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Abstract

We present a method for solving a class of nonconvex optimization problems
over the product of nonnegative `p spheres with global optimality guarantees
and linear convergence rate. We apply our results and algorithm to training
feed-forward generalized polynomial neural networks on real-world datasets.

1 Introduction and main results

Deep learning [13] is currently the state of the art machine learning technique in many
application areas such as computer vision, natural language processing. While the theoretical
foundations of neural networks have been explored in depth see e.g. [1], the understanding of
the success of training deep neural networks is a currently very active research area [9, 5, 4].
In particular, the problem is even for a single hidden layer in general NP hard, see [16] and
references therein. This implies that to achieve global optimality certain conditions on the
problem have to be imposed. A recent line of research has directly tackled the optimization
problem of neural networks and provided either certain guarantees [2, 15] in terms of the
global optimum or proved directly convergence to the global optimum [11, 8]. The latter two
papers are up to our knowledge the first results which provide a global method for training
neural networks. However, these approaches turn out to be difficult to apply in practice.
In [6], we develop a new method, namely the Nonlinear Spectral Method, for training a
certain class of generalized polynomial networks with global optimality guarantees and linear
convergence rate. A considerable advantage over other approaches with similar guarantees is
that our conditions can be checked easily without running the algorithm. It turns out that
this approach can be applied to a wider class of nonconvex optimization problems which we
discuss in this paper. We present this approach from a more optimization-based point of view
and provide some insights into the involved assumptions. Our nonlinear spectral method
is inspired by the theory of (sub)-homogeneous nonlinear eigenproblems on convex cones
[14] which has its origin in the Perron-Frobenius theory for nonnegative matrices. In fact
our work is motivated by the closely related Perron-Frobenius theory for multi-homogeneous
problems developed in [7]. In the experiments, we apply our theory to train a certain class
of polynomial networks with one/two hidden layers as in [6]. All proofs can be found in the
appendix.

Notations. Let Rn+ = {x ∈ Rn | x ≥ 0} and Rn++ = {x ∈ Rn | x > 0}, where the
inequalities are meant component wise. For α > 0 and z ∈ Rn++ we write zα = (zα1 , . . . , zαn ).
Let δ ∈ N, [δ] = {1, . . . , δ}, n1, . . . , nδ ∈ N, V+ = Rn1

+ ×. . .×R
nδ
+ and V++ = Rn1

++×. . .×R
nδ
++.

For p1, . . . , pδ ∈ (1,∞) let ‖ · ‖pi be the usual pi-norm on Rni and p′i = pi/(pi − 1). Let
ρ1, . . . , ρδ > 0 , we consider the product of nonnegative unit spheres/balls defined as
S+ = {x ∈ V+ | ‖xi‖pi = ρi,∀i ∈ [δ]}, B+ = {x ∈ V+ | ‖xi‖pi ≤ ρi,∀i ∈ [δ]}, and the
product of positive spheres/balls defined as S++ = S+ ∩ V++ and B++ = B+ ∩ V++. Let
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F : V+ → Rm and i ∈ [δ], we write DiF (x) (resp. ∇iF (x) when m = 1) to denote the
Jacobian (resp. the gradient) of zi ∈ Rni 7→ F (x1, . . . , zi, . . . , xδ).
In this paper, we consider the maximization of a certain class of twice-differentiable nonconvex
functions Φ: V+ → R over the product of nonnegative unit spheres S+, that is,

max
{

Φ(x1, . . . , xδ)
∣∣ (x1, . . . , xδ) ∈ S+

}
(1)

Our main result derived for this problem is the following.
Theorem 1. Let Φ ∈ C1(B+,R) ∩ C2(B++,R) be such that ∇Φ(S+) ⊂ V++ and there
exists M ∈ Rδ×δ+ such that |Dj∇iΦ(x)|xj ≤ Mi,j∇iΦ(x) for every i, j ∈ [δ] and x ∈ B++.
Let A = 2 diag(p′1 − 1, . . . , p′δ − 1)M . If there exists λ ∈ (0, 1) and γ ∈ Rd++ such that
AT γ = λγ, then λ = ρ(A) and (1) has a unique global maximizer x ∈ S++. Moreover, let
G : S++ → S++,

