# Similarity Graphs in Machine Learning MLSS 2007 <br> Practical Session on Graph Based Algorithms for Machine Learning 

Matthias Hein and Ulrike von Luxburg

August 2007

## Graphs in machine learning

Many machine learning algorithms build on graphs:

- Clustering algorithms, e.g. spectral clustering
- Dimensionality reduction algorithms based on manifolds (LLE, Isomap)
- Semi-supervised learning algorithms, e.g. label propagation
- Ranking algorithms

What is so nice about graphs?

## Graphs in machine learning (2)

Many data sets have a natural graph structure:

- Web pages and the hyperlink structure
- Protein-interaction networks
- Social networks
- Citation graphs
- ...

Many of those graphs have very particular properties (for example, they are "scale free").
In this tutorial we don't talk about those "natural graphs".

## Graphs in machine learning (3)

Many data sets can be transformed to a graph representation by simple means: $\sim$ similarity graphs.

Given:

- data "points" $X_{1}, \ldots, X_{n}$
- similarity values $s\left(X_{i}, X_{j}\right)$ or distance values $d\left(X_{i}, X_{j}\right)$

Construct graph:

- Data points are vertices of the graph
- Connect points which are "close"
- Intuition: Graph captures local neighborhoods

Why could this be useful?

## Graphs in machine learning (4)

Look at similarity values:

- Usually, the similarity values are very reliable in encoding "local structure"
- Can reliably indicate which points are "close" or "similar"
- The global structure induced by a similarity or distance function often does not capture the true global structure of the data



## Graphs in machine learning (5)

Another example for misleading global distances:


## Graphs in machine learning (6)

Now idea:

- Only rely on local information provided by similarity
- Construct graph based on this local information
- Machine learning algorithm should discover global structure by itself



## Graphs in machine learning (7)

Further advantages of graph-based data representations:

- They are ideally suited to represent data based on pairwise information of objects (such as similarities, distances, relations)
- They are an efficient way of encoding data (sparse)
- Graphs are omnipresent in computer science, have been studied a lot, and for many tasks efficient algorithms are known


## Recap: distances and similarities

A similarity score between two objects is "high" if the objects are "very similar".
Most prominent example in $\mathbb{R}^{d}$ : Gaussian kernel:
$s\left(x_{i}, x_{j}\right)=\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / 2 \sigma^{2}\right)$
A distance score between two objects is "small" if the objects are "close" to each other.
Most prominent example in $\mathbb{R}^{d}$ : Eulidean distance:
$d\left(x_{i}, x_{j}\right)=\left\|x_{i}-x_{j}\right\|$

- Distances and similarities are "inverse" to each other: similarity high $\Longleftrightarrow$ distance low
- In the following, only talk about similarities, everything also works with distances!


## Recap: basic graph notation



- A graph consists of vertices and edges.
- Edges can be directed or undirected, and weighted or unweighted.
- The adjacency matrix (weight matrix) $W$ describes the graph: $w_{i j}=0$ if vertices $i$ and $j$ are not connected $w_{i j}=$ weight of the edge, if they are connected
- The degree of a vertex is the sum of all adjacent edge weights: $d_{i}=\sum_{j} w_{i j}$
- All vertices which can reached from each other by a path form a connected component


## Directed k-nearest neighbor graph

- Given data objects and their pairwise similarities $s_{i j}$
- Connect each point to its $k$ nearest neighbors
- Weight the edges by the similarity score

Note:

- Resulting graph is directed
- Graph is not symmetric (as neighborhood relationship is not symmetric)!!!
Two nearest neigbors:


## Undirected k-nearest neighbor graphs

Make directed graph undirected: either using "or" or "and" operation on directed edges
"The" kNN graph (other names: symmetric kNN graph): connects $A$ with $B$ if $A \leftarrow B$ or $A \rightarrow B$

The mutual kNN graph:
connects $A$ with $B$ if $A \leftarrow B$ and $A \rightarrow B$
Directed nearest neigbors:



The (symmetric) kNN graph


The mutual kNN graph

## Undirected k-nearest neighbor graphs (2)




Note: by construction, the mutual kNN-graph is a subset of the symmetric kNN graph.

