Matlab Tutorial - Practical Part

15.10.2008

Jun. Prof. Matthias Hein

Roadmap of the Tutorial

- Practical part (14.00-17.00):
 - learning by doing
- go into the directoy /usr/local/matlab/bin,
- start matlab

Generation and manipulation of vectors

- generate a row and column vector using
 - direction definition \gg x=[1 3 8];
 - using ones,zeros,rand,randn or the colon operator :
 in case of error or unknown commands use >> help function
- check the workspace content with >> whos
- check the size with >> size(your_array)
- transform your row vector into a column vector and then concatenate both.

Generation and manipulation of matrices

- generate a square matrix of the same size as your column vector
 - use either rand, randn
- check the workspace content with >> whos
- check the size with >> size(your_array)
- multiply the column vector with the matrix and assign the result to a new variable
- take the inner product of the result and your original column vector (there are at least three ways to do that how many do you find?)

Indexing matrices

- generate a random 3×4 matrix A
- access the elements A(3,1), A(1,4) and assign zero to them
- what are the corresponding linear indices? (try it!)
- display the third column and the second row
- display all elements which are larger than 0.5
- generate a zero array of size $2 \times 3 \times 4$ assign the matrix A such that $B_{2kl} = A_{kl}$ with $1 \le k \le 3$ and $1 \le l \le 4$.
- display row and column indices of A which are between 0.2 and 0.5.

Linear Equations and first functions

- use >> x=rand(30,2); y=0.5*x(:,1)+0.2*x(:,2);
- define >> H=x'*x and >> b=x'*y
- solve the linear system Hw = b,
- what are the coefficients w?
- (add a little bit of Gaussian noise to y and repeat)
- write a function LeastSquares with input x, y which has as output w.
- what will happen if y has more than one column?
- add a comment to the function and check what is shown when you use help LeastSquares

For the fast ones:

• write a function MatrixPower with a symmetric matrix A and a real number c as input - compute A^c using the eigenvalues and eigenvectors of A.

JIT compilation versus vectorization

- implement functions PNorm1 and PNorm2 and repeat the experiment of the lecture
- check runtimes for the growing arrays once when you preallocate memory and once without
- use clear to free memory of variables

- download the file dist_euclideanBUG.m from the Matlab-Tutorial homepage
- it is supposed to define the distances between two set of points X and Y e.g. with X=rand(30,6); Y=rand(20,6); D=dist_euclideanBUG(X,Y) computes the 30×20 distances between the 6-dimensional vectors.
- use the debugger to find the bug in dist_euclideanBUG.m

- reproduce the plots from the lecture
- play around with the parameters different colors, plotting styles etc.
- generate other functions and plot them

- generate data with
 - >> x=randn(500,2); x=[x ; randn(500,2)+3]
- runInd=SpectralClustering(x)in the profiler