G(x) =
(
ρ1‖∇1Φ(x)‖1−p′1

p′1

(
∇1Φ(x)

)p′1−1
, . . . , ρδ‖∇δΦ(x)‖1−p′δ

p′
δ

(
∇δΦ(x)

)p′δ−1
)
. (2)

Then, for every x(0) ∈ B++, the sequence x(k) = G(x(k−1)) satisfies limk→∞ x(k) = x and

‖x(k) − x‖∞ ≤ ρ(A)k
(

µγ
(
x(1), x(0))

(1− ρ(A)) mini∈[δ] γi/ρi

)
∀k ∈ N, (3)

where µγ is the weighted Thompson metric defined as µγ(x, y) =
∑δ
j=1γj ‖ ln(xj)− ln(yj)‖∞.

Proof Strategy We first show that the global maximizer of our optimization problem (1)
is attained in the “interior” of S+, that is S++. Moreover, we prove that any critical point of
(1) in S++ is a fixed point of the mapping G. Then we proceed to show that there exists a
unique fixed point of G in S++ and thus Φ has a unique critical point in S++. As the global
maximizer of (1) exists and is attained in the interior, this fixed point has to be the global
maximizer. To prove that G has a unique fixed point, we first note that G maps B++ into
B++ and B++ is a complete metric space w.r.t. the Thompson metric. Next, we provide a
characterization of the Lipschitz constant of G and derive conditions under which G is a
contraction. Finally, the application of Banach fixed point theorem yields the uniqueness of
the fixed point of G and linear convergence rate to the global maximum of (1).
By Theorem 1, the only condition one needs to check is ρ(A) < 1. Unfortunately a closed
form expression for ρ(A) is not always available. However, since limp1,...,pδ→∞ ρ(A) = 0 there
always exists p1, . . . , pδ such that ρ(A) < 1 and (1) can be solved globally optimally. Such
pi’s can be easily found for a given problem. Indeed, if pj − 1 > 2

∑δ
i=1 Mi,j then AT γ < γ

with γ = (p1 − 1, . . . , pδ − 1). Hence, ρ(A) < 1 by Corollary 8.3.3 [10].

2 Application to generalized polynomial neural networks
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Figure 1: Classification decision
boundaries in R2. (Best viewed in
colors.)

In this section, we apply our results to neural networks for K-
class classification and present the algorithm with optimality
and convergence guarantees. We use the negative cross-entropy
loss defined for label y ∈ [K] and f : Rd → RK as

L
(
y, f(x)

)
= − log

(
efy(x)∑K
j=1 e

fj(x)

)
= −fy(x)+log

( K∑
j=1

efj(x)
)
.

One-hidden-layer network. Our function class is a feed-
forward neural network with n1 hidden units. In particular, for α ∈ Rn1 with αi ≥ 1, i ∈ [n1],
the function class at the rth output unit is defined as

fr(x) = fr(w, u)(x) =
n1∑
l=1

wrl

( d∑
m=1

ulmxm

)αl
, (4)
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where w ∈ RK×n1
+ and u ∈ Rn1×d

+ are the parameters of the network which we optimize. We
assume that αi 6= αj for i 6= j. The reason for this lies in certain invariance properties of the
network. Suppose σ is a component-wise activation function, then σ(Px) = Pσ(x) for every
permutation matrix P . Let A,B be the optimal weight matrices, then for any permutation
matrix P it holds Aσ(Bx) = APTPσ(Bx) = APTσ(PBx), which implies that A′ = APT

and B′ = PB yield the same function and thus are also globally optimal. In our setting we
know that the global optimum is unique and thus it must hold that A = APT and B = PB
for all permutation matrices P . This implies A and B have both rank one which leads to
trivial classifiers. This is the reason why we have to use different activation functions for
different units.
The function class in (4) can be seen as a generalized polynomial. Polynomial neural networks
have been recently analyzed in [15]. Note that ReLU activation functions are meaningless in
our setting as the data as well as the weights are restricted to be nonnegative. Even though
the nonnegativity is a strong constraint, we show in our experiments that it can model quite
complex decision boundaries (see Figure 1).
To simplify notation, let w = (w1, . . . , wK) where wi ∈ Rn1

