = I − D−1/2SD−1/2

Spectral properties similar to the ones of L
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Solving Balanced Cut Problems

Relaxation for simple balanced cuts:

minA,B cut(A, B) s.t. |A| = |B|

Choose f = (f1, ..., fn)
′ with fi =

{
1 if Xi ∈ A

−1 if Xi ∈ B

• cut(A, B) =
∑

i∈A,j∈B wij = 1
4

∑
i ,j wij(fi − fj)

2 = 1
4
f ′Lf

• |A| = |B| =⇒
∑

i fi = 0 =⇒ f t
1 = 0 =⇒ f ⊥ 1

• ‖f ‖ =
√

n ∼ const.

minf f ′Lf s.t. f ⊥ 1, fi = ±1, ‖f ‖ =
√

n

Relaxation: allow fi ∈ R

By Rayleigh: solution f is the second eigenvector of L
Reconstructing solution: Xi ∈ A ⇐⇒ fi >= 0, Xi ∈ B otherwise
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Solving Balanced Cut Problems (2)
Similar relaxations work for the other balanced cuts:

• Relaxing RatioCut ; eigenvectors of L ; unnormalized spectral
clustering

• Relaxing Ncut ; eigenvectors of Lrw ; normalized spectral
clustering

• Case of k > 2 works similar, results in a trace min problem
minV Tr H ′LH where V is a n × k orthonormal matrix. Then
again Rayleigh-Ritz.
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Spectral clustering - main algorithms

Input: Similarity matrix S , number k of clusters to construct

• Build similarity graph

• Compute the first k eigenvectors v1, . . . , vk of the matrix{
L for unnormalized spectral clustering

Lrw for normalized spectral clustering

• Build the matrix V ∈ R
n×k with the eigenvectors as columns

• Interpret the rows of V as new data points Zi ∈ R
k

v1 v2 v3

Z1 v11 v12 v13
...

...
...

...
Zn vn1 vn2 vn3

• Cluster the points Zi with the k-means algorithm in R
k .
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DemoSpectralClustering

Exploring Spectral Clustering

• Lowest number of noise dimensions

• Symmetric kNN graph with k = 10

• Number of clusters = 2

• Play around with data sets Two moons balanced and Three
Gaussians (first pick reasonable σ!)

• Try to understand the plots concerning the eigenvectors and the
embedding in R

d

• Increase the number of clusters. Can you predict which clusters
spectral clustering is going to choose, just by looking at the
eigenvector plots?
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DemoSpectralClustering (2)
Exploring Spectral Clustering

• Lowest number of noise dimensions

• Symmetric kNN graph with k = 10

• Number of clusters = 2

• Play around with data sets Two moons balanced and Three
Gaussians (first pick reasonable σ!)

• Try to understand the plots concerning the eigenvectors and the
embedding in R

d

• Increase the number of clusters. Can you predict which clusters
spectral clustering is going to choose, just by looking at the
eigenvector plots?

Result: Spectral clustering works pretty well ,
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DemoSpectralClustering (3)
Low parameters K in the context of spectral clustering

• Data set two gaussians different variance

• Lowest number of noise dimensions

• Mutual kNN graph

• Number of clusters = 2

Vary the number of neighbors between 3 and 15. What can you
observe? Can you explain the result?



M
a
tt

h
ia

s
H

ei
n

a
n
d

U
lr
ik

e
vo

n
L
u
xb

u
rg

:
S
h
o
rt

In
tr

o
d
u
ct

io
n

to
S
p
ec

tr
a
l
C
lu

st
er

in
g

A
u
g
u
st

2
0
0
7

17

DemoSpectralClustering (4)
Low parameters K in the context of spectral clustering

• Data set two gaussians different variance

• Lowest number of noise dimensions

• Mutual kNN graph

• Number of clusters = 2

Vary the number of neighbors between 3 and 15. What can you
observe? Can you explain the result?

• Many connected components lead to trivial or undesirable
results!

• Always choose the connectivity parameter of the graph so that
the graph only has one connected component!
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DemoSpectralClustering (5)
High parameters K in the context of spectral clustering

• Data set two gaussians different variance

• Lowest number of noise dimensions

• Symmetric kNN graph

• Number of clusters = 2

Vary the number of neighbors. For which k do the clusters in the
embedding look “well separated”? In those cases, does spectral
clustering always discover the correct clusters?



M
a
tt

h
ia

s
H

ei
n

a
n
d

U
lr
ik

e
vo

n
L
u
xb

u
rg

:
S
h
o
rt

In
tr

o
d
u
ct

io
n

to
S
p
ec

tr
a
l
C
lu

st
er

in
g

A
u
g
u
st

2
0
0
7

19

DemoSpectralClustering (6)
High parameters K in the context of spectral clustering

• Data set two gaussians different variance

• Lowest number of noise dimensions

• Symmetric kNN graph

• Number of clusters = 2

Vary the number of neighbors from low to high. For which k do the
clusters in the embedding look “well separated”? In those cases,
does spectral clustering always discover the correct clusters?

High values of k usually don’t add useful information (can even be
misleading) but increase the complexity. Try to choose rather low
values of K .
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DemoSpectralClustering (7)
High number of noise dimensions

• Data set two gaussians balanced

• Noise dimensions 50

• σ = 0.5

• Mutual kNN graph, k = 200

What happens?
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DemoSpectralClustering (8)
High number of noise dimensions

• Data set two gaussians balanced

• Noise dimensions 50

• σ = 0.5

• Mutual kNN graph, k = 200

What happens?

Even though have one connected component, result is unreliable.
Reason: similarity function is not informative, σ is too small!

If we pick a better σ, then spectral clustering works quite well, even
in the presence of noise!
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Some selected literature on spectral clustering
Of course I recommend the following ,
• U.von Luxburg. A tutorial on spectral clustering. Statistics and Computing, to appear.

On my homepage.

The three articles which are most cited:

I Meila, M. and Shi, J. (2001). A random walks view of spectral segmentation.
AISTATS.

I Ng, A., Jordan, M., and Weiss, Y. (2002). On spectral clustering: analysis and an
algorithm. NIPS 14.

I Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation.IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888 - 905.

Nice historical overview on spectral clustering; and how relaxation can go wrong:
• Spielman, D. and Teng, S. (1996). Spectral partitioning works: planar graphs and finite

element meshes. In FOCS, 1996