## $\varepsilon$-neighborhood graph

- Given data objects and their pairwise distances $d_{i j}$
- Connect each point to all other points which have distance $d_{i j}$ smaller than a threshold $\varepsilon$
- Either use unweighted graph
- or additionally transform distances to similarities and use similarities as weights



## DemoSimilarityGraphs

Now want to explore graph properties in a demo:

- Go to http://agbs.kyb.tuebingen.mpg.de/wikis/mlss07
- Download file DemoSimilarityGraphs.zip
- Unzip it in some convenient folder
- Start matlab, go to the folder DemoSimilarityGraphs
- Start the demo by typing DemoSimilarityGraphs in matlab


## DemoSimilarityGraphs (2)

Tuning the similarity function:

As similarity function, demo uses the Gaussian kernel:
$s(x, y)=\exp \left(-\|x-y\|^{2} /\left(2 \sigma^{2}\right)\right)$
Want to select a good parameter $\sigma$.

- Data set: two moons
- Noise dimensions: 0
- Choose different values for the kernel parameter $\sigma$ and press "Update Data Plots"
- Look at top panel only
- How do you know whether a certain $\sigma$ is useful?


## DemoSimilarityGraphs (3)

Effect of noise on the similarity function:

- Same data set as before
- Now increase the number of noise dimensions.
- Try to re-adjust sigma.
- What can you observe?
- Do you have an explanation?


## DemoSimilarityGraphs (4)

What happens is: distances in high-dimensional spaces become less meaningful, they mainly model noise:

Let $X$ and $Y$ be points drawn from two $d$-dim Gaussians:
$X \sim N\left(\mu_{1}, \sigma_{1}^{2} I\right)$
$Y \sim N\left(\mu_{2}, \sigma_{2}^{2} I\right)$
Then their expected distance satisfies

$$
\begin{aligned}
E\|X-Y\|^{2} & =E \sum_{i=1}^{d}\left|X_{i}-Y_{i}\right|^{2} \\
& =\sum_{i=1}^{d}\left[\operatorname{Var}\left(X_{i}-Y_{i}\right)+\left(E\left(X_{i}-Y_{i}\right)\right)^{2}\right] \\
& =d\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)+\left\|\mu_{1}-\mu_{2}\right\|^{2}
\end{aligned}
$$

If $d$ is large, the noise term $d\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)$ will always dominate the "informative term" $\left\|\mu_{1}-\mu_{2}\right\|^{2}!!!$

DemoSimilarityGraphs (5)
Comparing symmetric and mutual kNN graph:

- Choose data set Gaussians unbalanced
- 500 data points
- Noise dimensions: 0
- First adjust a reasonable $\sigma$
- In the two graph panels, choose symmetric kNN and mutual kNN
- Now try to find the smallest parameter $k$ for which both graphs are connected (have one connected component).
- What can you observe?
- How do both graphs look like for a $k$ which is just a bit smaller?
- And if $k$ is much higher?


## DemoSimilarityGraphs (6)

Symmetric and mutal kNN graph for high noise:

- Data set Gaussians different variance
- 150 data points
- Slowly increase the number of noise dimensions.
- What happens for 200 noise dimensions?

Any explanation?

## DemoSimilarityGraphs (7)

Have already seen:
$X \sim N\left(\mu_{1}, \sigma_{1}^{2} I\right), Y \sim N\left(\mu_{2}, \sigma_{2}^{2} I\right)$
$E\|X-Y\|^{2}=\left\|\mu_{1}-\mu_{2}\right\|^{2}+d \sigma_{1}^{2}+d \sigma_{2}^{2}$
Assume $d$ is large and $\sigma_{1}<\sigma_{2}$. Then:

$$
\begin{aligned}
& E\left\|X-X^{\prime}\right\|^{2}=2 d \sigma_{1}^{2} \\
\leq & E\|X-Y\|^{2}=\left\|\mu_{1}-\mu_{2}\right\|^{2}+d \sigma_{1}^{2}+d \sigma_{2}^{2} \\
\leq & E\left\|Y-Y^{\prime}\right\|^{2}=2 d \sigma_{2}^{2}
\end{aligned}
$$

- Points $Y$ in the low-density cluster are closer to points $X$ in the high-density cluster than to points $Y^{\prime}$ in their own cluster!


## DemoSimilarityGraphs (8)

Symmetric kNN graph vs. $\varepsilon$-neighborhood graph:

- Data set Gaussians different variance
- 100 data points
- 0 noise dimensions
- Try to adjust $\varepsilon$ for the $\varepsilon$-graph such that the graph is connected.
- What can you observe?
- What happens if $\varepsilon$ is smaller than this?
- How does the symmetric kNN graph behave compared to this?


## DemoSimilarityGraphs (9)

The degrees of the graph vertices

- Any data set
- 0 noise dimensions
- All three graphs
- Look at the plot of the degrees of the graph. How are the graph degrees related to the data set?