+ are weight vectors of K output
units. All weights are normalized. In particular, our constraint set is defined as

S+ =
{

(w, u) ∈ RK×n1
+ × Rn1×d

+
∣∣ ‖u‖pu = ρu, ‖wi‖pw = ρw ∀i = 1, . . . ,K

}
.

We aim to solve the following optimization problem for one-hidden layer network
max

{
Φ(w, u) | (w, u) ∈ S+

}
with (5)

Φ(w, u) = 1
n

n∑
i=1

[
− L

(
yi, f(w, u)(xi)

)
+

K∑
r=1

fr(w, u)(xi)
]

+ ε
( K∑
r=1

n1∑
l=1

wr,l +
n1∑
l=1

d∑
m=1

ulm

)
,

where (xi, yi) ∈ Rd+ × [K], i ∈ [n] is the training data. Note that we use minus the loss in
the objective to obtain a maximization problem as we want to apply our Theorem 1. Note
that ε > 0 can be chosen arbitrarily small and is added out of technical reasons.

Now, we derive the matrix M ∈ R(K+1)×(K+1)
++ from Theorem 1 for one-hidden layer network.

Let Ψα
p,q : Rn1

++ × R++ → R++ be a function defined for every p, q ∈ (1,∞) and α ∈ Rn1
++ as

Ψα
p,q(δ, t) =

([∑
l∈J(δl tαl)

p q

q−αp

]1−αpq + maxj∈Jc(δj tαj )p
)1/p

,

where J = {l ∈ [n1] | αlp ≤ q}, Jc = {l ∈ [n1] | αlp > q} and α = minl∈J αl.
Theorem 2. Let Φ as in (5). Let (xi, yi) ∈ Rd+ × [K], i ∈ [n] and pw, pu ∈ (1,∞), ρw, ρu >
0, n1 ∈ N and α ∈ Rn1 with α ≥ 1. Let ρx = maxi∈[n] ‖xi‖p′u and M ∈ R(K+1)×(K+1)

++ with
Mwa,wb = 2Cw, Mwa,u = 2Cu + ‖α‖∞, Mu,wb = 2Cw + 1, Mu,u = 2Cu + ‖α‖∞ − 1,

where Cw = ρw Ψα
p′w,pu

(1, ρuρx), Cu = ρw Ψα
p′w,pu

(α, ρuρx). Then Φ and M satisfy the
conditions of Theorem 1.

Two-hidden-layer network. For α ∈ Rn1 , β ∈ Rn2 (α, β ≥ 1) our new function class

is: fr(x) = fr(w, v, u)(x) =
∑n2
b=1 wrb

(∑n1
a=1 vba

(∑d
s=1 uasxs

)αa)βb
. Let V+ = RK×n2

+ ×
Rn2×n1

+ × Rn1×d
+ , the problem becomes

max
{

Φ(w, v, u) |(w, v, u) ∈ V+, ‖wi‖pw = ρw, ‖v‖pv = ρv, ‖u‖pu = ρu
}

(6)
where
Φ(w, v, u) = 1

n

n∑
i=1

[
−L
(
yi, f(xi)

)
+

K∑
r=1

fr(xi)
]
+ε
( K∑
r=1

n2∑
l=1

wrl+
n2∑
l=1

n1∑
m=1

vlm+
n1∑
m=1

d∑
s=1

ums

)
.

