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What is clustering, intuitively?

Given:

e Data set of “objects”
e Some relations between those objects (similarities, distances,
neighborhoods, connections, ... )

Intuitive goal: Find meaningful groups of objects such that

e objects in the same group are “similar”
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e objects in different groups are “dissimilar”

Reason to do this:
e exploratory data analysis
e reducing the complexity of the data

e many more
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Example: Clustering gene expression data

start clustered randoml random2 random3
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M. Eisen et al., PNAS, 1998




Corporate email communication (Adamic and Adar, 2005)

Example: Social networks
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Example: Image segmentation
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(from Zelnik-Manor/Perona, 2005)
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Spectral clustering on one slide
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e Given: data points Xi, ..., X, pairwise similarities w;; = s(X;, X)

e Build similarity graph: vertices = data points, edges = similarities
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s

e clustering = find a cut through the graph
o define a cut objective function

o solve it
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Graph notation

e W = (w;) adjacency matrix of the graph
o d; =) ; w; degree of a vertex

e D = diag(d,, ..., d,) degree matrix

e |A| = number of vertices in A

e vol(A) =D ,cadi

o
=
3
g
a
O
I
5
]
9
a
0
e
2
2
5
g
<
g
5
5
P
i
S
£
7]

b

In the following: vector f = (fi, ..., f,) interpreted as function on
the graph with 7(X;) = f.
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Clustering using graph cuts

Clustering: within-similarity high, between similarity low
minimize cut(A, B) := > 4 icp Wi

Balanced cuts:
RatioCut(A, B) := cut(A, B)(% + &)

|B|
Ncut(A, B) := cut(A, B)(vol( A) + vol}B))
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b

Mincut can be solved efficiently, but RatioCut or Ncut is NP hard.
Spectral clustering: relaxation of RatioCut or Ncut, respectively.
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Unnormalized graph Laplacian

Defined as
L=D-W

to Spectral Clustering

Key property: for all f € R”
f'Lf = f'Df — f'Sf
- Z dif? — Z fifw;
i ij
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Unnormalized graph Laplacian (2)

Spectral properties:

e L is symmetric (by assumption) and positive semi-definite (by
key property)

e Smallest eigenvalue of L is 0, corresponding eigenvector is 1

e Thus eigenvalues 0 = \; < A\ < ... < A\,

August 2007

First relation between spectrum and clusters:
e Multiplicity of eigenvalue 0 = number k of connected
components Ay, ..., Ax of the graph.
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e eigenspace is spanned by the characteristic functions 1,4, ..., 14,
of those components (so all eigenvectors are piecewise constant).

Proof: Exercise
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Normalized graph Laplacians

Row sum (random walk) normalization:
Lo =D"'L =1-D7"S
Symmetric normalization:

Loym = D7Y2LD7Y2 = | — p~1/25pD~1/2
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Spectral properties similar to the ones of L
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Solving Balanced Cut Problems

Relaxation for simple balanced cuts:

mina g cut(A, B) s.t. |A| = |B|

to Spectral Clustering

1 if X;ie A

Choose f = (f1, ..., f,)" with f; = _
-1 ifXeB

Short Introduction

o cut(A B) = Yicajen Wi = 4 2oy wilfi — )7 = Gf'Lf
o|Al=|B] = ;=0 = fi1=0= 11
o ||f|| = /n ~ const.

o
2
=
=}
S
H
o
=
3
-
2
&

mins f'Lf st. £ L 1, f;==+1, ||f||=+/n

Relaxation: allow f; € R
By Rayleigh: solution f is the second eigenvector of L
Reconstructing solution: X; € A <= f, >=0, X; € B otherwise
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Solving Balanced Cut Problems (2)

Similar relaxations work for the other balanced cuts:

e Relaxing RatioCut ~~ eigenvectors of L ~» unnormalized spectral
clustering

e Relaxing Ncut ~ eigenvectors of L,, ~ normalized spectral
clustering
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Case of k > 2 works similar, results in a trace min problem
miny Tr H'LH where V is a n X k orthonormal matrix. Then
again Rayleigh-Ritz.
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Spectral clustering - main algorithms
Input: Similarity matrix S, number k of clusters to construct
e Build similarity graph

e Compute the first k eigenvectors vy, ..., v, of the matrix

L for unnormalized spectral clustering

L., for normalized spectral clustering
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e Build the matrix V € R™k with the eigenvectors as columns