The application of Theorem 1 now yields the following result for 2-hidden layers.
Theorem 3. Let Φ as in (6). Let (xi, yi) ∈ Rd+ × [K], i ∈ [n] and pw, pv, pu ∈ (1,∞),
ρw, ρv, ρu > 0, n1, n2 ∈ N and α ∈ Rn1 , β ∈ Rn2 with α, β ≥ 1. Let M ∈ R(K+2)×(K+2)

++ with
Mwa,wb = 2Cw, Mwa,v = 2Cv + ‖β‖∞, Mwa,u = 2Cu + ‖α‖∞‖β‖∞
Mv,wa = 2Cw + 1, Mv,v = 2Cv + ‖β‖∞ − 1, Mv,u = 2Cu + ‖α‖∞‖β‖∞
Mu,wa = 2Cw + 1, Mu,v = 2Cv + ‖β‖∞, Mu,u = 2Cu + ‖α‖∞‖β‖∞ − 1
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for every wa, wb ∈ [K], v = K + 1, u = K + 2, and where
θ = ρvΨα

p′v,pu
(1, ρuρx), Cw = ρwΨβ

p′w,pv
(1, θ), Cv = ρwΨβ

p′w,pv
(β, θ), Cu = ‖α‖∞Cv.

Then M and Φ satisfies the conditions of Theorem 1.

3 Experiments
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Figure 2: Training score (left) w.r.t. the optimal score p∗
and test error (right) of NLSM1 and Batch-SGD with different
step-sizes.

Table 1: Test accuracy on UCI datasets

Dataset NLSM1 NLSM2 ReLU1 ReLU2 SVM

Cancer 96.4 96.4 95.7 93.6 95.7
Iris 90.0 96.7 100 93.3 100
Banknote 97.1 96.4 100 97.8 100
Blood 76.0 76.7 76.0 76.0 77.3
Haberman 75.4 75.4 70.5 72.1 72.1
Seeds 88.1 90.5 90.5 92.9 95.2
Pima 79.2 80.5 76.6 79.2 79.9

The shown experiments should be seen as a proof of concept. We do not have yet a good
understanding of how to pick the parameters of our model to achieve good performance.
However, the other papers which have up to now discussed global optimality for neural
networks [11, 8] have not included any results on real datasets. Thus, up to our knowledge,
we show for the first time a globally optimal algorithm for neural networks that leads to
non-trivial classification results.
We test our methods on several low dimensional UCI datasets and denote our algorithms as
NLSM1 (one hidden layer) and NLSM2 (two hidden layers). We choose the parameters of our
model out of 100 randomly generated combinations of (n1, α, ρw, ρu) ∈ [2, 20]× [1, 4]× (0, 1]2
(respectively (n1, n2, α, β, ρw, ρv, ρu) ∈ [2, 10]2 × [1, 4]2 × (0, 1]2) and pick the best one
based on 5-fold cross-validation error. We pick pu, pw (resp. pu, pv, pw) such that every
generated model satisfies the conditions of Theorem 1 (resp. Theorem 3), i.e. ρ(A) < 1.
Thus, global optimality is guaranteed in all our experiments. For comparison, we use
RBF-kernel SVM, a one-hidden-layer rectified linear network (ReLU1) and a two-hidden-
layers ReLu network (ReLU2). For training ReLU, we use stochastic gradient descent
with logistic loss and L2-norm regularization to prevent over-fitting. All parameters are
jointly cross validated for each method. Specifically, for ReLU the number of hidden units
is varied from 2 to 20, step-sizes and regularizers are taken from {10−6, 10−5, . . . , 102}
and {0, 10−4, 10−3, . . . , 104} respectively. For SVM, the hyperparameter C and the kernel
parameter γ of the radius basis function K(xi, xj) = exp(−γ‖xi − xj‖2) are chosen from
{2−5, 2−4 . . . , 220} and {2−15, 2−14 . . . , 23} respectively. Note that RBF-SVM and ReLUs
allow negative weights while our models do not. The results from Table 1 show that our
nonlinear spectral methods achieve overall competitive performance to other methods. In
case of Cancer, Haberman and Pima, NLSM2 outperforms all other models. For Iris and
Banknote, we note that ReLU1 (without any constraint) can achieve zero test error while this
is difficult for our nonlinear spectral methods since we impose constraints on the architecture
in order to prove global optimality.
We compare our algorithms against Batch-SGD (batch-size ≈ 0.05n) with different fixed
step-sizes. At each iteration (epoch) of our spectral method (Batch-SGD), we compute the
training objective and test error. Figure 2 shows that our method is much faster than SGDs
and has a linear convergence rate. We noted in our experiments that as α is large and our
data lies between [0, 1], all units in the network tend to have small values, which makes
training objective function become relatively small. Thus, a small change in the objective
can be caused by a relatively large change in parameter space which eventually leads to large
influence on performance. This somehow explains the behavior of SGDs in Figure 2 .
The magnitude of the entries of the matrix A in Theorems 2 and 3 grows with the number
of hidden units and thus the spectral radius ρ(A) also increases with this number. As we
expect that the number of required hidden units grows with the dimension of the datasets
we have limited ourselves in the experiments to low-dimensional datasets. However, these
bounds are likely not to be tight, so that there might be room for improvement in terms of
dependency on the number of hidden units.
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A Proof of Theorem 1

The assumption ∇Φ(S+) ⊂ V++ guarantees that Φ attains its global maximum in S++.
Lemma 1. Let Φ ∈ C1(B+,R) and suppose that ∇Φ(S+) ⊂ V++. Then the global maximum of Φ
on S+ is attained in S++.

Proof. First note that as Φ is a continuous function on the compact set S+ the global minimum and
maximum are attained. A boundary point (x1, . . . , xδ) of S+ is characterized by the fact that at
least one of the variables x1, . . . , xδ has a zero component. Suppose w.l.o.g. that the subset J ⊂ [n1]
of components of x1 ∈ Rn1

+ are zero, that is x1
J = 0. The normal vector of the p1-sphere at x1 is

given by ν = (x1)p1−1. The set of tangent directions is thus given by

T = {v ∈ Rn1 | 〈ν, v〉 = 0}.

Note that if (x1, . . . , xδ) is a local maximum, then〈
∇1Φ(x1, . . . , xδ), t

〉
≤ 0, ∀t ∈ T+ = {v ∈ Rn1

+ | 〈ν, v〉 = 0}, (7)
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where T+ is the set of “positive” tangent directions, that are pointing inside the set {x1 ∈
Rn1

+ | ‖x
1‖p1 = ρ1}. Otherwise there would exist a direction of ascent which leads to a feasible point.

Now note that ν has non-negative components as x1 ∈ Rn1
+ . Thus

T+ = {v ∈ Rn1
+ | vi = 0 if i /∈ J}.

However, by assumption ∇1Φ(x1, . . . , xδ) is a vector with strictly positive components and thus (7)
can never be fulfilled as T+ contains only vectors with non-negative components and at least one of
the components is strictly positive as J 6= [n1]. Finally, as the global maximum is attained in S+
and no local maximum exists at the boundary, the global maximum has to be attained in S++.

We now identify critical points of the objective Φ in S++ with fixed points of G in S++.
Lemma 2. Let Φ ∈ C1(B+,R) and suppose that ∇Φ(S+) ⊂ V++. Then x is a critical point of Φ
in S++ if and only if it is a fixed point of G.

Proof. The Lagrangian of Φ constrained to the unit sphere S is given by

L(x, ξ) = Φ(x)−
δ∑
j=1

ξj(ρj − ‖xj‖pj ) ∀x ∈ B+, ξ ∈ Rd.