e Interpret the rows of V as new data points Z; € R¥
‘ i Va2 V3
Zy | vii vi2 Vi3
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Z n Vn1 Vn2 Vn3

e Cluster the points Z; with the k-means algorithm in R¥.
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DemoSpectralClustering
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Exploring Spectral Clustering

e Lowest number of noise dimensions
e Symmetric kNN graph with kK = 10
e Number of clusters = 2

e Play around with data sets Two moons balanced and Three
Gaussians (first pick reasonable o)

o
=
3
g
a
O
I
5
]
9
a
0
e
2
2
5
g
<
g
5
5
P
i
S
£
7]

e Try to understand the plots concerning the eigenvectors and the
embedding in R9

e Increase the number of clusters. Can you predict which clusters
spectral clustering is going to choose, just by looking at the
eigenvector plots?
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DemoSpectralClustering (2)
Exploring Spectral Clustering
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e Lowest number of noise dimensions
e Symmetric kNN graph with kK = 10
e Number of clusters = 2

e Play around with data sets Two moons balanced and Three
Gaussians (first pick reasonable o)

o
=
3
g
a
O
I
5
]
9
a
0
e
2
2
5
g
<
g
5
5
P
i
S
£
7]

Try to understand the plots concerning the eigenvectors and the
embedding in R?

e Increase the number of clusters. Can you predict which clusters
spectral clustering is going to choose, just by looking at the
eigenvector plots?
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DemoSpectralClustering (3)

Low parameters K in the context of spectral clustering

e Data set two gaussians different variance
e Lowest number of noise dimensions

e Mutual kNN graph

e Number of clusters = 2
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Vary the number of neighbors between 3 and 15. What can you
observe? Can you explain the result?
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DemoSpectralClustering (4)

Low parameters K in the context of spectral clustering

e Data set two gaussians different variance
e Lowest number of noise dimensions

e Mutual kNN graph

e Number of clusters = 2
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Vary the number of neighbors between 3 and 15. What can you
observe? Can you explain the result?

e Many connected components lead to trivial or undesirable
results!

e Always choose the connectivity parameter of the graph so that
the graph only has one connected component!
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August 2007

o
=
3
g
a
O
I
5
]
9
a
0
e
2
2
5
g
<
g
5
5
P
i
S
£
7]
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DemoSpectralClustering (5)

High parameters K in the context of spectral clustering

e Data set two gaussians different variance
e Lowest number of noise dimensions

e Symmetric kNN graph

e Number of clusters = 2

Vary the number of neighbors. For which k do the clusters in the
embedding look “well separated”? In those cases, does spectral
clustering always discover the correct clusters?
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DemoSpectralClustering (6)

High parameters K in the context of spectral clustering

e Data set two gaussians different variance
e Lowest number of noise dimensions

e Symmetric kNN graph

e Number of clusters = 2
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Vary the number of neighbors from low to high. For which k do the
clusters in the embedding look “well separated”? In those cases,
does spectral clustering always discover the correct clusters?

High values of k usually don't add useful information (can even be
misleading) but increase the complexity. Try to choose rather low
values of K.
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DemoSpectralClustering (7)

High number of noise dimensions

e Data set two gaussians balanced
e Noise dimensions 50

o0 =05

e Mutual kNN graph, k =200
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What happens?
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DemoSpectralClustering (8)

High number of noise dimensions

e Data set two gaussians balanced
e Noise dimensions 50

o0 =05

e Mutual kNN graph, k =200
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What happens?

Even though have one connected component, result is unreliable.
Reason: similarity function is not informative, o is too small!

If we pick a better o, then spectral clustering works quite well, even
in the presence of noise!
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Some selected literature on spectral clustering

Of course | recommend the following ®
e U.von Luxburg. A tutorial on spectral clustering. Statistics and Computing, to appear.
On my homepage.
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The three articles which are most cited:

» Meila, M. and Shi, J. (2001). A random walks view of spectral segmentation.
AISTATS.

» Ng, A., Jordan, M., and Weiss, Y. (2002). On spectral clustering: analysis and an
algorithm. NIPS 14.

» Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation.|EEE
Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888 - 905.

Nice historical overview on spectral clustering; and how relaxation can go wrong:
e Spielman, D. and Teng, S. (1996). Spectral partitioning works: planar graphs and finite
element meshes. In FOCS, 1996
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