From ∇L(x, ξ) = 0, one can easily show that the necessary condition [3] for x = (x1, . . . , xδ) ∈ S++
being a critical point of Φ is the existence of λ1, . . . , λδ such that

∇jΦ(x) = λj(xj)pj−1 ∀j ∈ [δ]. (8)

Since xj > 0 and ∇jΦ(x) > 0 by our assumption, it must hold that λi > 0 for every i ∈ [δ]. By
noting that (zp−1)p

′−1 = z for z ≥ 0, we get

∇jΦ(x)p
′
j−1 = λ

p′j−1
j xj ∀j ∈ [δ]. (9)

Diving both sides of (9) by the norms, one obtains

∇jΦ(x)p
′
j−1

‖∇jΦ(x)p
′
j
−1‖pj

=
λ
p′j−1
j xj

λ
p′
j
−1

j ‖xj‖pj
= xj

ρj
∀j ∈ [δ]

Combining with the fact that ‖zp
′−1‖p = ‖z‖p

′−1
p′ for z > 0, we get

(x1, . . . , xδ) =
(
ρ1
∇1Φ(x)p

′
1−1

‖∇1Φ(x)‖p
′
1−1
p′1

, . . . , ρδ
∇δΦ(x)p

′
δ
−1

‖∇δΦ(x)‖p
′
δ
−1

p′
δ

)
= G(x) ∈ S++,

as the gradient is strictly positive on S++ and thus the mapping G from (2) is well-defined. We
have proved that if x is a critical point then G(x) = x. Assume now that G(x) = x, then

ρj
∇jΦ(x)p

′
j−1

‖∇jΦ(x)‖
p′
j
−1

p′
j

= xj , ∀j ∈ [δ]

and thus there exists λj = ρ−1
j ‖∇jΦ(x)‖

p′j−1
p′
j

, j ∈ [δ] such that (9) holds implying that x is a critical
point of Φ in S++.

Note that S++ ⊂ B++. Our goal is to apply the Banach fixed point theorem to G : B++ → B++.
We recall this theorem for the convenience of the reader.
Theorem 4 (Banach fixed point theorem, e.g. Theorem 3.1 [12]). Let (X, d) be a complete metric
space with a mapping T : X → X such that d(T (x), T (y)) ≤ q d(x, y) for q ∈ [0, 1) and all x, y ∈ X.
Then T has a unique fixed-point x in X, that is T (x) = x and the sequence defined as x(n+1) = T (x(n))
with x(0) ∈ X converges limn→∞ x

(n) = x with linear convergence rate

d(x(n), x) ≤ qn

1− q d(x(1), x(0)). (10)

The following lemma shows that (B++, µγ) is a complete metric space.
Lemma 3. (B++, µγ) is a complete metric space for every γ ∈ Rδ++.
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Proof. We first prove that for p ∈ (1,∞) and ρ > 0,
(
{z ∈ Rn++ | ‖z‖p ≤ ρ}, d

)
is a complete metric

space. Let (zk)k ⊂ {z ∈ Rn++ | ‖z‖p ≤ ρ} be a Cauchy sequence w.r.t. the metric d. We know from
Proposition 2.5.2 in [14] that (Rn++, d) is a complete metric space and thus there exists z∗ ∈ Rn++ such
that zk converge to z∗ w.r.t. d. Corollary 2.5.6 in [14] implies that the topology of (Rn++, d) coincide
with the norm topology, meaning limk→∞ z

k = z∗ w.r.t. the norm topology. Finally, since z 7→ ‖z‖p
is a continuous function, we get ‖z∗‖p = limk→∞ ‖zk‖p ≤ ρ, i.e. z∗ ∈ {z ∈ Rn++ | ‖z‖p ≤ 1} which
proves our claim.
Now, the idea is to see B++ as a product of such metric spaces. For i ∈ [δ], let Bi++ = {xi ∈ Rni++ |
‖xi‖pi ≤ ρi} and di(xi, x̃i) = γi‖ ln(xi)− ln(x̃i)‖∞ for some constant γi > 0. Then (Bi++, di) is a
complete metric space for every i ∈ [δ] and B++ = B1

++ × . . .×Bδ++. It follows that (B++, µγ) is a
complete metric space with µγ : B++ ×B++ → R+ defined as

µγ
(
x, x̃
)

=
δ∑
i=1

γi‖ ln(xi)− ln(x̃i)‖∞.

Suppose that ρ(A) is a Lipschitz constant of G w.r.t. µγ , i.e.

µγ(G(x), G(y)) ≤ ρ(A)µγ(x, y) ∀x, y ∈ B++. (11)

If ρ(A) < 1, then, as (B++, µγ) is a complete metric space by Lemma 3, we can apply the Banach
fixed point theorem 4 to G. As an implication, G has a unique fixed point in S++ and therefore Φ
has a unique maximizer x ∈ S++. Moreover, the sequence (x(k))k∈N ⊂ S++ converges to x for every
starting point x(0) ∈ B++ and the linear convergence rate (10) holds for every k ∈ N.
To prove (11), we first prove two lemmas. Lemma 4 establishes the connection between the matrices
M and A defined in Theorem 1. Meanwhile, Lemma 5 shows how to use the property of these
matrices in order to get a Lipschitz constant for G w.r.t. µγ .

Lemma 4. Let F ∈ C1(Rn++,Rm++), p′ ∈ (1,∞) and H(x) = ‖F (x)‖1−p′
p′ F (x)p

′−1. If c ≥ 0 and
x > 0 satisfy |DF (x)|x ≤ cF (x), then we have |DH(x)|x ≤ 2c(p′ − 1)H(x).

Proof. Let F = (F1, . . . , Fm), H = (H1, . . . , Hm) and l ∈ [m]. It holds

∇Hl(x) = (p′ − 1)
(
Fl(x)p

′−2∇Fl(x)
‖F (x)‖p′−1

p′

−
Fl(x)p

′−1‖F (x)‖−1
p′
∑m

k=1 Fk(x)p
′−1∇Fk(x)

‖F (x)‖2p′−2
p′

)
= (p′ − 1)Hl(x)

(
∇Fl(x)
Fl(x) −

∑m

k=1 Fk(x)p
′−1∇Fk(x)

‖F (x)‖p′
p′

)
.

Using the triangle inequality and |DF (x)|x ≤ cF (x) one gets

〈|∇Hl(x)|, x〉
Hl(x) ≤ (p′ − 1)

( 〈|∇Fl(x)|, x〉
Fl(x) +

∑m

i=1 Fi(x)p
′−1 〈|∇Fi(x)|, x〉

‖F (x)‖p′p′

)
≤ 2(p′ − 1)c.

As this is true for every l ∈ [m], we get |DH(x)|x ≤ 2c(p′ − 1)H(x).

Lemma 5. Let F ∈ C1(B++, B++), F = (F1, . . . , Fδ) with Fi : B++ → Rni , and Q ∈ Rδ×δ+ be such
that |DjFi(x)|xj ≤ Qi,jFi(x) for every x ∈ B++ and every i, j ∈ [δ]. Then, for any γ ∈ Rδ++, we
have

µγ(F (x), F (y)) ≤ Cµγ(x, y) ∀x, y ∈ B++ with C = max
i∈[δ]

(QT γ)i
γi

.

Proof. Let i ∈ [δ], Fi = (Fi,1, . . . , Fi,ni), li ∈ [ni] and f(x) = ln(Fi,li(exp(x))) where exp(·) and
ln(·) are taken component wise. Let x, y ∈ B++, x 6= y. Set x̃ = ln(x) and ỹ = ln(y). By the mean
value theorem, there exists t ∈ (0, 1) such that f(x̃)− f(ỹ) = 〈∇f(z̃), x̃− ỹ〉 where z̃ = tx̃+ (1− t)ỹ.
Note that z = exp(z̃) ∈ B++ because the exponential is convex and x, y ∈ B++, indeed for every
i ∈ [δ], we have

‖zi‖pi = ‖ exp
(
t ln(xi) + (1− t) ln(yi)

)
‖pi ≤ ‖tx

i + (1− t)yi‖ ≤ t‖xi‖pi + (1− t)‖yi‖pi ≤ ρi.
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Hence, with the Hölder inequality, we get

| ln(Fi,li(x))− ln(Fi,li(y))| = | 〈∇Fi,li(z) ◦ z, x̃− ỹ〉 |
Fi,li(z)

≤
δ∑
k=1

|
〈
∇kFi,li(z) ◦ zk, x̃k − ỹk

〉
|

Fi,li(z)

≤
δ∑
k=1

〈
|∇kFi,li(z)|, zk

〉
Fi,li(z)

‖x̃k − ỹk‖∞

≤
δ∑
k=1

Qi,k‖ ln(xk)− ln(yk)‖∞

where u ◦ v = (u1v1, . . . , unvn) for all u, v ∈ Rn. Taking the maximum over li ∈ [ni] shows that

‖ ln(Fi(x))− ln(Fi(y))‖∞ ≤
δ∑
k=1

Qi,k‖ ln(xk)− ln(yk)‖∞.

It follows that

µγ(F (x), F (y)) ≤
δ∑
i=1

δ∑
j=1

γiQi,j‖ ln(xj)− ln(yj)‖∞ =
δ∑
j=1

(QT γ)j‖ ln(xj)− ln(yj)‖∞

=
δ∑
j=1

(QT γ)j
γj

γj‖ ln(xj)− ln(yj)‖∞ ≤
(

max
i∈[δ]

(QT γ)i
γi

)
µγ(x, y)

which proves the claim.

We have now all the tools to conclude the proof of Theorem 1. Indeed, the assumption
|Dj∇iΦ(x)|xj ≤Mi,j ∇iΦ(x) ∀i, j ∈ [δ], x ∈ B++

and Lemma 4 (with F (x) = ∇iΦ(x), i ∈ [δ]) imply that

|DjGi(x)|xj ≤ 2(p′i − 1)Mi,j Gi(x) = Ai,j Gi(x) ∀i, j ∈ [δ], x ∈ B++,

where Gi(x) = ‖∇iΦ(x)‖1−p′i
p′
i
∇iΦ(x)p

′
i−1 for i ∈ [δ]. Now, Lemma 5 implies

µγ(G(x), G(y)) ≤ Cµγ(x, y) ∀x, y ∈ B++ with C = max
i∈[δ]

(QT γ)i
γi

.

We have AT γ = λγ, and thus C = λ. Theorem 8.3.4 [10] implies that λ = ρ(A) and, as ρ(A) < 1, G
is a strict contraction. Thus, we can apply the Banach fixed point theorem 4 to G. It follows that
G has a unique fixed point x ∈ S++ which is also the global maximizer of Φ on S+ by Lemmas 1
and 2. Moreover, it holds

µγ(x(k), x) ≤ ρ(A)k

1− ρ(A) µγ(x(1), x(0)) k = 1, 2, . . . (12)

Now, let k ∈ N be fixed and z = x(k). The mean value theorem implies that for every r ∈ R, we have
|es − et| ≤ |s− t| max

ξ∈(−∞,r]
eξ = er|s− t| ∀s, t ∈ (−∞, r].

In particular, we have
ln
(
ziji
)
∈ (−∞, ln(ρi)] ∀i ∈ [δ], ji ∈ [ni]

It follows that

µ
(
z, x
)

=
δ∑
i=1

γi‖ ln(zi)− ln(xi)‖∞ ≥
δ∑
i=1

γi
ρi
‖zi − xi‖∞

≥ max
i∈[δ]

γi
ρi
‖zi − xi‖∞ ≥ ‖z − x‖∞

(
min
i∈[δ]

γi
ρi

)
and thus

‖z − x‖∞ ≤
µ
(
z, x
)

mini∈[δ]
γi
ρi

≤ ρ(A)k
(

µ
(
x(1), x(0))

(1− ρ(A)) mini∈[δ]
γi
ρi

)
.
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B Proof of Theorem 2

Proof. Similar to the proof of Theorem 4 in [6] where the matrix M is referred to as Q.

C Proof of Theorem 3

Proof. Similar to the proof of Theorem 5 in [6].
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